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Longitudinal and transverse hyperpolarizabilities of Carbon nanotubes. A computational investigation through the Coupled Perturbed Hartree-Fock/Kohn-Sham scheme.

B3LYP), which must include electron-electron interactions at a distance up to 100 Å in order to have γ L converged to better than 1%. The transverse γ T component of conducting tubes critically depends on the number of k points in reciprocal space: at least 900 k points are required to converge better than 1% at the LDA level. Coupled-perturbed results are compared to uncoupled values obtained from a sum-over-states (SOS) approach. The difference between the two is particularly important along the transverse direction and when pure DFT functionals are used: the coupled-perturbed correction can shrink the SOS value by several hundreds times. The ratio LDA/HF is roughly constant around 2 for α L ; it ranges between 25 and 60 for γ L . As regards the convergence with the nanotube radius, the R 2 law is confirmed for α L and α T (normalized for the cell parameter) at all levels of theory. For the second hyperpolarizabilities γ L and γ T , a clear R 5 dependence is observed.

Introduction

All carbon nanotubes (CNTs) are electrically conductive. However, their electronic structure varies depending on the chiral vector (m, n) (m, n ∈ N): as regards the two important families of armchair (m, m) and zigzag (m, 0) CNTs, the former are 1D conductors; the latter are semiconductors with almost vanishing band gap for m = 3l (l ∈ N). These features, combined with quantum confinement at the nanoscale, originate outstanding optical properties.

Over the past two decades, several theoretical investigations were carried out concerning the linear dielectric response of CNTs [1][2][3][4][5][6], including a previous work by some of the present authors [7], based on stateof-the-art coupled-perturbed (CP) Hartree-Fock (HF) and Kohn-Sham (KS) ab initio calculations with large Gaussian basis sets. Results obtained on a number of zig-zag and armchair single-wall CNTs with radius R up to 16.3 Å, showed the transverse polarizability α a T (normalized for the cell parameter a) to scale linearly with the square of the tube radius R, while the longitudinal polarizability α a L scales linearly with R/E g , where E g is the energy gap.

In recent years, investigations have been extended also to the optical nonlinearity of CNTs [8]. The literature on this topic is abundant on both the experimental and theoretical sides [9][10][11][12][13], but still remains incomplete on many aspects. The properties of interest are the first and second hyperpolarizabilities, β and γ. These are microscopic tensor properties related to the macroscopic dielectric susceptibilities of second (χ (2) ) and third order (χ (3) ), respectively, through the cell volume V (for a 3D system): χ (2) = 2π

V β and χ (3) = 2π 3V γ. The inversion center annihilates the first hyperpolarizability β of armchair and zig-zag nanotubes, not that of general (m, n) tubes. The space symmetry, given by the product of the D n point symmetry and the axial group of monodimensional translations [14], produces two nonzero β components, namely β xyz = -β yzx . At the static limit, however, the additional tensor permutation symmetry [15], implies β xyz (0; 0, 0) to be null. Guo et al. [3] calculated "unscreened" (i.e., sum-overstates, SOS) static and dynamic electronic contributions for small chiral nanotubes (R < 6 Å), using the local-density approximation (LDA) [16] to the density functional theory (DFT). They found the static value of χ (2) xyz (0; 0, 0) to be zero indeed, and an absolute value of the second harmonic generation (SHG) coefficient χ

(2) xyz (-2ω; ω, ω) as large as 15 × 10 -6 esu in the photon energy range 0.1-4.0 eV. They also noted that the SHG coefficient χ

(2) xyz (-2ω; ω, ω) becomes smaller with increasing R as a consequence of the convergence to graphene, that is center-symmetric.

Second-order optical nonlinearity effects were evaluated by Margulis et al. [17] for semiconductor singlewall CNTs. By using a simple two-band approximation, the authors obtained an expression for the static electronic contribution to χ (3) along the tube axis, that is proportional to the fourth power of the radius R, i.e., χ

L (0; 0, 0, 0) ∝ R 4 . For a single-wall CNT with radius around 5.5 Å, they estimated χ (3) L (0; 0, 0, 0) to be about 3×10 -9 esu, which is comparable with the largest thirdorder dielectric susceptibility χ (3) observed for III-V semiconductor compounds. An independent estimate of the static second hyperpolarizability γ L of semiconductor CNTs was later provided by Kozinsky and Marzari [5], by applying the numerical finite-field method at the PBE [18] DFT level. For a zig-zag nanotube (8, 0) of 3.15 Å radius, they obtained γ L = 3.1 × 10 7 a.u. That is, χ

L ≈ 1 × 10 -9 esu, if we define an approximate volume V = πR 2 a, with a ≈ 4 Å the cell parameter. Although this result is not directly comparable with that obtained by Margulis et al., based on the proposed R 4 law, the ratio between the given radii, i.e., 5.5 Å [17] and 3.15 Å [5], would lead to guess a difference of about one order of magnitude between the corresponding values of χ

(3)
L , which is not the case for the data provided by the authors. Further analysis is required in order broaden the spectrum of available absolute data and thus establish reliable trends.

