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Abstract 

Replacement therapy for patients with hemophilia A using plasma-derived or recombinant 

factor VIII (FVIII) is complicated by the short half-life of the FVIII products and by the 

occurrence of neutralizing antibodies in a substantial number of patients. In the recent years, 

enormous efforts have been invested to develop new generations of coagulation factors with 

extended half-lives. Presumably, the use of long-lasting FVIII products should reduce the 

frequency of administration to the patients and drastically improve their quality of life. The 

question of their immunogenicity remains however unanswered as yet. The present review 

proposes a summary of the different strategies developed to enhance the half-life of FVIII, 

including fusion of FVIII to the Fc fragment of the human IgG1 or to human serum albumin, 

or attachment of polyethylene glycol. Based on the available literature, we hypothesize on the 

potential benefits or risks associated with each of the latter strategies in terms of 

immunogenicity of the newly derived hemostatic drugs. 
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Introduction 

The past decades have witnessed extraordinary improvement in the treatment of bleeding 

disorders. Progressing from the Stone Age, with the use of whole blood and cryoprecipitate 

infusion, we have evolved to a modern time where recombinant coagulation factors are 

administered. Congenital disorders such as hemophilia A, that display life-threatening 

bleeding manifestations, have benefitted utmost from the development of new generation 

therapeutic factor VIII (FVIII), owing to the implication and commitment of the 

pharmaceutical field. Simultaneously, clinical studies as well as the implication of clinicians 

and basic researchers have promoted new treatment regimens (prophylaxis rather than “on-

demand” treatment) that reduce the risks for hemarthrosis and arthropathy episodes and have 

improved the quality of life of hemophilic patients.  

Despite the quality of FVIII in terms of efficacy and viral safety, the short half-life of FVIII 

imposes frequent administrations to provide an optimal protection of the patients from 

bleeding episodes. This is understandably associated with a limited adherence of the patients 

to prophylaxis regimen, thereby resulting in a lack of complete protection and higher 

treatment costs. Accordingly, the most recent developments for therapeutic coagulation 

factors have focused on extending their half-life in the blood: recombinant factors with longer 

residual time in circulation would cumulate the benefice of reducing the frequency of 

administration, thus improving the compliance of patients, and increasing the bleed-free time-

span of the patients, thus reducing the risks for minor arthropathy-prone joint bleeds. In this 

context, several strategies are being exploited to optimize the pharmacokinetics of therapeutic 

FVIII, that include coupling of the effector protein to dimeric Fc fragments of human 

immunoglobulin G, to polyethylene glycol (PEG) or to human serum albumin (HSA).  

The treatment of patients with hemophilia A using exogenous FVIII is complicated by the 

immunogenicity of the infused FVIII. Indeed, up to 30% of patients with severe hemophilia 
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A, and up to 5% of patients with mild/moderate forms of the disease, develop anti-FVIII IgG 

antibodies following replacement therapy. The induced anti-FVIII IgG presumably affect the 

pharmacokinetics of the exogenously administered coagulation factors but, more critically, 

inhibit their pro-coagulant activity. The development of inhibitory anti-FVIII IgG, or ‘FVIII 

inhibitors’, represents a major clinical burden as well as a major societal concern owing to the 

additional costs that are associated with inhibitor management. To our knowledge, there is no 

available study that clearly establishes a correlation between the residual time of a molecule 

and its immunogenicity in humans. It is thus hazardous to predict the immunogenicity of 

long-acting FVIII products. Besides, FVIII exhibits a degree of immunogenicity that is 

unexpected given the fact that FVIII has no know pro-inflammatory role. In this review, we 

summarize the rationale for the different strategies developed to enhance the half-life of 

FVIII. Based on the available evidence, we further anticipate the consequences and 

limitations of coupling FVIII to ‘half-life enhancers’ for its immunogenicity in hemophilia A 

patients.  

 

Coupling therapeutic FVIII to human Fc fragments 

The interaction of the Fc domain of immunoglobulins with the neonatal Fc receptor (FcRn) 

has been known for years as a physiological mechanism that protects IgGs from catabolism 

and confers them a long half-life in the blood [1]. Therefore, IgGs of the IgG1, IgG2 and 

IgG4 sub-classes are known to circulate in the body with a half-life of 3 weeks. The FcRn is 

expressed at many sites and by different cell types in mammals, where it mediates IgG 

transcytosis and IgG recycling in a pH-dependent manner [1]. In particular, the FcRn 

expressed in the vascular endothelium participates in protection of IgG from degradation. 

