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Abstract Static electronic polarizability α and second

hyperpolarizability γ of semiconduting and conducting

carbon nanotubes with radius up to 7.5 Å are evalu-

ated using the coupled-perturbed Hartree-Fock/Kohn-

Sham scheme, as implemented in the periodic CRYS-

TAL14 code, and a split-valence basis set. Two density

functionals, namely LDA (pure local) and B3LYP (hy-

brid), and the Hartree-Fock hamiltonian are compared.

A few PBE (gradient corrected) density functional data

are also produced for comparison with previous calcula-

tions. Convergence of both longitudinal (L) and trans-

verse (T ) components is documented. It is shown how

the second hyperpolarizability depends critically on the

computational conditions, the more so the larger the ra-

dius of the nanotube (and thus the smaller the energy

gap). The longitudinal component is sensibly affected

by the truncation of the exact exchange series (HF and
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B3LYP), which must include electron-electron interac-

tions at a distance up to 100 Å in order to have γL con-

verged to better than 1%. The transverse γT component

of conducting tubes critically depends on the number

of k points in reciprocal space: at least 900 k points

are required to converge better than 1% at the LDA

level. Coupled-perturbed results are compared to un-

coupled values obtained from a sum-over-states (SOS)

approach. The difference between the two is particu-

larly important along the transverse direction and when

pure DFT functionals are used: the coupled-perturbed

correction can shrink the SOS value by several hundreds

times. The ratio LDA/HF is roughly constant around

2 for αL; it ranges between 25 and 60 for γL. As re-

gards the convergence with the nanotube radius, the

R2 law is confirmed for αL and αT (normalized for the
cell parameter) at all levels of theory. For the second

hyperpolarizabilities γL and γT , a clear R5 dependence

is observed.

Keywords Carbon nanotubes, polarizability, hyper-

polarizability, CPHF, CPKS, Hartree-Fock, density

functional, LDA, GGA, hybrid, DFT overshoot,

Gaussian basis set, CRYSTAL code

1 Introduction

All carbon nanotubes (CNTs) are electrically conduc-

tive. However, their electronic structure varies depend-

ing on the chiral vector (m,n) (m,n ∈ N): as regards

the two important families of armchair (m,m) and zig-

zag (m, 0) CNTs, the former are 1D conductors; the

latter are semiconductors with almost vanishing band

gap for m = 3l (l ∈ N). These features, combined with

quantum confinement at the nanoscale, originate out-

standing optical properties.
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Over the past two decades, several theoretical in-

vestigations were carried out concerning the linear di-

electric response of CNTs [1–6], including a previous

work by some of the present authors [7], based on state-

of-the-art coupled-perturbed (CP) Hartree-Fock (HF)

and Kohn-Sham (KS) ab initio calculations with large

Gaussian basis sets. Results obtained on a number of

zig-zag and armchair single-wall CNTs with radius R

up to 16.3 Å, showed the transverse polarizability αaT
(normalized for the cell parameter a) to scale linearly

with the square of the tube radius R, while the longitu-

dinal polarizability αaL scales linearly with R/Eg, where

Eg is the energy gap.

In recent years, investigations have been extended

also to the optical nonlinearity of CNTs [8]. The lit-

erature on this topic is abundant on both the exper-

imental and theoretical sides [9–13], but still remains

incomplete on many aspects. The properties of interest

are the first and second hyperpolarizabilities, β and γ.

These are microscopic tensor properties related to the

macroscopic dielectric susceptibilities of second (χ(2))

and third order (χ(3)), respectively, through the cell vol-

ume V (for a 3D system): χ(2) = 2π
V β and χ(3) = 2π

3V γ.

The inversion center annihilates the first hyperpo-

larizability β of armchair and zig-zag nanotubes, not

that of general (m,n) tubes. The space symmetry, given

by the product of the Dn point symmetry and the axial

group of monodimensional translations [14], produces

two nonzero β components, namely βxyz = −βyzx. At

the static limit, however, the additional tensor permu-

tation symmetry [15], implies βxyz(0; 0, 0) to be null.

Guo et al. [3] calculated “unscreened” (i.e., sum-over-

states, SOS) static and dynamic electronic contribu-

tions for small chiral nanotubes (R < 6 Å), using the

local-density approximation (LDA) [16] to the density

functional theory (DFT). They found the static value

of χ
(2)
xyz(0; 0, 0) to be zero indeed, and an absolute value

of the second harmonic generation (SHG) coefficient

χ
(2)
xyz(−2ω;ω, ω) as large as 15 × 10−6 esu in the pho-

ton energy range 0.1-4.0 eV. They also noted that the

SHG coefficient χ
(2)
xyz(−2ω;ω, ω) becomes smaller with

increasing R as a consequence of the convergence to

graphene, that is center-symmetric.