In this paper, we aim to complement and improve upon the above mentioned theoretical results. As a development of our previous study [7], we report about ab initio static electronic hyperpolarizability calculations on CNTs of increasing radius, performed using the coupled-perturbed Hartree-Fock/Kohn-Sham (CPHF/ KS) computational scheme, as implemented in the quantum chemistry software package for periodic systems CRYSTAL14 [START_REF] Dovesi | CRYSTAL14 User's Manual[END_REF][START_REF] Ferrero | [END_REF][21][22][23][24]. A development version of this code is now under test, which also implements the CP calculation of dynamic SHG coefficients. These features will be investigated in a forthcoming paper.

Unlike SOS perturbative methods, as those applied in Refs. [3] and [17], the coupled-perturbed approach fulfills a self-consistent computational procedure to account for orbital relaxation effects induced by the electric field, thus providing far more accurate optical properties. Furthermore, the analytical character of the CP equations largely overcomes, for both accuracy and efficiency, the variational finite-field approach used in Ref. [5]. We will compare HF and various density functionals, namely conventional local density (LDA) and generalized gradient (PBE) approximations, and the hybrid B3LYP functional. Periodic CPKS calculations represent a severe test of the methodology. It is known that DFT methods may significantly overshoot the electronic (hyper)polarizabilities of extended π-conjugated systems. An example is that of polyenes [25,26], for which only slight (or even no) convergence towards the periodic limit is found [27]. However, we will show that there is no such overshoot in the case of CNTs, as indicated by a fairly good agreement with the experimental data.

We describe here a robust procedure for the evaluation of the optical properties of CNTs, even in cases where the calculated values blow-up as E g → 0. In do-ing so, we will show that it is possible to draw regular trends with increasing R at every level of theory, regardless of the convergence rates and of the magnitude of the numbers to be managed.

The paper is organized as follows. Computational details are illustrated in Section 2, with particular focus on the most critical parameters, i.e., the number of k points at which the SCF and CP equations are solved and the thresholds controlling the truncation of the exact exchange series. Results are presented in Section 3, dealing with a) the trends of α and γ with increasing radius; b) the comparison between the various levels of theory. Finally, in the last section, a few conclusions are drawn.

Computational details

Calculations were performed with the periodic ab initio CRYSTAL14 code [START_REF] Dovesi | CRYSTAL14 User's Manual[END_REF] by using an all-electron splitvalence 6-31G(d) basis set. Two density functionals, LDA [28], and B3LYP [29] (containing 20% of exact exchange) are compared with Hartree-Fock (HF). Some calculations have been performed also with the PBE functional, which was previously shown to behave similarly to LDA for the kind of properties investigated here [27].

The geometry was optimized in all cases. The threshold for the convergence of the self-consistent-field (SCF) energy was set to 10 -10 Ha. The density functional exchange-correlation contribution to the total energy was computed using a pruned grid (keyword XLGRID [START_REF] Dovesi | CRYSTAL14 User's Manual[END_REF]) for numerical integration. Its accuracy can be estimated from the error in the electronic charge per unit cell: 4 ×10 -4 |e| for a total number of 240 |e| for the (10,0) nanotube. To exit the self-consistent CPHF/KS process, the variation of α (γ) calculated at two subsequent cycles must be smaller than 10 -2 a.u. (1 a.u.).

CPHF/KS results for small (null) band gap systems are strongly affected by the shrinking factor S used for sampling the reciprocal space, and by the truncation of the infinite exact exchange series (HF and B3LYP cases), as previously documented for polyacetylene [27]. Convergence becomes more critical for large R tubes, because the energy gap narrows (E g ∝ 1/R) and polarization effects increase. To describe the effect of the aforementioned computational parameters on the calculated optical properties, we will take as references the (17, 0) and (11,11) tubes. These are representatives of semiconducting and conducting CNTs, respectively, and have the largest radii here considered. For the (11,11) CNT we will investigate the convergence of α T and γ T , the longitudinal components being infinite as the solution is metallic. For the (17, 0) CNT, instead, we will focus on α L and γ L which are finite although very large, whereas the transverse components converge much faster.