Endothelial cells widely express FcRn and are able to internalize blood-borne molecules by 

pinocytosis. Under acidic pH in the early endosomes, the engulfed IgG binds the FcRn 
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through their CH2 domain. Upon further acidification of the endosomes, IgG-FcRn complexes 

are redirected from the lysosomal degradation compartment to the cell surface. At neutral pH, 

the bound IgG dissociates from FcRn and is released in the circulation. This property has been 

exploited to increase the residence time of coagulation factors in vivo. Besides, owing to the 

conformation of the Fc domain, Fc-fused proteins are generally endowed with improved 

biophysical characteristics in terms of stability and solubility. 

In particular, a new generation of recombinant FVIII, referred to as Eloctate™ in North 

America, has been developed by fusing the dimeric CH2-CH3 domains of the human IgG1 Fc 

to the recombinant B domain-deleted FVIII. The post-translational modifications on the FVIII 

moiety are similar to that found on the commercially available B domain-deleted FVIII 

product, and the dimeric Fc carries two additional asparagine-glycosylated moieties. The 

addition of the Fc domain substantially increases the plasma half-life of FVIII and thus 

reduces the dosing frequency necessary to achieve prophylaxis in the patients. Thus, studies 

in pre-clinical models of hemophilia A have shown that fusion of the Fc to B domain-deleted 

FVIII confers a 2-fold increased half-life over recombinant FVIII, while preserving the 

specific activity of FVIII [2]. Indeed, the functionality of the Fc-fused FVIII in correcting 

whole blood clotting time has been demonstrated in FVIII-deficient mice, a model of severe 

hemophilia A, as well as in hemophilic dogs. The Fc-fused FVIII demonstrates a 1.5-fold 

extended half-life in human clinical trials as well as reduced annualized bleeding rates as 

compared to its non-fused counterpart [3–5].  

From an immunogenicity standpoint, available data from clinical trials suggest that FVIII-Fc 

is a safe molecule since no inhibitor development has been reported under prophylaxis 

regimen [5,6]. It is important to note however that clinical trials have been performed only in 

previously treated patients (PTPs) with severe hemophilia A, who are at a lower risk of 

developing an alloimmune response to exogenous FVIII as compared to previously untreated 
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patients (PUPs) [7]. Ongoing clinical trials performed in PUPs in Europe, which are required 

by the European Medicines Agency (EMA) prior to release of the drug on the European 

market, shall bring additional evidence in the coming years.  

Presentation of Fc-fused FVIII as a magic drug devoid of immunogenicity needs to be 

confronted to the facts that therapeutic human monoclonal antibodies do induce neutralizing 

antibodies in a substantial number of patients [8] and the fused Fc domain has been used for 

enhancing the adjuvant properties of vaccine antigens [9,10]. Because the Fc portion of FVIII 

not only interacts with FcRn, but also with a number of receptors for the Fc portion of IgG 

(FcR), as well as receptors for Fc-linked glycans [11], there are little chances that the FVIII-

Fc fusion molecule will be immunologically inert. Yet, recent work by Krishnamoorty et al 

shows that the immune response to FVIII-Fc in FVIII-deficient mice, is less frequent, or less 

intense, than in the case of FVIII lacking the Fc fragment, when FVIII is injected at 50 IU/kg 

[12]. However, at higher concentrations, all FVIII products show the same degree of 

immunogenicity. The rest of this chapter is an attempt to anticipate the interactions of FVIII-

Fc with cells of the innate and adaptive immune system, and potential immunological 

consequences of infusing Fc-fused FVIII in patients.  