Second-order optical nonlinearity effects were eval-

uated by Margulis et al. [17] for semiconductor single-

wall CNTs. By using a simple two-band approximation,

the authors obtained an expression for the static elec-

tronic contribution to χ(3) along the tube axis, that is

proportional to the fourth power of the radius R, i.e.,

χ
(3)
L (0; 0, 0, 0) ∝ R4. For a single-wall CNT with radius

around 5.5 Å, they estimated χ
(3)
L (0; 0, 0, 0) to be about

3×10−9 esu, which is comparable with the largest third-

order dielectric susceptibility χ(3) observed for III-V

semiconductor compounds. An independent estimate of

the static second hyperpolarizability γL of semiconduc-

tor CNTs was later provided by Kozinsky and Marzari [5],

by applying the numerical finite-field method at the

PBE [18] DFT level. For a zig-zag nanotube (8, 0) of

3.15 Å radius, they obtained γL = 3.1 × 107 a.u. That

is, χ
(3)
L ≈ 1×10−9 esu, if we define an approximate vol-

ume V = πR2a, with a ≈ 4 Å the cell parameter. Al-

though this result is not directly comparable with that

obtained by Margulis et al., based on the proposed R4

law, the ratio between the given radii, i.e., 5.5 Å [17]

and 3.15 Å [5], would lead to guess a difference of about

one order of magnitude between the corresponding val-

ues of χ
(3)
L , which is not the case for the data provided

by the authors. Further analysis is required in order

broaden the spectrum of available absolute data and

thus establish reliable trends.

In this paper, we aim to complement and improve

upon the above mentioned theoretical results. As a de-

velopment of our previous study [7], we report about

ab initio static electronic hyperpolarizability calcula-

tions on CNTs of increasing radius, performed using the

coupled-perturbed Hartree-Fock/Kohn-Sham (CPHF/

KS) computational scheme, as implemented in the quan-

tum chemistry software package for periodic systems

CRYSTAL14 [19–24]. A development version of this

code is now under test, which also implements the CP

calculation of dynamic SHG coefficients. These features

will be investigated in a forthcoming paper.

Unlike SOS perturbative methods, as those applied

in Refs. [3] and [17], the coupled-perturbed approach

fulfills a self-consistent computational procedure to ac-

count for orbital relaxation effects induced by the elec-

tric field, thus providing far more accurate optical prop-

erties. Furthermore, the analytical character of the CP

equations largely overcomes, for both accuracy and effi-

ciency, the variational finite-field approach used in Ref.

[5]. We will compare HF and various density function-

als, namely conventional local density (LDA) and gen-

eralized gradient (PBE) approximations, and the hy-

brid B3LYP functional. Periodic CPKS calculations rep-

resent a severe test of the methodology. It is known

that DFT methods may significantly overshoot the elec-

tronic (hyper)polarizabilities of extended π-conjugated

systems. An example is that of polyenes [25,26], for

which only slight (or even no) convergence towards the

periodic limit is found [27]. However, we will show that

there is no such overshoot in the case of CNTs, as indi-

cated by a fairly good agreement with the experimental

data.

We describe here a robust procedure for the evalu-

ation of the optical properties of CNTs, even in cases

where the calculated values blow-up as Eg → 0. In do-
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ing so, we will show that it is possible to draw regular

trends with increasing R at every level of theory, re-

gardless of the convergence rates and of the magnitude

of the numbers to be managed.

The paper is organized as follows. Computational

details are illustrated in Section 2, with particular fo-

cus on the most critical parameters, i.e., the number of

k points at which the SCF and CP equations are solved

and the thresholds controlling the truncation of the ex-

act exchange series. Results are presented in Section 3,

dealing with a) the trends of α and γ with increasing

radius; b) the comparison between the various levels of

theory. Finally, in the last section, a few conclusions are

drawn.

2 Computational details

Calculations were performed with the periodic ab initio

CRYSTAL14 code [19] by using an all-electron split-

valence 6-31G(d) basis set. Two density functionals,

LDA [28], and B3LYP [29] (containing 20% of exact ex-

change) are compared with Hartree-Fock (HF). Some

calculations have been performed also with the PBE

functional, which was previously shown to behave sim-

ilarly to LDA for the kind of properties investigated

here [27].

The geometry was optimized in all cases. The thresh-

old for the convergence of the self-consistent-field (SCF)

energy was set to 10−10 Ha. The density functional

exchange-correlation contribution to the total energy

was computed using a pruned grid (keyword XLGRID [19])

for numerical integration. Its accuracy can be estimated

from the error in the electronic charge per unit cell: 4

×10−4|e| for a total number of 240 |e| for the (10,0)

nanotube. To exit the self-consistent CPHF/KS pro-

cess, the variation of α (γ) calculated at two subsequent

cycles must be smaller than 10−2 a.u. (1 a.u.).

CPHF/KS results for small (null) band gap systems

are strongly affected by the shrinking factor S used for

sampling the reciprocal space, and by the truncation

of the infinite exact exchange series (HF and B3LYP

cases), as previously documented for polyacetylene [27].