Shrinking factor

A dense k-point sampling of the Brillouin zone (BZ) is crucial for the accurate description of the electronic structure around the region where the gap is small. This justifies the need for using a large shrinking factor S to achieve convergence on the calculated optical properties. Pure density functionals (e.g., LDA and GGA) are particularly concerned since they are known to systematically underestimate the band gap. At the other extreme HF overestimates E g . Table 1 shows the dependence on S of the (hyper)polarizabilities α C and γ C (normalized to one C atom), calculated at both the LDA and HF levels of theory. For the (17, 0) tube, HF provides an energy gap about four times larger than LDA, producing α C L and γ C L values that are about 2 and 60 times smaller. All HF and LDA properties are converged to better than 1% at S = 80 (41 k points). A much slower convergence with S is found for the transverse properties of the (11,11) tube, that is metallic. In this case, the LDA/HF ratio reduces to about 1 for α C T , and to 2 for γ C T . Asymptotic limits (by fitting) for γ C T are 8330 a.u. (LDA) and 4856 a.u. (HF). At the LDA level, the threshold of 1% deviation from the asymptotic limit is only reached at S = 1800, that is, using 901 k points in the BZ. The same target is achieved at the HF level using 751 k points (S = 1500).

Truncation of the exchange series

In extended systems with small gap, the range of the density matrix (represented in the direct space) weighing the integrals of the infinite bi-electronic exchange series is widespread. Hence, the slow convergence of the optical properties with the number of terms that are included in the summation [30].

In CRYSTAL, the truncation of the infinite Coulomb and exchange series is established through five thresholds, T i (i = 1 . . . 5), such that integrals are disregarded (or approximated) when the overlap between the involved functions is below 10 -Ti (see Ref. [START_REF] Dovesi | CRYSTAL14 User's Manual[END_REF] for details). Our previous work on polyacetylene [27] showed that T 1 , T 2 and T 3 converge rapidly, as the measure of decay of the overlap of two gaussians, so that their value may safely be set to 10. More delicate is the role of T 4 and T 5 , which are associated to the exact exchange summations. We set their values according to the scheme (11,11) as functions of T x . The spatial extension of the exchange interactions is indicated in terms of the maximum electronelectron distance d e-e for the given T x value. Comparison between HF and B3LYP trends is shown. As regards the (17, 0) tube, the two series converge pretty much in the same way despite the HF energy gap being about 3 times larger than the B3LYP one, which accounts for two orders of magnitude of difference on γ C L . An explanation may be that the major fraction of exact exchange in HF compensates the effect of the smaller gap in B3LYP. γ C L requires at least T x = 1500, which corresponds to about 14 × 10 6 elements of the reducible Hamiltonian matrix to be evaluated. γ C T of the conductor tube (11,11) is far less sensitive to T x : convergence to 1% is reached at T x = 200 with B3LYP, and at T x = 350 with HF.

T 4 = 1 2 T 5 = T x .

Results and discussion

Structure and energy gap

Optimized LDA, B3LYP and HF structures of the CNTs are presented in Table 3. B3LYP provides the largest cell parameters a and radii R; the difference with respect to the most compact geometries provided by HF is however very small (around 0.7% both on a and R).

Let us consider now the variation of the electronic (hyper)polarizabilities with increasing the radius R of the CNTs. In doing so, we will focus primarily on a comparative analysis between LDA and HF, which delimit the variation of the calculated energy gap E g as shown in Figure 1.

We note that for CNTs with R < 3.4 Å the LDA (and B3LYP) band gap collapses with discontinuity (left panel). For larger radii, however, E g is found to be proportional to 1/R (right panel) via a coefficient that depends on the nanotube chirality. In other words, the band gap opening occurring in graphene when the 2D sheet is bent to generate a CNT depends on the rolling-up direction. The rolling-up perturbation is related to the interaction coefficient G that appears in the approximate expression of E g (R) provided by a simple π-electron model [31,17],

E g ≈ 2G 3R (1) 
From our fittings we get: G 3l+1,0 = 3.82 (LDA), 5.78 (B3LYP) and 16.3 (HF) eV Å; G 3l+2,0 = 6.12 (LDA), 9.68 (B3LYP) and 21.5 (HF) (B3LYP) eV Å. These results show that the order of effectiveness of the rollingup perturbation is 3l + 2, 0 > 3l + 1, 0 for the different families of semiconductor CNTs, and that it is HF >> B3LYP > LDA for the different levels of theory.

Electronic polarizability

Table 4 lists the longitudinal and transverse polarizability components for the CNTs here investigated.

Longitudinal component

Upon increasing the radius by a factor 2.4, i.e., from 2.8 Å for the CNT (7, 0) to about 6.7 Å for the CNT (17, 0), the longitudinal polarizability per C atom α C L undergoes an overall increment of about 25-29%, with a ratio LDA/HF roughly constant around 2. The coupledperturbed self-consistent process modify the SOS value (in parentheses) in opposite directions and by different amounts: decreases by 2% for LDA, increases by 100% for HF.