 

Fc-mediated immune interactions. Navarrete et al. have previously observed that the 

marginal zone in the spleen is the primary site of FVIII accumulation in hemophilic mice 

[13]. Recently published data comparing the half-life and biodistribution of recombinant 

FVIII and FVIII-Fc intravenously administered to FVIII-deficient mice suggest that the 

accumulation of both molecules in the spleen does not show drastic differences [14]. The data 

also show that, as is the case for exogenous recombinant FVIII, the half-life and bio-

distribution of FVIII-Fc is largely dependent upon its interaction with endogenous von 

Willebrand factor (VWF). Interestingly, in view of the plethora of Fc receptors and Fc-
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binding cellular proteins expressed on immune cells, one may anticipate that FVIII-Fc is more 

prone to interact with immune cells than its native FVIII counterpart. In particular, one might 

foresee a synergistic effect of Fc-dependent and FVIII-dependent interactions with different 

types of endocytic receptors expressed by the same cells, although any repercussion in terms 

of immune activation or immune tolerance induction remains speculative.  

Dendritic cells, monocytes, macrophages and neutrophils are the primary immune cells 

participating in the initiation of immune responses. Provided the constitutive expression of 

various Fc receptors on these immune cells [15,16], it is anticipated that FVIII-Fc will 

interact with the latter cell types via its Fc domain, in addition to accumulating at the site of 

vascular injury. In this context, we may expect a differential assessment of FVIII and FVIII-

Fc by the immune system, although predicting whether this will lead to increased or reduced 

immunogenicity is impossible. Dendritic cells are known to simultaneously express both the 

activating and inhibitory FcR. Presumably, FVIII-Fc-mediated signaling through the 

inhibitory FcRIIB on dendritic cells should favor peripheral tolerance (Figure 1B), either by 

inhibiting dendritic cell activation or by limiting the processing of the exogenously acquired 

antigen [17]. However, the outcome of the immunological processing of FVIII-Fc will result 

from an equilibrium between the respective expression of the activating and inhibitory Fc 

receptors, the affinity of the Fc portion for the different FcRs and for FcRn, and the 

concentration of FVIII-Fc in the circulation at a given time point. Of note, our unpublished 

data show that injection of high doses of C2 domain of FVIII fused to the mouse Fc1 results 

in production of anti-C2 IgG by FVIII-deficient mice. Hence, the manifestation of 

immunogenicity may be highly dependent on the individual molecules that are fused to the Fc 

fragment.  

Interestingly, Fc-mediated interactions also play a role in the context of secondary immune 

responses, once FVIII-specific T and B cells have been activated and have proliferated. 
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Indeed, FcRIIB is the only Fc receptor that is constitutively expressed by B cells. It has been 

demonstrated that cross-linking of the B cell receptor (BcR) and of the low affinity FcRIIB 

inhibits B cell activation and proliferation in an antigen-specific manner, thus ablating 

humoral immune responses [18]. Despite the recent demonstration that FcRIIB is required 

for the differentiation of FVIII-specific memory B cells into antibody-secreting plasma cells 

in mice [19], the data suggest that FVIII-Fc may anergize FVIII-specific B cells and favor 

immune tolerance (Figure 1B). 

Tolerance through regulatory T cell epitopes. The CH2 domain of the IgG Fc fragment 

contains atypical T cell epitopes, which during co-presentation of Fc with associated antigen, 

has been shown to expand antigen-specific CD4
+
CD25

high
Foxp3

+
 regulatory T cells (Tregs) 

[20]. Fc-derived regulatory T cell epitopes, referred to as Tregitopes, were also found to 

confer tolerance to recombinant adeno-associated virus gene transfer vectors [21]. The 

presence of such Tregitopes in the FVIII-Fc molecules may present an advantage in favoring 

the induction of Tregs that would prevent the onset of deleterious anti-FVIII immune 

responses (Figure 1B). However, the efficiency of Tregitope-mediated Treg generation may 

depend on the frequency of administration of Fc-fused proteins, and variations in circulating 

concentrations of FVIII-Fc could drive opposite effects in terms of immune regulation. 

The development of the FVIII-Fc platform nevertheless offers tremendous opportunities for 

generating less immunogenic FVIII products in the future. For instance, the introduction of 

mutations in the Fc portion may favor immune tolerance induction by fine-tuning the affinity 

for particular Fc receptors, provided that expanding the half-life of FVIII-Fc by raising the 

affinity of the Fc fragment for the FcRn does not alter the interactions with the inhibitory 

FcRIIB receptor. In another example, the therapeutic infusion of FVIII-Fc via the 

subcutaneous route may open up new regimens for immune tolerance induction. Dendritic 

cells, and in particular skin dendritic cells, contribute to tolerogenic or immunogenic 
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responses depending on the acquired activation signals [22]. Thus, the commitment of 

epidermal Langerhans cells in inducing antigen-specific tolerance could be exploited with 

FVIII-Fc [23].  