Convergence becomes more critical for large R tubes,

because the energy gap narrows (Eg ∝ 1/R) and po-

larization effects increase. To describe the effect of the

aforementioned computational parameters on the cal-

culated optical properties, we will take as references

the (17, 0) and (11, 11) tubes. These are representa-

tives of semiconducting and conducting CNTs, respec-

tively, and have the largest radii here considered. For

the (11, 11) CNT we will investigate the convergence of

αT and γT , the longitudinal components being infinite

as the solution is metallic. For the (17, 0) CNT, instead,

we will focus on αL and γL which are finite although

very large, whereas the transverse components converge

much faster.

2.1 Shrinking factor

A dense k-point sampling of the Brillouin zone (BZ)

is crucial for the accurate description of the electronic

structure around the region where the gap is small. This

justifies the need for using a large shrinking factor S

to achieve convergence on the calculated optical prop-

erties. Pure density functionals (e.g., LDA and GGA)

are particularly concerned since they are known to sys-

tematically underestimate the band gap. At the other

extreme HF overestimates Eg. Table 1 shows the de-

pendence on S of the (hyper)polarizabilities αC and

γC (normalized to one C atom), calculated at both the

LDA and HF levels of theory. For the (17, 0) tube, HF

provides an energy gap about four times larger than

LDA, producing αCL and γCL values that are about 2

and 60 times smaller. All HF and LDA properties are

converged to better than 1% at S = 80 (41 k points). A

much slower convergence with S is found for the trans-

verse properties of the (11, 11) tube, that is metallic. In

this case, the LDA/HF ratio reduces to about 1 for αCT ,

and to 2 for γCT . Asymptotic limits (by fitting) for γCT
are 8330 a.u. (LDA) and 4856 a.u. (HF). At the LDA

level, the threshold of 1% deviation from the asymp-

totic limit is only reached at S = 1800, that is, using

901 k points in the BZ. The same target is achieved at

the HF level using 751 k points (S = 1500).

2.2 Truncation of the exchange series

In extended systems with small gap, the range of the

density matrix (represented in the direct space) weigh-

ing the integrals of the infinite bi-electronic exchange

series is widespread. Hence, the slow convergence of

the optical properties with the number of terms that

are included in the summation [30].

In CRYSTAL, the truncation of the infinite Coulomb

and exchange series is established through five thresh-

olds, Ti (i = 1 . . . 5), such that integrals are disregarded

(or approximated) when the overlap between the in-

volved functions is below 10−Ti (see Ref. [19] for de-

tails). Our previous work on polyacetylene [27] showed

that T1, T2 and T3 converge rapidly, as the measure of

decay of the overlap of two gaussians, so that their value

may safely be set to 10. More delicate is the role of T4
and T5, which are associated to the exact exchange sum-

mations. We set their values according to the scheme

T4 = 1
2T5 = Tx. Table 2 reports αC and γC (normalized
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to one C) of the CNTs (17, 0) and (11, 11) as functions

of Tx. The spatial extension of the exchange interac-

tions is indicated in terms of the maximum electron-

electron distance de−e for the given Tx value. Compar-

ison between HF and B3LYP trends is shown. As re-

gards the (17, 0) tube, the two series converge pretty

much in the same way despite the HF energy gap be-

ing about 3 times larger than the B3LYP one, which

accounts for two orders of magnitude of difference on

γCL . An explanation may be that the major fraction

of exact exchange in HF compensates the effect of the

smaller gap in B3LYP. γCL requires at least Tx = 1500,

which corresponds to about 14 × 106 elements of the

reducible Hamiltonian matrix to be evaluated. γCT of

the conductor tube (11, 11) is far less sensitive to Tx:

convergence to 1% is reached at Tx = 200 with B3LYP,

and at Tx = 350 with HF.

3 Results and discussion

3.1 Structure and energy gap

Optimized LDA, B3LYP and HF structures of the CNTs

are presented in Table 3. B3LYP provides the largest

cell parameters a and radii R; the difference with re-

spect to the most compact geometries provided by HF

is however very small (around 0.7% both on a and R).

Let us consider now the variation of the electronic

(hyper)polarizabilities with increasing the radius R of

the CNTs. In doing so, we will focus primarily on a

comparative analysis between LDA and HF, which de-

limit the variation of the calculated energy gap Eg as

shown in Figure 1.

We note that for CNTs with R < 3.4 Å the LDA

(and B3LYP) band gap collapses with discontinuity

(left panel). For larger radii, however, Eg is found to

be proportional to 1/R (right panel) via a coefficient

that depends on the nanotube chirality. In other words,

the band gap opening occurring in graphene when the

2D sheet is bent to generate a CNT depends on the

rolling-up direction. The rolling-up perturbation is re-

lated to the interaction coefficient G that appears in the

approximate expression of Eg(R) provided by a simple

π-electron model [31,17],

Eg ≈
2G
3R

(1)

From our fittings we get: G3l+1,0 = 3.82 (LDA), 5.78

(B3LYP) and 16.3 (HF) eV Å; G3l+2,0 = 6.12 (LDA),

9.68 (B3LYP) and 21.5 (HF) (B3LYP) eV Å. These re-

sults show that the order of effectiveness of the rolling-

up perturbation is 3l + 2, 0 > 3l + 1, 0 for the different

families of semiconductor CNTs, and that it is HF >>

B3LYP > LDA for the different levels of theory.