In the left panel of Figure 2, the longitudinal polarizability per unit length, α a L , is plotted against R 2 . Regular linear trends are shown for both LDA and HF CNTs and the fittings for the different series of semiconductors draw almost parallel lines. Moreover, for CNTs with R ≥ 3.4 Å we are allowed to replace R 2 by the R/E g law expected for α a L (Figure 2, right panel), given the above mentioned relationship of inverse proportionality between R and E g .

One may understand such a R/E g law by referring to the SOS expression for the static diagonal polarizability [32], i.e.,

α xx = ∞ m =0 x 0m x m0 ω 0m (2) 
where x ij = i|µ x |j is the transition moment between the states i and j, and ω 0j is the energy of the transition between the ground state 0 and the state j. In case of small band gap systems such as CNTs, the fundamental transition between the top of the valence band and the bottom of the virtual band becomes predominant because ω 01 ≡ E g → 0. Therefore, Eq. 2 can be simplyfied as

α xx ≈ x 2 01 E g (3) 
The square of the transition moment at the numerator of Eq. 3, x 2 01 = x 01 x 10 , expresses a probability of the transition that is inherently proportional to the number of atoms involved. Now, regarding CNTs, since the number of C atoms on the circumference depends directly on the radius of the tube, from Eq. 3 we retrieve the relationship α a L ∝ R/E g .

Transverse component

The difference between the LDA and HF band structures has a negligible effect on the transverse tensor components. This is in agreement with earlier calculations performed in the linear regime on both semiconducting and metallic tubes [1,33,5]. Indeed, for all nanotubes, CP LDA and HF transverse polarizabilities α T converge to a ratio of about 1, Figure 3. As regards the SOS values of α T , instead, an initial LDA/HF ratio of about 2.5 is found, which increases almost linearly with increasing R.

By considering the evolution of the transverse polarizability normalized for the cell parameter, α a T , we find linear LDA and HF trends vs. R 2 . This is in agreement with previous results obtained at the B3LYP level [7]. In that case, a fitting slope s B3LYP = 0.368 was obtained, which compared well with the ideal value of 3/8 derived from the classical model proposed by Bendict et al. [1], namely

α CP T = α SOS T 1 + 2α SOS T /R 2 (4) 
where

α SOS T /α CP T ≈ 4.
At the LDA level of theory, the ratio α SOS T /α CP T increases to about 5, yielding an ideal coefficient of 2/5=0.4 that is still quite close to the fitting result, s LDA = 0.47. In contrast, HF diverges from expectations: the slope provided by the fit is s HF = 0.41, to be compared with the value 1/4 obtained from Eq. 4 and the observed ratio

α SOS T /α CP T ≈ 2.
By fitting the ratio α L /α T vs. R we obtain asymptotic values at about 3.5 (SOS) and 18.6 (CP) for LDA; at about 3.1 (SOS) and 13.5 (CP) for B3LYP; at 2.6 (SOS) and 10 (CP) for HF. The CP limits turn out to be much higher than the SOS ones.

At the limit for R → ∞ (i.e., the graphene slab xy) it is expected that α L → α slab xx and that α T → (1/2)(α slab xx + α slab zz ) ≈ α slab xx /2 (the finite value of α slab zz is negligible with respect to the infinite α slab xx value). Therefore, the ratio α L /α T should be equal to 2. However, due to the polarization the transversal field felt by the atoms in the tube is less intense than the external field (the depolarization factor along the transverse direction is 2π). It follows a ratio α L /α T larger than 2, particularly at the the CP level of calculation which takes better account of this effect. In HF, however, in addition to the depolarization of the transverse field (α SOS T /α CP T ≈ 2) an important effect comes also from the relaxation of the crystalline orbitals along the nanotube axis, i.e., α CP L /α SOS L ≈ 2.

Electronic second hyperpolarizability

Longitudinal component

Table 5 reports the longitudinal second hyperpolarizabilities of semiconducting nanotubes calculated at the LDA, B3LYP and HF levels of theory. As expected, the longitudinal component strongly depends on the energy gap (see Table 4): the LDA/HF γ C L ratio ranges from 25 to 56.

The orbitals relaxation provides a negligible contribution to the calculated LDA values of γ C L , the SOS/CP ratio being almost constant around 1 (see Table 5, SOS values in parentheses). In the HF case, on the contrary, the scale factor SOS/CP ranges from 0.15 to 0.35. B3LYP stands midway as usual, with a ratio SOS/CP constant around 0.6.