Lastly, FcRn is expressed on the syncytiotrophoblast where it mediates the transfer of 

maternal IgGs to the fetal circulation [1]. In an animal model of mucopolysaccharidosis, Fc-

fused β-glucoronidase injected to pregnant mice was found to be transported through the 

placenta, thus correcting β-glucoronidase deficiency in the offspring [24]. In a recent proof-

of-concept study, the transplacental transfer of Fc-fused A2 and C2 domains of FVIII from 

pregnant mice to the hemophilic fetuses was able to confer long-lasting immune tolerance to 

therapeutic FVIII [25]. Tolerance to FVIII was mediated by FVIII-specific Tregs generated 

during the fetal development of the immune system. The latter work provides novel 

perspectives for the materno-fetal transfer of FVIII-Fc to to-be-born hemophilic babies, at the 

time of immune ontogeny, to confer life-long tolerance to FVIII.  

 

Coupling therapeutic FVIII to human albumin 

Accounting for 50% of total plasma proteins, albumin is the most prominent protein 

circulating in the blood. Serum albumin is a natural carrier for several endogenous 

hydrophobic molecules, such as fatty acids or thyroid hormones; it is also involved in 

scavenging free radical species that may be released in the blood. Albumin displays a long 

half-life of 20 days in vivo. This persistence is attributed to both a high hydrodynamic size, 

which prevents glomerular filtration by kidneys, and interactions with the FcRn receptor 

expressed on endothelial cells, which redirects the internalized albumin to the blood stream. 

Such an extended half-life makes serum albumin an attractive fusion partner to prolong the 

residence time of therapeutic drugs. Conjugation can be performed by a covalent attachment 

of albumin to the drug or by the fusion of the genes encoding human serum albumin and the 
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therapeutic protein of interest [26].Several recombinant albumin-fused proteins have been 

successfully generated and are available on the market or currently tested in clinical trials 

[27]. For instance, albumin-coupled glucagon-like peptide 1 (Albiglutide®, 

GlaxoSmithKline) has been developed to treat type II diabetes. Clinical studies have 

demonstrated that a dramatic prolongation of circulation time after a single infusion of 

Albiglutide®, from 5 minutes for the native glucagon-like peptide 1 (GLP-1) to 5 days for the 

albumin-fused molecule [28]. Recent phase 3 trial confirmed the efficacy of Albiglutide® 

[29], where Albiglutide® infusions successfully ameliorate glycemic control in type II 

diabetic patients. Nonetheless, 3.7% of treated patients were found to develop anti-

Albiglutide® antibodies. The occurrence of anti-Albiglutide® antibodies was however 

transient and did not neutralize GLP-1 efficacy.  

CSL-Behring® (Marburg, Germany) has developed an array of albumin-fused coagulation 

factors for the treatment of hemostatic conditions (patent WO 2011020866 A2, [30]). 

Inhibitor-positive patients with hemophilia A can be treated with activated factor VII (FVIIa). 

However, the short half-life of FVIIa (2.5 hours) requires chronic injections to maintain 

correct hemostasis. A recombinant FVIIa fused to albumin has been generated (rVIIa-FP) 

[31] that presents with a hemostatic activity similar to that of recombinant FVIIa. Clinical 

trials have highlighted the pharmacokinetic parameters of rVIIa-FP, with enhanced circulation 

time and lower clearance rate, and the safety of the product, as none of the rVIIa-FP-treated 

patients developed an anti-rVIIa-FP immune response [32]. Recombinant FIX-albumin, 

referred as rIX-FP, has also been produced and exhibits a 2- to 4-fold prolonged half-life 

compared to the non-fused form when administered to previously treated patients with severe 

hemophilic B [33]. Likewise, none of the participants developed anti-rIX-FP inhibitory 

antibodies. An albumin-fused FVIII has also been generated and patented (termed as rVIII-

FP). However, rVIII-FP failed to maintain FVIII pro-coagulant activity and no further study 
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was published [34]. Some studies have highlighted limitations for albumin conjugation [35], 

such as the risks of incorrect folding of chimeric proteins that is likely to lead to a loss of 

therapeutic activity.  