3.2 Electronic polarizability

Table 4 lists the longitudinal and transverse polarizabil-

ity components for the CNTs here investigated.

3.2.1 Longitudinal component

Upon increasing the radius by a factor 2.4, i.e., from

2.8 Å for the CNT (7, 0) to about 6.7 Å for the CNT

(17, 0), the longitudinal polarizability per C atom αCL
undergoes an overall increment of about 25-29%, with a

ratio LDA/HF roughly constant around 2. The coupled-

perturbed self-consistent process modify the SOS value

(in parentheses) in opposite directions and by different

amounts: decreases by 2% for LDA, increases by 100%

for HF.

In the left panel of Figure 2, the longitudinal po-

larizability per unit length, αaL, is plotted against R2.

Regular linear trends are shown for both LDA and HF

CNTs and the fittings for the different series of semicon-

ductors draw almost parallel lines. Moreover, for CNTs

with R ≥ 3.4 Å we are allowed to replace R2 by the

R/Eg law expected for αaL (Figure 2, right panel), given

the above mentioned relationship of inverse proportion-

ality between R and Eg.

One may understand such a R/Eg law by referring

to the SOS expression for the static diagonal polariz-

ability [32], i.e.,

αxx =

∞∑
m 6=0

x0mxm0

ω0m
(2)

where xij = 〈i|µx|j〉 is the transition moment between

the states i and j, and ω0j is the energy of the transition

between the ground state 0 and the state j. In case of

small band gap systems such as CNTs, the fundamental

transition between the top of the valence band and the

bottom of the virtual band becomes predominant be-

cause ω01 ≡ Eg → 0. Therefore, Eq. 2 can be simplyfied

as

αxx ≈
x201
Eg

(3)

The square of the transition moment at the numerator

of Eq. 3, x201 = x01x10, expresses a probability of the

transition that is inherently proportional to the num-

ber of atoms involved. Now, regarding CNTs, since the

number of C atoms on the circumference depends di-

rectly on the radius of the tube, from Eq. 3 we retrieve

the relationship αaL ∝ R/Eg.

3.2.2 Transverse component

The difference between the LDA and HF band struc-

tures has a negligible effect on the transverse tensor
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components. This is in agreement with earlier calcu-

lations performed in the linear regime on both semi-

conducting and metallic tubes [1,33,5]. Indeed, for all

nanotubes, CP LDA and HF transverse polarizabilities

αT converge to a ratio of about 1, Figure 3. As regards

the SOS values of αT , instead, an initial LDA/HF ratio

of about 2.5 is found, which increases almost linearly

with increasing R.

By considering the evolution of the transverse polar-

izability normalized for the cell parameter, αaT , we find

linear LDA and HF trends vs. R2. This is in agreement

with previous results obtained at the B3LYP level [7].

In that case, a fitting slope sB3LYP = 0.368 was obtained,

which compared well with the ideal value of 3/8 derived

from the classical model proposed by Bendict et al. [1],

namely

αCPT =
αSOST

1 + 2αSOST /R2
(4)

where αSOST /αCPT ≈ 4. At the LDA level of theory,

the ratio αSOST /αCPT increases to about 5, yielding an

ideal coefficient of 2/5=0.4 that is still quite close to

the fitting result, sLDA = 0.47. In contrast, HF diverges

from expectations: the slope provided by the fit is sHF =

0.41, to be compared with the value 1/4 obtained from

Eq. 4 and the observed ratio αSOST /αCPT ≈ 2.

By fitting the ratio αL/αT vs. R we obtain asymp-

totic values at about 3.5 (SOS) and 18.6 (CP) for LDA;

at about 3.1 (SOS) and 13.5 (CP) for B3LYP; at 2.6

(SOS) and 10 (CP) for HF. The CP limits turn out to

be much higher than the SOS ones.

At the limit for R → ∞ (i.e., the graphene slab

xy) it is expected that αL → αslabxx and that αT →
(1/2)(αslabxx + αslabzz ) ≈ αslabxx /2 (the finite value of αslabzz

is negligible with respect to the infinite αslabxx value).

Therefore, the ratio αL/αT should be equal to 2. How-

ever, due to the polarization the transversal field felt

by the atoms in the tube is less intense than the exter-

nal field (the depolarization factor along the transverse

direction is 2π). It follows a ratio αL/αT larger than

2, particularly at the the CP level of calculation which

takes better account of this effect. In HF, however, in

addition to the depolarization of the transverse field

(αSOST /αCPT ≈ 2) an important effect comes also from

the relaxation of the crystalline orbitals along the nan-

otube axis, i.e., αCPL /αSOSL ≈ 2.

3.3 Electronic second hyperpolarizability

3.3.1 Longitudinal component

Table 5 reports the longitudinal second hyperpolariza-

bilities of semiconducting nanotubes calculated at the

LDA, B3LYP and HF levels of theory. As expected, the

longitudinal component strongly depends on the energy

gap (see Table 4): the LDA/HF γCL ratio ranges from

25 to 56.