Figure 5 shows the trend (on a logarithmic scale) of γ a L (normalized for the cell parameter) as a function of the radius for the two series of semiconducting CNTs. (3l + 1, 0) and (3l + 2, 0) CNTs show an almost linear trend for radii R > 3 Å (log R > 0.47). By fitting each nanotube series with a linear function we get the slopes:

s 3l+1,0 = 4.54 and s 3l+2,0 = 6.12 for LDA; s 3l+1,0 = 4.41 and s 3l+2,0 = 5.76 for B3LYP; s 3l+1,0 = 4.12 and s 3l+2,0 = 5.43 for HF.

The average values are 5.33 (LDA), 5.09 (B3LYP) and 4.78 (HF), respectively, showing that γ a L depends on the fifth power of the radius. As for α a L , we can try to interpret this result looking at the SOS expression for the diagonal component of the second hyperpolarizability tensor in the static limit [32,34], i.e.,

γ xxxx = ∞ m,n,p =0 x 0m xmn xnp x p0 ω 0m ω 0n ω 0p - ∞ m,n =0 x 0m x m0 x 0n x n0 ω 0m ω 0n ω 0n (5) 
where xij = i|µ x |j -δ ij x 00 . Again, in the case of CNTs contributions other than the "fundamental" transition 0 → 1 may be neglected. Hence,

γ xxxx ≈ x 2 01 E 3 g (x 11 -x 00 ) 2 - x 4 01 E 3 g (6) 
By comparing Eqs. 6 and 3, we may assume

γ xxxx ≈ α xx E 2 g (x 11 -x 00 ) 2 - α 2 xx E g (7) 
to first order. Given that α a L ∝ R/E g , and that E g ∝ 1/R for reasonably large CNTs, from Eq. 7 we get

γ a L ≈ AR 4 (x 11 -x 00 ) 2 -BR 5 (8) 
where A and B are general proportionality coefficients.

Given the positive sign of the calculated γ a L , the largest contibution to the second hyperpolarizability of CNTs must arise from the first term on the rhs of Eq. 8. Moreover, given that the (x 11 -x 00 ) 2 factor is a linear combination of transition probabilities, it turns out that (x 11 -x 00 ) 2 ∝ R, which finally yields γ a L ∝ R 5 . In order to connect the above expression with the R 4 law proposed for the third-order static dielectric susceptibility of CNTs, γ L is to be normalized for the number of C atoms in the unit cell, n C . This corresponds to dividing Eq. 8 by R (being n C ∝ R), which provides γ C L ∝ R 4 , in agreement with Eq. ( 28) of Ref. [17].

We may compare our analytical result with the numerical PBE estimate of γ L obtained by Kozinsky and Marzari [5] for the (8, 0) tube. They calculated γ L = 3.1×10 7 a.u. over a unit cell volume, which corresponds to γ C L = 9.7×10 5 a.u. per C atom. On our side, we optimized the structure of the CNT (8, 0) at the PBE level, and then performed a coupled-perturbed PBE calculation of its longitudinal hyperpolarizability, obtaining γ C L = 32 × 10 6 a.u., which reveals a second-order optical nonlinearity much larger than what Kozinsky and Marzari [5] estimated. In addition, it should be noticed that the PBE and LDA (γ C L = 29 × 10 6 a.u.) values are very close (about 8% difference), as expected for small band gap monodimensional systems [27]. Now we come to the comparison with experiments. Liu et al. [35] measured the third order dielectric susceptibility χ (3) of various CNTs solutions. For a solution with 0.08 mg/ml carbon they determined the offresonant longitudinal response of the nanotubes to be 6.460 × 10 -14 esu; whence, an average contribution per C atom of about 5.921×10 -36 esu. Assuming the radius of the nanotubes in the sample to be around 5-6 Å as typical, we may draw a parallel with our calculations on the semiconducting CNTs (13, 0), (14, 0), (16, 0) and (17, 0), Tables 3 and5. Average values of χ 

L = 2π V γ L c f ( 9 
)
where 1/V = 5.95 × 10 -6 Bohr -3 is the number of C atoms per unit volume as derived from the carbon mass density of the experimental sample, and c f = 5.038×10 -40 esu/a.u. is the units conversion factor [36].

The results are χ

(3) L = 9.340 × 10 -36 , 2.620 × 10 -36 and 2.261×10 -37 esu (per C atom) at the LDA, B3LYP and HF levels of theory, respectively. We conclude therefore that, while HF underestimates the nonlinear optical response of CNTs, both density functionals provide χ (3) values in good qualitative agreement with the experiment.

Transverse component

Transverse second hyperpolarizabilities are reported in Table 6; the order of magnitude of the calculated values is the same, both with respect to the CNT family and the Hamiltonian. At variance with respect to γ L , CP results for γ T differ considerably from the SOS values (shown in parentheses).