Since albumin is the most abundant protein in the blood, it is not likely that exogenously 

administered albumin will be recognized as a foreign antigen. This is indirectly suggested by 

the fact that the massive intravenous administration of albumin to patients suffering from 

acute hypovolemia has never been reported to elicit anti-albumin antibodies [36]. Hence, 

albumin-fused coagulation factors are not expected to exhibit immunogenic properties, and 

should elicit immune tolerance or ignorance. Besides, albumin might mask by steric 

hindrance putative antigenic epitopes expressed on therapeutics and impede any deleterious 

recognition by immune cells that may lead to premature clearance or immunogenic uptake by 

antigen presenting cells (APC). Importantly, in silico T cell epitope mapping studies have 

identified six potential Tregitopes within human albumin [37]. One of the Tregitopes is also 

found in bovine serum albumin. Interestingly, infusion of BSA in a murine model of 

atherosclerosis was shown to lower the severity of the pathology [38]. This was correlated 

with the expansion of circulating Tregs in vivo and production of immunosuppressive 

cytokines by splenocytes in vitro. However, a direct role for the Tregitope in the induction of 

tolerance was not demonstrated. 

 

PEGylation of therapeutic FVIII 

PEGylation consists in a covalent conjugation of polymers of ethylene glycol (PEG) to a 

carrier. PEGylation was found to extend the residence time of derivatized proteins [39,40], 

and was therefore considered as an efficient strategy to improve drug delivery and has been 

applied to enhance the lifespan of a large number of drugs over the last decades. PEG 

conjugation affects the physicochemical features of the target protein, without altering its 
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structure. In particular, the hydrophilic property of PEG increases protein solubility in the 

bloodstream and dramatically enhances the hydrodynamic size of the conjugate, thus 

tempering glomerular filtration rate and significantly prolonging the circulation time in the 

body [41]. Moreover, PEG prevents the aggregation of derivatized proteins and hampers 

interactions with catabolic receptors, which also impedes a premature clearance from the 

circulation.  

Based on these findings, PEGylation has been extensively exploited to generate long-lasting 

recombinant coagulation FVIII, such as BAY 94-9027, BAX 855 and N8-GP. PEGylation of 

FVIII was shown to confer prolonged efficacy in hemophilic mice, as compared to 

unmodified FVIII. BAY 94-9027, a single branched 60 kDa PEG-coupled B domain-deleted 

FVIII developed by Bayer, not only retains a full activity after PEGylation, but also exhibited 

enhanced pharmacokinetic parameters, with a 2 to 3-fold increase of circulating half-life as 

compared to non-PEGylated FVIII [42]. Recent phase I clinical trial has confirmed the longer 

half-life in humans, although the extension was less significant than in animal models, with a 

1.5-fold increase (18.5 hours versus 13 hours for its non-PEGylated version) [43]. 

Furthermore, infusion of BAY 94-9027 to patients was not reported to elicit inhibiting 

antibodies. Likewise, PEGylation of Baxter’s recombinant full-length FVIII Advate™ (BAX 

855, 20 kDa PEG) has generated an improved molecule that exhibits a 1.8-fold extension of 

circulating time in primates compared to native FVIII and that delays by 3 folds the time to 

reach trough level [44]. PEGylation of FVIII impedes the binding of BAX 855 to the low 

density lipoprotein receptor protein 1 (LRP-1), a catabolic receptor for FVIII, which accounts, 

at least in part, for the longer persistence of the molecule in the bloodstream. A recent clinical 

trial has highlighted a modest 1.5-fold increase of BAX 855 half-life [45]. Prophylactic 

regimen performed over several months on PTPs was not associated with the generation of 

neutralizing antibodies. Similarly, Novo-Nordisk has developed a glycoPEGylated version of 
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a B-domain deleted FVIII (N8-GP, 40 kDa PEG coupled to B domain) which displays a 2-

fold prolonged half-life in animal models of hemophilia A, as well as an extended hemostatic 

potential compared to uncoupled FVIII [46,47]. N8-GP was also shown to interact less with 

the catabolic receptor LRP-1. Clinical trials in PTPs with severe hemophilia A did not report 

the generation of anti-FVIII neutralizing antibodies [48].  