The orbitals relaxation provides a negligible contri-

bution to the calculated LDA values of γCL , the SOS/CP

ratio being almost constant around 1 (see Table 5, SOS

values in parentheses). In the HF case, on the con-

trary, the scale factor SOS/CP ranges from 0.15 to 0.35.

B3LYP stands midway as usual, with a ratio SOS/CP

constant around 0.6.

Figure 5 shows the trend (on a logarithmic scale) of

γaL (normalized for the cell parameter) as a function of

the radius for the two series of semiconducting CNTs.

(3l + 1, 0) and (3l + 2, 0) CNTs show an almost linear

trend for radii R > 3 Å (logR > 0.47). By fitting each

nanotube series with a linear function we get the slopes:

– s3l+1,0 = 4.54 and s3l+2,0 = 6.12 for LDA;

– s3l+1,0 = 4.41 and s3l+2,0 = 5.76 for B3LYP;

– s3l+1,0 = 4.12 and s3l+2,0 = 5.43 for HF.

The average values are 5.33 (LDA), 5.09 (B3LYP) and

4.78 (HF), respectively, showing that γaL depends on the

fifth power of the radius. As for αaL, we can try to inter-

pret this result looking at the SOS expression for the

diagonal component of the second hyperpolarizability

tensor in the static limit [32,34], i.e.,

γxxxx =

∞∑
m,n,p6=0

x0mx̄mnx̄npxp0
ω0mω0nω0p

−
∞∑

m,n6=0

x0mxm0x0nxn0
ω0mω0nω0n

(5)

where x̄ij = 〈i|µx|j〉−δijx00. Again, in the case of CNTs

contributions other than the “fundamental” transition

0→ 1 may be neglected. Hence,

γxxxx ≈
x201
E3
g

(x11 − x00)
2 − x401

E3
g

(6)

By comparing Eqs. 6 and 3, we may assume

γxxxx ≈
αxx
E2
g

(x11 − x00)2 − α2
xx

Eg
(7)

to first order. Given that αaL ∝ R/Eg, and that Eg ∝
1/R for reasonably large CNTs, from Eq. 7 we get

γaL ≈ AR4(x11 − x00)2 −BR5 (8)

where A and B are general proportionality coefficients.

Given the positive sign of the calculated γaL, the largest

contibution to the second hyperpolarizability of CNTs

must arise from the first term on the rhs of Eq. 8. More-

over, given that the (x11 − x00)2 factor is a linear com-

bination of transition probabilities, it turns out that

(x11 − x00)2 ∝ R, which finally yields γaL ∝ R5. In or-

der to connect the above expression with the R4 law

proposed for the third-order static dielectric suscepti-

bility of CNTs, γL is to be normalized for the number
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of C atoms in the unit cell, nC . This corresponds to

dividing Eq. 8 by R (being nC ∝ R), which provides

γCL ∝ R4, in agreement with Eq. (28) of Ref. [17].

We may compare our analytical result with the nu-

merical PBE estimate of γL obtained by Kozinsky and

Marzari [5] for the (8, 0) tube. They calculated γL =

3.1×107 a.u. over a unit cell volume, which corresponds

to γCL = 9.7×105 a.u. per C atom. On our side, we opti-

mized the structure of the CNT (8, 0) at the PBE level,

and then performed a coupled-perturbed PBE calcu-

lation of its longitudinal hyperpolarizability, obtaining

γCL = 32 × 106 a.u., which reveals a second-order opti-

cal nonlinearity much larger than what Kozinsky and

Marzari [5] estimated. In addition, it should be noticed

that the PBE and LDA (γCL = 29× 106 a.u.) values are

very close (about 8% difference), as expected for small

band gap monodimensional systems [27].

Now we come to the comparison with experiments.

Liu et al. [35] measured the third order dielectric sus-

ceptibility χ(3) of various CNTs solutions. For a solu-

tion with 0.08 mg/ml carbon they determined the off-

resonant longitudinal response of the nanotubes to be

6.460× 10−14 esu; whence, an average contribution per

C atom of about 5.921×10−36 esu. Assuming the radius

of the nanotubes in the sample to be around 5-6 Å as

typical, we may draw a parallel with our calculations

on the semiconducting CNTs (13, 0), (14, 0), (16, 0) and

(17, 0), Tables 3 and 5. Average values of χ
(3)
L per C

atom can be obtained from those of γCL via the relation

χ
(3)
L =

(
2π

V
γL

)
cf (9)

where 1/V = 5.95 × 10−6 Bohr−3 is the number of

C atoms per unit volume as derived from the carbon

mass density of the experimental sample, and cf =

5.038×10−40 esu/a.u. is the units conversion factor [36].