As regards LDA, coupled-perturbed relaxation effects correct the initial SOS value by reducing it several hundreds times: the ratio SOS/CP can be as large as 850 for semiconducting CNTs and 670 for metallic CNTs. The same applies to B3LYP, although the ratio SOS/CP on γ T reduces to about 300 for both conductors and semiconductors. The CP HF correction follows the same trend (reduction of the SOS value), but in this case the ratio is around 30-50.

The transverse component γ T , at variance with respect to γ L , show rather small quantitative differences between LDA and HF and the LDA/HF ratio always remain smaller that 2. Figure 6 shows the logarithmic trends of γ a T (normalized for the cell parameter) obtained for semiconducting and conducting CNTs as a function of R. All series of CNTs follow a linear trend. In all cases the straight lines are essentially parallel to each other (in particular looking at large R values), the fitting slope being again very close to 5.

Figure 7 shows CP ratios γ L /γ T as functions of R. One can clearly see that for all Hamiltonians this ratio tends to a horizontal asymptote, unique for the two series of semiconductor CNTs, (3l + 1, 0) and (3l + 2, 0). This confirms that longitudinal and transverse second hyperpolarizabilities vary in the same way with R 5 . Although being still far from the infinite radius limit, fittings provide an idea of where the asymptotes are placed at the different levels of theory. That is, between 3×10 5 and 6×10 5 for LDA, between 5×10 4 and 9×10 4 for B3LYP, between 2 × 10 3 and 4 × 10 3 for HF. We see that the choice of the Hamiltonian covers a range of uncertainty of more than two orders of magnitude. Finally, it is worth noting the large difference with respect to the asymptotes obtained for SOS results: roughly 700 (LDA), 300 (B3LYP) and 100 (HF), on average. This demonstrates the exacerbation in γ (in comparison with α) of the combined effects of field depolarization and crystalline orbitals relaxation that are involved in the coupled-perturbed process.

Conclusions

Coupled-perturbed static electronic hyperpolarizabilities of CNTs have been calculated both at the DFT (LDA, PBE and hybrid B3LYP) and HF levels of theory. This provides a large spectrum of performance in the evaluation of the energy gap and, more generally, in the description of the electronic structure. It is shown that DFT second hyperpolarizabilities yield the best agreement with the experiments, which rules out the problem of the DFT overshoot for the present case. In addition, the different density functionals are found to be equivalent in terms of qualitative accuracy.

Predictably, the divergence of DFT methods against HF is found to be far more pronounced on γ than on α. However, the extent of such divergence depends on whether it relates with SOS estimates (unscreened or uncoupled values) obtained ahead of the self-consistent CP process, or with the final CP values corrected via the relaxation of the crystalline orbitals under the effect of the field. In fact, SOS results are generally much more far apart than converged CP values: the ratio LDA/HF can be as large as 400 for γ SOS L vs. 60 for γ CP L , and 40 for γ SOS T vs. 1 for γ CP T . In particular, concerning γ CP L , we found LDA/HF and B3LYP/HF ratios as large as 56 and 15, respectively.

The amount of the CP correction varies depending on the Hamiltonian and on the direction of the field with respect to the nanotube axis. It is just about 2% (4%) for the longitudinal second hyperpolarizability calculated at the LDA (B3LYP) level but it exceeds 600% at the HF level. DFT transverse second hyperpolarizabilities undergo a much larger variation than HF during the coupled-perturbed process: LDA and B3LYP SOS values are reduced by some hundreds times whereas the HF value is scaled only by a few tens of times.

We considered also the influence of the computational parameters on the coupled-perturbed results. Two factors play a critical role for convergence, the more so the larger the radius of the CNT. These are the number of k points in reciprocal space and the range of exact exchange terms considered (for HF and B3LYP). The first is relevant in particular for conducting CNTs which require up to 900 k points to converge to better than 1% on γ T . The second affects particularly γ L of semiconducting CNTs, so that the exchange series must include contributions from integrals involving electrons more than a hundred angstroms away from each other.

Finally, we determined the nonlinear optical behavior of CNTs with increasing radius. We uphold the law in R 4 predicted by Margulis et al. [17] for the macroscopic dielectric susceptibility χ

L , as corresponding to the microscopic longitudinal second hyperpolarizability γ C L normalized to one C atom. This is equivalent to an increase in R 5 of the same component normalized for the cell parameter, i.e., γ a L . The same trend in R 5 is found for γ a T , with respect to which conductor and semiconductor CNTs are essentially aligned.