From an immunological point of view, PEG theoretically gathers several characteristics that 

make it an ideal partner. PEGylation has been shown to annihilate the immunogenicity of 

heterologous proteins after administration to animals, as compared to the non-PEGylated 

counterparts [49]. The PEG moiety can mask structures that are recognized by endocytic 

receptors expressed on APC and hampers the uptake of the drug (Figure 1C). Besides, even if 

PEGylated biopharmaceutics are internalized, the processing that leads to the presentation of 

derived peptides onto major histocompatibility complex (MHC) class II molecules may be 

hampered by PEG-mediated steric hindrance. Alternatively, PEGylated peptides can be 

presented on APC surface, but may however not be recognized by T helper cells, thus 

preventing T cell activation, limiting the activation of antigen-specific B cells and, as a result, 

reducing the risk for the generation of anti-drug antibodies. In the case of FVIII, 

administration of BAY 94-9027 to hemophilic mice was correlated with a lower incidence of 

anti-FVIII antibodies and a reduction in the FVIII-specific T cell immune response. Besides, 

PEGylation, upon masking essential glycoprotein moieties involved in FVIII recognition, was 

shown to interfere with its uptake and presentation by human dendritic cells [50], and thus 

hindered the ensuing immunogenic presentation of FVIII-derived peptides to specific CD4
+
 T 

cells. Similarly, in vitro assays show that N8-GP binds less to human dendritic cells and is 

less internalized by these cells [46]. While any structural alteration of the FVIII molecule 

introduces a risk to enhance its immunogenicity, the generation of immunogenic B or T cell 
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neo-epitopes within PEGylated FVIII is not supported by the available clinical studies, and no 

clear increase in the incidence of FVIII inhibitor has been reported up to date. 

Safety and immunological aspect of PEG. Since PEG is a chemical compound that cannot 

be readily metabolized by the organism, concerns have been raised regarding its 

elimination/accumulation in the organism. It has been documented that PEG is cleared from 

the circulation through urinary excretion [51]. However, several studies have emphasized 

histological alterations in various organs and tissues, consecutive to the administration of 

PEG or PEGylated proteins. Infusion of PEGylated proteins was associated with a massive 

cytoplasmic vacuolation, evidenced in the kidney tubular epithelium [52] as well as in the 

reticuloendothelial system. These changes supposedly resulted from a deformation of 

lysosomes after the uptake of PEGylated proteins during their clearance process or by 

pinocytosis. Besides, the occurrence of foamy macrophages has been described after an 

iterative administration of PEG or PEGylated biotherapeutics [52–54]. PEG injection in rats 

led to a cellular vacuolation that occurred in different locations, such as lung alveolar 

macrophages, hepatic Kupffer cells or splenic subcapsular red pulp histiocytes, where PEG 

was found to accumulate [53]. Since the reticuloendothelial system is a component involved 

in the clearance of cellular debris and foreign bodies, accumulation of PEG and vacuolation at 

the level of macrophages are part of a physiological mechanism. Nevertheless, issues have 

been raised about a putative toxicity of PEG, especially in a context (i.e., hemophilia) where 

administration of the PEGylated drug is chronic and starts during infancy. Of note, 

administration of high doses of PEGylated proteins to rodents was associated with splenic 

hypertrophy and an extensive vacuolation of splenic histocytes [55]. Likewise, Young et al. 

demonstrated that infusion of maleimide-PEG-modified hemoglobin in primates is associated 

with the occurrence of foamy macrophages in the spleen and in the bone marrow [56]. 

Intriguingly, macrophage functions and phenotype were either not evaluated or not altered by 
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vacuolation in vivo. However, mouse and human macrophages incubated with certolizumab 

pegol (PEGylated anti-tumor necrosis factor alpha, Cimzia®) in vitro showed a lower 

phagocytic ability for bacteria and fungi (report EMEA/664021/2009). Yet, no evidence 

regarding altered immune responses was found in vivo and the safety of Cimzia® was 

supported by preclinical and clinical studies, as no major adverse events was reported. 