The results are χ
(3)
L = 9.340× 10−36, 2.620× 10−36 and

2.261×10−37 esu (per C atom) at the LDA, B3LYP and

HF levels of theory, respectively. We conclude therefore

that, while HF underestimates the nonlinear optical re-

sponse of CNTs, both density functionals provide χ(3)

values in good qualitative agreement with the experi-

ment.

3.3.2 Transverse component

Transverse second hyperpolarizabilities are reported in

Table 6; the order of magnitude of the calculated values

is the same, both with respect to the CNT family and

the Hamiltonian. At variance with respect to γL, CP

results for γT differ considerably from the SOS values

(shown in parentheses).

As regards LDA, coupled-perturbed relaxation ef-

fects correct the initial SOS value by reducing it sev-

eral hundreds times: the ratio SOS/CP can be as large

as 850 for semiconducting CNTs and 670 for metallic

CNTs. The same applies to B3LYP, although the ratio

SOS/CP on γT reduces to about 300 for both conduc-

tors and semiconductors. The CP HF correction follows

the same trend (reduction of the SOS value), but in this

case the ratio is around 30-50.

The transverse component γT , at variance with re-

spect to γL, show rather small quantitative differences

between LDA and HF and the LDA/HF ratio always

remain smaller that 2. Figure 6 shows the logarithmic

trends of γaT (normalized for the cell parameter) ob-

tained for semiconducting and conducting CNTs as a

function of R. All series of CNTs follow a linear trend.

In all cases the straight lines are essentially parallel to

each other (in particular looking at large R values), the

fitting slope being again very close to 5.

Figure 7 shows CP ratios γL/γT as functions of R.

One can clearly see that for all Hamiltonians this ratio

tends to a horizontal asymptote, unique for the two se-

ries of semiconductor CNTs, (3l + 1, 0) and (3l + 2, 0).

This confirms that longitudinal and transverse second

hyperpolarizabilities vary in the same way with R5. Al-

though being still far from the infinite radius limit,

fittings provide an idea of where the asymptotes are

placed at the different levels of theory. That is, between

3×105 and 6×105 for LDA, between 5×104 and 9×104

for B3LYP, between 2×103 and 4×103 for HF. We see

that the choice of the Hamiltonian covers a range of un-

certainty of more than two orders of magnitude. Finally,

it is worth noting the large difference with respect to

the asymptotes obtained for SOS results: roughly 700

(LDA), 300 (B3LYP) and 100 (HF), on average. This

demonstrates the exacerbation in γ (in comparison with

α) of the combined effects of field depolarization and

crystalline orbitals relaxation that are involved in the

coupled-perturbed process.

4 Conclusions

Coupled-perturbed static electronic hyperpolarizabili-

ties of CNTs have been calculated both at the DFT

(LDA, PBE and hybrid B3LYP) and HF levels of the-

ory. This provides a large spectrum of performance in

the evaluation of the energy gap and, more generally, in

the description of the electronic structure. It is shown

that DFT second hyperpolarizabilities yield the best

agreement with the experiments, which rules out the

problem of the DFT overshoot for the present case. In

addition, the different density functionals are found to

be equivalent in terms of qualitative accuracy.
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Predictably, the divergence of DFT methods against

HF is found to be far more pronounced on γ than on

α. However, the extent of such divergence depends on

whether it relates with SOS estimates (unscreened or

uncoupled values) obtained ahead of the self-consistent

CP process, or with the final CP values corrected via

the relaxation of the crystalline orbitals under the effect

of the field. In fact, SOS results are generally much more

far apart than converged CP values: the ratio LDA/HF

can be as large as 400 for γSOSL vs. 60 for γCPL , and 40

for γSOST vs. 1 for γCPT . In particular, concerning γCPL ,

we found LDA/HF and B3LYP/HF ratios as large as

56 and 15, respectively.

The amount of the CP correction varies depend-

ing on the Hamiltonian and on the direction of the

field with respect to the nanotube axis. It is just about

2% (4%) for the longitudinal second hyperpolarizabil-

ity calculated at the LDA (B3LYP) level but it ex-

ceeds 600% at the HF level. DFT transverse second

hyperpolarizabilities undergo a much larger variation

than HF during the coupled-perturbed process: LDA

and B3LYP SOS values are reduced by some hundreds

times whereas the HF value is scaled only by a few tens

of times.

We considered also the influence of the computa-

tional parameters on the coupled-perturbed results. Two

factors play a critical role for convergence, the more so

the larger the radius of the CNT. These are the num-

ber of k points in reciprocal space and the range of

exact exchange terms considered (for HF and B3LYP).

The first is relevant in particular for conducting CNTs

which require up to 900 k points to converge to better

than 1% on γT . The second affects particularly γL of

semiconducting CNTs, so that the exchange series must

include contributions from integrals involving electrons

more than a hundred angstroms away from each other.

Finally, we determined the nonlinear optical behav-

ior of CNTs with increasing radius. We uphold the law

in R4 predicted by Margulis et al. [17] for the macro-

scopic dielectric susceptibility χ
(3)
L , as corresponding to

the microscopic longitudinal second hyperpolarizabil-

ity γCL normalized to one C atom. This is equivalent to

an increase in R5 of the same component normalized

for the cell parameter, i.e., γaL. The same trend in R5

is found for γaT , with respect to which conductor and

semiconductor CNTs are essentially aligned.