These results complement and extend the present knowledge on the linear and nonlinear optical behavior of CNTs. In a future work the investigation will be extended to dynamic optical response properties of CNTs. As regards methodology, we provided a detailed analysis of the impact that the computational setting (Hamiltonian, parameters, theoretical approach) may have on the calculated results. The next step will be assessing the effect of the long-range correction to the DFT. 
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 4 Fig.4Transverse polarizability per unit length, α a T ( Å2 ), as a function of the square of the tube radius R 2 ( Å2 ).
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 5 Fig.5Logarithmic plot of the longitudinal second hyperpolarizability per unit length, γ a L (a.u.), as a function of the tube radius R.
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 6 Fig.6Logarithmic plot of the transverse second hyperpolarizability per unit length, γ a T (a.u.), as a function of the tube radius R.
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 7 Fig. 7 Ratio between coupled-perturbed longitudinal and transverse second hyperpolarizabilities as a function of the tube radius R ( Å).
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reports α C and γ C (normalized to one C) of the CNTs (17, 0) and

Table 1 (

 1 Hyper)polarizabilities, α C and γ C (a.u., values normalized to one C), and energy gap, Eg (eV), of CNTs (17, 0) and(11,11) as functions of the shrinking factor S. LDA and HF trends are compared. Note that HF γ C T values for the(11,11) tube are affected by some noise. Asymptotic values (by fitting) of γ C L are 1.293 × 10 9 a.u. (LDA) and 2.195 × 10 7 a.u. (HF); asymptotic values of γ C

	T

Table 2

 2 Longitudinal (hyper)polarizabilities, α C L and γ C L (a.u., normalized to one C), and energy gap, Eg (eV), of CNTs (17, 0) and (11, 11) as functions of the threshold Tx. Approximate electron-electron interaction maximum distances d e-e ( Å) are reported. Results calculated at the HF and B3LYP levels of theory are compared. Asymptotic values (by fitting) of γ C L are 3.143 × 10 7 a.u. (HF) and 4.026 × 10 8 a.u. (B3LYP); asymptotic values of γ C T are 5163 a.u. (HF) and 8064 a.u. (B3LYP).

					HF			B3LYP	
		Tx	d e-e	α C	γ C	Eg	α C	γ C	Eg
		100	38.25	74.03	2.195	2.408	117.6	34.52	0.920
		200	50.99	74.64	2.567	2.477	118.7	35.60	0.937
		300	63.74	75.00	2.767	2.492	119.2	36.82	0.942
	(17, 0)	400 500	76.49 84.99	75.15 75.23	2.883 2.953	2.499 2.503	119.4 119.5	37.64 38.23	0.944 0.945
	α C L , γ C L × 10 7	600 800	89.24 106.2	75.28 75.31	3.004 3.059	2.505 2.507	119.6 119.7	38.63 39.18	0.946 0.946
		1000	119.0	75.33	3.087	2.508	119.7	39.36	0.947
		1200	127.5	75.34	3.102	2.509	119.7	39.70	0.947
		1500	144.5	75.35	3.114	2.509	119.8	39.87	0.947
	(11, 11)	100 200	36.83 51.56	9.206 9.220	4813 4992	0.013 0.021	10.36 10.36	7917 8024	0.008 0.008
	α C T , γ C T	300 350	63.84 68.75	9.224 9.226	5066 5107	0.022 0.023	10.36 -	8051 -	0.008 -

Table 3

 3 Optimized LDA, B3LYP and HF CNT structures. The coefficients m and n define the chiral vector: (3l + 1, 0), (3l + 2, 0) and (m, m) series are separated by horizontal lines. C is the number of C atoms in the unit cell. Cell parameter a and radius R in Å.

				LDA		B3LYP	HF	
	m	n	C	a	R	a	R	a	R
	7	0	28	4.2438	2.778	4.2625	2.794	4.2349	2.772
	10	0	40	4.2458	3.932	4.2651	3.953	4.2372	3.925
	13	0	52	4.2459	5.095	4.2656	5.121	4.2374	5.085
	16	0	64	4.2458	6.260	4.2656	6.291	4.2375	6.248
	8	0	32	4.2407	3.165	4.2583	3.183	4.2265	3.163
	11	0	44	4.2433	4.322	4.2620	4.345	4.2313	4.317
	14	0	56	4.2441	5.485	4.2634	5.513	4.2338	5.477
	17	0	68	4.2445	6.651	4.2641	6.684	4.2349	6.641
	7	7	28	2.4504	4.757	2.4629	4.778	2.4466	4.746
	8	8	32	2.4506	5.429	2.4631	5.453	2.4469	5.416
	9	9	36	2.4508	6.101	2.4632	6.129	2.4471	6.087
	10	10	40	2.4509	6.775	2.4632	6.806	2.4472	6.759
	11	11	44	2.4509	7.448	2.4632	7.483	2.4472	7.432

Table 4

 4 Longitudinal (L) and transverse (T ) polarizability components (in a.u.) normalized to one C. Comparison between coupledperturbed LDA and HF results. SOS values in parentheses. Energy gap Eg in eV. Horizontal lines separate CNT families according to the chiral vector (m, n): series (3l + 1, 0), (3l + 2, 0) and (m, m).