Importantly, although vacuolation in tissues or in macrophages has been reported for several 

biopharmaceuticals commercially available or in clinical trials [51], the administration of 

BAX 855 to animals did not generate overt vacuolation [57].  

While PEG is assumed to be neither antigenic nor immunogenic, an increasing number of 

studies provides evidence that administration of PEGylated products triggers unexpected anti-

PEG antibody production [58]. Thirty years ago, Richter and Akerblom demonstrated the 

generation of anti-PEG IgM antibodies in rodents after injections of PEGylated ovalbumin, 

while PEG injected alone did not elicit an antibody response [59,60]. In humans, anti-PEG 

antibodies have been reported in hepatitis C patients treated with PEGylated interferon, but 

the presence of anti-PEG antibodies was not associated with an impairment of the efficacy of 

interferon [61]. Conversely, in acute lymphoblastic leukemia, one third of the patients treated 

with PEGylated asparaginase presented with anti-PEG IgM antibodies, which were closely 

associated with a loss of function and an accelerated clearance of the molecule [62]. Whereas 

the exact mechanism for anti-PEG antibody elicitation remains unknown, several 

investigations have been performed to decipher the immunogenicity of PEG. Chronic 

intravenous infusion in mice of PEGylated liposomes, which are often used as a carrier for 

biopharmaceuticals, was correlated to an accelerated blood clearance and a marked reduction 

in bioavailability [63–65]. The anti-PEG immune response involves B cells from the marginal 

zone of the spleen and is characterized by a lack of immunoglobulin class switching as well as 

the absence of generation of memory B cells [66–70]. Therefore, the immune response 
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develops in a thymo-independent manner. As PEG is constituted of multiple repeated 

patterns, it may be regarded as a type II antigen, similar to bacterial polysaccharides, and it 

may simultaneously engage several BcR expressed on the surface of B cells. This massive 

cross-linking of BcR is sufficient to induce the full differentiation of naïve B cells into IgM-

secreting plasmocytes. Lastly, some reports suggest that PEGylated biotherapeutics are able 

to activate the complement system [71,72]. Complement activation leads to opsonization of 

the biotherapeutics by C3-derived fragments that may promote interactions with macrophages 

through complement receptors. This may participate in the accelerated decay of PEGylated 

pharmaceuticals, but may also induce pro-inflammatory anaphylatoxins, that can activate 

granulocytes and trigger hypersensitivity responses. Such a phenomenon probably accounts 

for the few cases of anaphylaxis observed in clinical trials, for instance in the case of 

treatment with PEGylated liposomal doxorubicin [73].  

Of note, immunogenicity studies in mice have shown that some forms of PEGylated FVIII 

evoke an anti-FVIII immune response, and are able to break immune tolerance the FVIII 

moiety [74]. However the incriminated molecule exhibited 12 molecules of PEG per molecule 

of FVIII and drastically reduced specific activity, thus highlighting probable major structural 

modifications.  

 

Conclusions 

The development of a new generation of therapeutic coagulation factors is revolutionizing the 

treatment of patients with hemophilia. Specifically, novel products with extended half-lives 

should facilitate patient management, resulting in a drastically improved quality of life. 

Indeed, the reduced frequency of drug administration and the prolonged circulation time of 

the hemostatic drugs should provide a longer protection of the patients from micro-bleeds in 

joints, thus minimizing co-morbidity. In the particular case of pro-coagulant FVIII, among the 



 18 

three strategies developed to date, only Fc-fusion and PEGylation have yielded encouraging 

results and been translated to the patients, while albumin-fusion FVIII has failed. Yet, several 

issues remain to be addressed to develop products with unquestioned efficacy and safety.  

One such question addresses the somewhat limited gain in half-lives of the Fc-fused and 

PEGylated FVIII products that do not exceed the circulation time of FVIII imposed by 

binding to its chaperone VWF. It is probable that VWF is endowed with a double-edged role 

towards FVIII catabolism, on one hand reducing the binding of FVIII to major catabolic 

receptors, but also on the other hand participating in, and probably leading, FVIII endocytosis 

by macrophages both in vivo and in vitro [75,76]. Under such conditions, it is probable that 

drastic gains in FVIII half-life for the new generation therapeutics will be achieved in setups 

that eliminate the part of FVIII catabolism mediated by VWF moieties, as may be the case in 

a recently developed recombinant FVIII-Fc/D’D3-Fc construct (patent WO 2013106787 A1).  