These results complement and extend the present

knowledge on the linear and nonlinear optical behav-

ior of CNTs. In a future work the investigation will

be extended to dynamic optical response properties of

CNTs. As regards methodology, we provided a detailed

analysis of the impact that the computational setting

(Hamiltonian, parameters, theoretical approach) may

have on the calculated results. The next step will be

assessing the effect of the long-range correction to the

DFT.
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Fig. 1 Energy gap Eg (eV) of semiconductor CNTs as a function of the radius R (Å, on the left), and of the inverse of the radius
1/R (Å−1, on the right).
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The two LDA points lying outside the straight line (right panel) correspond to the smallest CNTs (7, 0) and (8, 0) whose band gap is
in discontinuity with the trend drawn by the larger CNTs (see text).
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Table 1 (Hyper)polarizabilities, αC and γC (a.u., values normalized to one C), and energy gap, Eg (eV), of CNTs (17, 0) and (11, 11)
as functions of the shrinking factor S. LDA and HF trends are compared. Note that HF γCT values for the (11, 11) tube are affected

by some noise. Asymptotic values (by fitting) of γCL are 1.293 × 109 a.u. (LDA) and 2.195 × 107 a.u. (HF); asymptotic values of γCT
are 8330 a.u. (LDA) and 4856 a.u. (HF).

LDA HF

S αC γC Eg αC γC Eg

(17,0)
30 152.7 64.0 0.574 74.16 1.600 2.408
50 151.0 125.2 0.574 74.04 2.187 2.408

αC
L , γCL × 107 80 151.0 129.4 0.574 74.03 2.195 2.408

100 151.0 129.4 0.574 74.03 2.195 2.408

80 10.53 9194 0.132 9.181 5674 0.500
100 10.58 6390 0.006 9.252 2915 0.237
200 10.56 7477 0.006 9.218 4206 0.138

(11,11)
400 10.55 7936 0.006 9.207 4726 0.089
600 10.55 8074 0.006 9.204 4878 0.072

αC
T , γCT 800 10.55 8140 0.006 9.203 5020 0.059

1000 10.55 8179 0.006 9.202 5043 0.039
1500 10.55 8230 0.006 9.206 4813 0.013
1800 10.55 8246 0.006 9.204 4873 0.017

Table 2 Longitudinal (hyper)polarizabilities, αC
L and γCL (a.u., normalized to one C), and energy gap, Eg (eV), of CNTs (17, 0) and

(11, 11) as functions of the threshold Tx. Approximate electron-electron interaction maximum distances de−e (Å) are reported. Results
calculated at the HF and B3LYP levels of theory are compared. Asymptotic values (by fitting) of γCL are 3.143 × 107 a.u. (HF) and

4.026 × 108 a.u. (B3LYP); asymptotic values of γCT are 5163 a.u. (HF) and 8064 a.u. (B3LYP).

HF B3LYP

Tx de−e αC γC Eg αC γC Eg

100 38.25 74.03 2.195 2.408 117.6 34.52 0.920
200 50.99 74.64 2.567 2.477 118.7 35.60 0.937
300 63.74 75.00 2.767 2.492 119.2 36.82 0.942

(17, 0)
400 76.49 75.15 2.883 2.499 119.4 37.64 0.944
500 84.99 75.23 2.953 2.503 119.5 38.23 0.945

αC
L , γCL × 107

600 89.24 75.28 3.004 2.505 119.6 38.63 0.946
800 106.2 75.31 3.059 2.507 119.7 39.18 0.946

1000 119.0 75.33 3.087 2.508 119.7 39.36 0.947
1200 127.5 75.34 3.102 2.509 119.7 39.70 0.947
1500 144.5 75.35 3.114 2.509 119.8 39.87 0.947

(11, 11)
100 36.83 9.206 4813 0.013 10.36 7917 0.008
200 51.56 9.220 4992 0.021 10.36 8024 0.008

αC
T , γCT 300 63.84 9.224 5066 0.022 10.36 8051 0.008

350 68.75 9.226 5107 0.023 - - -

Table 3 Optimized LDA, B3LYP and HF CNT structures. The coefficients m and n define the chiral vector: (3l + 1, 0), (3l + 2, 0)
and (m,m) series are separated by horizontal lines. C is the number of C atoms in the unit cell. Cell parameter a and radius R in Å.