				LDA			HF	
	m	n	α C L	α C T	Eg	α C L	α C T	Eg
	7	0	120.7(124.3) 5.638(25.92) 0.232	58.12(24.82) 5.339(10.67) 4.335
	10	0	119.1(121.0) 6.810(32.68) 0.791	59.79(28.25) 6.304(12.62) 3.546
	13	0	135.6(137.1) 8.061(39.65) 0.653	67.18(32.74) 7.324(14.53) 2.940
	16	0	155.8(157.1) 9.340(46.62) 0.548	76.03(37.42) 8.353(16.39) 2.508
	8	0	91.28(91.78) 6.065(29.46) 0.582	48.19(25.80) 5.650(11.24) 4.604
	11	0	107.6(108.3) 7.251(35.75) 0.904	55.95(29.88) 6.631(13.16) 3.672
	14	0	128.7(129.5) 8.504(42.51) 0.702	65.40(34.50) 7.653(15.05) 2.970
	17	0	151.0(151.9) 9.786(49.39) 0.574	75.34(39.23) 8.682(16.90) 2.509
	7	7	-	9.571(36.68) 0.006	-	6.987(13.89) 0.442
	8	8	-	6.704(40.30) 0.002	-	7.501(14.68) 0.521
	9	9	-	9.091(43.75) 0.005	-	8.070(15.66) 0.568
	10 10	-	9.818(47.30) 0.006	-	8.639(16.62) 0.604
	11 11	-	10.55(50.90) 0.006	-	9.205(17.56) 0.634

Table 5

 5 Longitudinal second hyperpolarizabilities of semiconductor CNTs normalized to one C, γ C L (10 6 a.u.). Comparison between coupled-perturbed LDA, B3LYP and HF results. SOS values in parentheses. CNT series (3l + 1, 0) and (3l + 2, 0) are separated by a horizontal line.

	m, 0	LDA	B3LYP	HF
	7	346.42 (351.57)	75.357 (54.986)	6.3080 (0.9364)
	10	557.53 (562.51)	156.68 (96.968)	12.053 (2.3808)
	13	1297.1 (1305.9)	354.29 (222.58)	26.593 (6.1150)
	16	2891.4 (2905.6)	764.98 (486.15)	51.342 (13.997)
	8	29.378 (29.476)	11.856 (7.9576)	1.1983 (0.4496)
	11	122.52 (122.25)	43.830 (28.232)	4.2954 (1.4512)
	14	451.21 (450.52)	147.76 (93.958)	13.322 (4.3447)
	17	1293.9 (1292.8)	397.30 (252.63)	31.212 (10.893)

Table 6

 6 Transverse second hyperpolarizabilities normalized to one C, γ C T (10 2 a.u.). Comparison between coupled-perturbed LDA, B3LYP and HF results. SOS values in parentheses. Horizontal lines separate CNT families according to the chiral vector (m, n): series (3l + 1, 0), (3l + 2, 0) and (m, m).

	m	n	LDA	B3LYP	HF
	7	0	3.0164 (2084.5)	2.8393 (755.13)	2.3133 (79.088)
	10	0	8.3345 (6207.8)	8.3637 (2493.5)	6.5422 (259.42)
	13	0	24.071 (18555.)	23.907 (7214.3)	17.759 (704.77)
	16	0	60.607 (47415.)	59.672 (17714.)	42.799 (1631.4)
	8	0	6.2188 (5306.4)	5.6405 (1639.9)	4.1663 (139.81)
	11	0	14.219 (11611.)	13.731 (4293.5)	10.170 (399.71)
	14	0	36.617 (29759.)	35.441 (10973.)	25.376 (995.88)
	17	0	85.612 (69390.)	82.676 (24920.)	57.697 (2173.5)
	7	7	19.366 (6086.0)	8.7476 (2831.5)	6.3627 (339.26)
	8	8	17.053 (11470.)	16.477 (5079.5)	11.754 (580.76)
	9	9	30.118 (20183.)	29.411 (8656.0)	20.855 (940.11)
	10	10	51.342 (33956.)	50.132 (14110.)	28.673 (1454.5)
	11	11	82.464 (53970.)	80.240 (21860.)	51.069 (2172.5)
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