One other important issue is that of the ever-astonishing intrinsic immunogenicity of the very 

FVIII molecule. While most biotherapeutics induce anti-drug antibodies in <5% of the 

patients, FVIII triggers inhibitory immune responses in up to 30% of patients with hemophilia 

A. FVIII remains an enigma in terms of immunogenicity, in view of the facts that it is injected 

intravenously, a known tolerogenic route of administration and in low amounts. A role for its 

pro-coagulant function in generating a burst of thrombin [77,78], the presence of incomplete 

glycans on its heavy and light chain that may favor immunogenic uptake by antigen-

presenting cells [79,80] as well as the presence of particularly immune-dominant T cell 

epitopes have been proposed to explain anti-FVIII immune responses [81–83]. FVIII 

immunogenicity is further highlighted by its capacity to confer immunogenicity to otherwise 

immunologically inert molecules. This has been demonstrated by the work of van Helden et al 

in the case of PEG [74], and may also be observed in the case of fused protein moieties as 

seen in our unpublished experiments wherein fusion of the FVIII light chain to hemagglutinin 
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drastically increased the anti-hemagglutinin immune response in FVIII-deficient mice (Figure 

2).  

Another critical issue is the mechanistic investigation of the immunogenicity of newly 

generated coagulation factors and the requirement of experimental models that mimic 

immune responses observed in humans and that are devoid of biasing inter-species immune 

reactions. In particular, studying the immunogenicity of Fc-fused FVIII in FVIII-deficient 

mice may be biased by putative immune responses directed to the human Fc fragment, which 

would presumably not occur in the patients. Ideally, the immunogenicity of human FVIII 

should be evaluation using appropriate humanized animal models able to mount IgG-

mediated humoral immune responses, in order to obtain relevant and basic immunological 

insights translatable to the bedside. Resolving the aforementioned concerns, the in-depth 

immunological investigations of new generation long-lasting coagulation factors should be of 

priority in the hemophilia research domain. 
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Figures 

Figure 1. Potential effects of FVIII alterations on the onset of the immune response 

against FVIII. Panel A. The anti-FVIII immune response is considered as a classical T-

dependent immune response where exogenous FVIII is endocytosed by antigen presenting 

cells (APC), processed and presented to naïve FVIII-specific T lymphocytes that get 

activated. The latter will activate B lymphocytes, which will differentiate into inhibitory 

antibody-secreting plasma cells. Panel B. Fusion of Fc fragment to FVIII may facilitate the 

cross-linking of surface B cell receptors (BcR) and inhibitory FcγRIIb receptors, thus 

anergizing B cells (left). Fc fragment may interact with FcγRIIb receptors expressed on APC 

and impede their maturation, leading to FVIII-derived peptides antigenic presentation in a 

tolerogenic context (middle). Fc moiety might bring about regulatory T cell epitopes 

(Tregitopes) that would boost Fc-specific regulatory T cells (Tregs). Tregs would then induce 

a bystander tolerance to FVIII (right). Panel C. PEGylation of FVIII may prevent the uptake 

of FVIII by APC. Even if it is endocytosed, PEG moiety may alter FVIII processing and 

presentation to T lymphocytes. Finally, PEGylation may also mask B cells epitopes and 

prevent FVIII recognition by neutralizing antibodies. 

Figure 2. Adjuvant effect of the light chain of human FVIII. The recombinant first domain 

of hemagglutinin (HA1), and the recombinant fused A3C1C2-HA1 (LCh-HA1) were 

produced using the HKB11 eukaryotic cell line. The light chain of FVIII (a3A3C1C2, LCh) 

was purified from therapeutic FVIII. FVIII-deficient mice were injected with the different 

proteins (1 pmol of each protein/mouse) once a week for four weeks. Five days after the 

fourth injection, anti-HA1 IgG were detected by ELISA. Levels of anti-HA1 IgG are depicted 

in arbitrary unit based on the optical density measured at 492 nm, and were statistically 

compared using the two-sided non-parametric Mann-Whitney test. Individual symbols 
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represent levels of specific IgG for each individual mouse, and horizontal bars represent 

mean±SEM.  
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