LDA B3LYP HF

m n C a R a R a R

7 0 28 4.2438 2.778 4.2625 2.794 4.2349 2.772
10 0 40 4.2458 3.932 4.2651 3.953 4.2372 3.925
13 0 52 4.2459 5.095 4.2656 5.121 4.2374 5.085
16 0 64 4.2458 6.260 4.2656 6.291 4.2375 6.248

8 0 32 4.2407 3.165 4.2583 3.183 4.2265 3.163
11 0 44 4.2433 4.322 4.2620 4.345 4.2313 4.317
14 0 56 4.2441 5.485 4.2634 5.513 4.2338 5.477
17 0 68 4.2445 6.651 4.2641 6.684 4.2349 6.641

7 7 28 2.4504 4.757 2.4629 4.778 2.4466 4.746
8 8 32 2.4506 5.429 2.4631 5.453 2.4469 5.416
9 9 36 2.4508 6.101 2.4632 6.129 2.4471 6.087
10 10 40 2.4509 6.775 2.4632 6.806 2.4472 6.759
11 11 44 2.4509 7.448 2.4632 7.483 2.4472 7.432
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Table 4 Longitudinal (L) and transverse (T ) polarizability components (in a.u.) normalized to one C. Comparison between coupled-
perturbed LDA and HF results. SOS values in parentheses. Energy gap Eg in eV. Horizontal lines separate CNT families according
to the chiral vector (m,n): series (3l + 1, 0), (3l + 2, 0) and (m,m).

LDA HF

m n αC
L αC

T Eg αC
L αC

T Eg

7 0 120.7(124.3) 5.638(25.92) 0.232 58.12(24.82) 5.339(10.67) 4.335

10 0 119.1(121.0) 6.810(32.68) 0.791 59.79(28.25) 6.304(12.62) 3.546

13 0 135.6(137.1) 8.061(39.65) 0.653 67.18(32.74) 7.324(14.53) 2.940

16 0 155.8(157.1) 9.340(46.62) 0.548 76.03(37.42) 8.353(16.39) 2.508

8 0 91.28(91.78) 6.065(29.46) 0.582 48.19(25.80) 5.650(11.24) 4.604

11 0 107.6(108.3) 7.251(35.75) 0.904 55.95(29.88) 6.631(13.16) 3.672

14 0 128.7(129.5) 8.504(42.51) 0.702 65.40(34.50) 7.653(15.05) 2.970

17 0 151.0(151.9) 9.786(49.39) 0.574 75.34(39.23) 8.682(16.90) 2.509

7 7 - 9.571(36.68) 0.006 - 6.987(13.89) 0.442

8 8 - 6.704(40.30) 0.002 - 7.501(14.68) 0.521

9 9 - 9.091(43.75) 0.005 - 8.070(15.66) 0.568

10 10 - 9.818(47.30) 0.006 - 8.639(16.62) 0.604

11 11 - 10.55(50.90) 0.006 - 9.205(17.56) 0.634

Table 5 Longitudinal second hyperpolarizabilities of semiconductor CNTs normalized to one C, γCL (106 a.u.). Comparison between
coupled-perturbed LDA, B3LYP and HF results. SOS values in parentheses. CNT series (3l + 1, 0) and (3l + 2, 0) are separated by a
horizontal line.

m, 0 LDA B3LYP HF

7 346.42 (351.57) 75.357 (54.986) 6.3080 (0.9364)
10 557.53 (562.51) 156.68 (96.968) 12.053 (2.3808)
13 1297.1 (1305.9) 354.29 (222.58) 26.593 (6.1150)
16 2891.4 (2905.6) 764.98 (486.15) 51.342 (13.997)

8 29.378 (29.476) 11.856 (7.9576) 1.1983 (0.4496)
11 122.52 (122.25) 43.830 (28.232) 4.2954 (1.4512)
14 451.21 (450.52) 147.76 (93.958) 13.322 (4.3447)
17 1293.9 (1292.8) 397.30 (252.63) 31.212 (10.893)

Table 6 Transverse second hyperpolarizabilities normalized to one C, γCT (102 a.u.). Comparison between coupled-perturbed LDA,
B3LYP and HF results. SOS values in parentheses. Horizontal lines separate CNT families according to the chiral vector (m,n): series
(3l + 1, 0), (3l + 2, 0) and (m,m).

m n LDA B3LYP HF

7 0 3.0164 (2084.5) 2.8393 (755.13) 2.3133 (79.088)
10 0 8.3345 (6207.8) 8.3637 (2493.5) 6.5422 (259.42)
13 0 24.071 (18555.) 23.907 (7214.3) 17.759 (704.77)
16 0 60.607 (47415.) 59.672 (17714.) 42.799 (1631.4)

8 0 6.2188 (5306.4) 5.6405 (1639.9) 4.1663 (139.81)
11 0 14.219 (11611.) 13.731 (4293.5) 10.170 (399.71)
14 0 36.617 (29759.) 35.441 (10973.) 25.376 (995.88)
17 0 85.612 (69390.) 82.676 (24920.) 57.697 (2173.5)

7 7 19.366 (6086.0) 8.7476 (2831.5) 6.3627 (339.26)
8 8 17.053 (11470.) 16.477 (5079.5) 11.754 (580.76)
9 9 30.118 (20183.) 29.411 (8656.0) 20.855 (940.11)
10 10 51.342 (33956.) 50.132 (14110.) 28.673 (1454.5)
11 11 82.464 (53970.) 80.240 (21860.) 51.069 (2172.5)


