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Abstract
The renal handling of Na+ balance is a major deter-
minant of the blood pressure (BP) level. The inability of 
the kidney to excrete the daily load of Na+ represents 
the primary cause of chronic hypertension. Among 
the different segments that constitute the nephron, 
those present in the distal part (i.e ., the cortical thick 
ascending limb, the distal convoluted tubule, the 
connecting and collecting tubules) play a central role in 
the fine-tuning of renal Na+ excretion and are the target 
of many different regulatory processes that modulate 
Na+ retention more or less efficiently. G-protein coupled 
receptors (GPCRs) are crucially involved in this regulation 
and could represent efficient pharmacological targets 
to control BP levels. In this review, we describe both 
classical and novel GPCR-dependent regulatory systems 
that have been shown to modulate renal Na+ absorption 
in the distal nephron. In addition to the multiplicity of 
the GPCR that regulate Na+ excretion, this review also 
highlights the complexity of these different pathways, 
and the connections between them.
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Core tip: The maintenance of the blood pressure 
depends partly on the ability of the organism to match 
the daily intake and excretion of Na+. The kidney, which 
is the main organ involved in Na+ excretion, is the 
target of multiple regulatory pathways that contribute 
to the fine-tuning of secretion/reabsorption processes 
occurring all along the nephron. In this review we 
described “classical” and “novel” G-protein coupled 
receptor (GPCR)-mediated pathways that impact trans-
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epithelial Na+ transport in the distal nephron. This 
detailed inventory of the GPCR-mediated pathways that 
affect renal Na+ handling gives a broad overview of the 
complexity of this integrated system. 
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INTRODUCTION
Sodium is the main osmotic component of extracellular 
compartments and its concentration (140 mmol/L) must 
be kept within a narrow range to maintain extracellular 
volume and blood pressure (BP) at a normal levels. 
According to Guyton’s model, dysfunctional renal 
sodium excretion is involved in the development of 
salt-sensitive hypertension[1]. Daily, Na+ consumption 
may varies between 50 to 150 mmol and water 
consumption is about 1.5 L. Nearly all the Na+ and 
water are transferred to the extracellular compartment, 
which may induce changes in the circulating volume if 
Na+ and water are not correctly excreted. The kidneys 
regulate the balance of Na+ and water balances (extra-
renal losses are negligible under normal circumstances). 
In humans, about 25000 mmoles of Na+ in 180 L 
of fluid are delivered daily to the glomerular filtrate. 
These very large amounts of Na+ and fluid are almost 
entirely reabsorbed by the kidney, as urinary excretion 
is calibrated to match dietary intake. The bulk of the 
filtered load of sodium (around 60%) is reabsorbed in 
the proximal tubule; 25% is reabsorbed by the thick 
ascending limb (TAL); approximately 5% to 7% is 
reabsorbed along the distal convoluted tubule (DCT), 
and 3% to 5% along the connecting tubule (CNT) and 
the collecting duct (CD); the latter is composed of a 
cortical segment (CCD), an outer medullary part and 
an inner medullary part (IMCD). The distal part of the 
nephron as defined in this review encompasses the 
segments from the cortical TAL (cTAL) to the IMCD since 
these are all involved in the fine-tuning Na+ excretion. 
In these segments are found all sodium transporters in 
which mutations induce alterations of systemic BP. Not 
surprisingly, numerous hormones regulate the transport 
of Na+ in these segments. These regulatory systems 
involve the activation of various receptors among which 
the G-protein coupled receptors (GPCRs) represent an 
important component. 

In this review we 1/rapidly summarize the me-
chanisms of sodium transport in the distal nephron and 
2/describe the well-established regulatory mechanisms 
mediated by “classical” GPCRs as well as more recently 
described systems involving “novel” GPCRs. 

SODIUM TRANSPORT MECHANISMS IN 
THE DISTAL NEPHRON 
Transepithelial sodium reabsorption can take place 
either accoss tubular epithelial cells (transcellular route) 
or between cells (paracellular pathway). Transcellular 
Na+ reabsorption requires the successive crossing of the 
apical and basolateral membranes. At the basolateral 
membrane, the Na, K-ATPase generates the electro-
chemical gradient that drives Na+ entry at the apical 
membrane via different channels, cotransporters or 
exchangers. The specificity of ion transport in different 
nephron segments largely stems from the nature of the 
Na+-coupled transport systems, that are expressed at 
the apical membrane (Figure 1). Transcellular transport 
generates a transepithelial potential difference, which, 
can drive the paracellular transport of solutes and/or 
water depending on the water and ion permeability of 
intercellular junctions (for review see[2,3]).

Transport mechanisms in the cTAL
The TAL is a tight epithelium that actively reabsorbs 
about 25% of filtered NaCl. The apical entry of Na+ is 
mainly mediated by the electroneutral cotransporter Na/
K/2Cl (NKCC2), which is sensitive to furosemide (Figure 
1). The transcellular reabsorption of Na+ in this segment 
is coupled to the recycling of K+ at the apical membrane 
through a K+ channel (ROMK) and the reabsorption of 
Cl- at the basolateral membrane through Cl- channels 
(CLCKb). Altogether, these moves generate a positive 
transepithelial potential difference (PDte) of about 
+15 mV, that allows the reabsorption of monovalent 
and divalent cations through the paracellular pathway. 
The tight junctions of TAL cells are poorly permeable 
to anions, which limits chloride back-flux through the 
paracellular route[3]. Moreover, the transport of Na+, K+ 
and Cl- in the TAL cells is coupled and interdependent: 
when one of the carriers (NKCC2, ROMK or CLCKb) is 
inhibited or carries a loss-of-function mutation, transport 
across other transcellular and paracellular pathways is 
impaired. In humans, these mutations are responsible 
for Bartter syndrome, an inherited disease characterized 
by excessive loss of Na+, Cl-, water and accompanied 
by an abnormally high urinary excretion of Mg2+ and 
Ca2+[4]. Moreover, certain loss-of-function mutations 
of NKCC2 have been shown to protect against the 
development of hypertension[5].

Transport mechanism in the DCT
The DCT retain 5% to 10% of the filtered NaCl, have 
tight waterproof junctions and reabsorb Ca2+ and Mg2+ 
through the transcellular pathway. In mice and rats, the 
DCT is divided into two parts, each of which expresses 
different apical Na+ transporters the DCT1, expresses 
only the apical NaCl cotransporter NCC. As for the DCT2, 
it expresses both NCC and the epithelial sodium channel 
ENaC. As opposed to the rodent DCT, the human DCT 
is uniform; it has the same expression profile as the 
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murine DCT1[6]. Sodium reabsorption through NCC 
is electroneutral and sensitive to thiazide diuretics 
such as hydrochlorothiazide (HCTZ), whereas sodium 
reabsorption through ENaC is electrogenic and sensitive 
to amiloride.

In humans, NCC mutations inducing loss of function 
are responsible for Gitelman syndrome, which features 
hypokalemic metabolic alkalosis, hypomagnesemia 
and hypocalciuria[7]. In contrast, “gain-of-function” mut-
ations of kinases regulating NCC induce an increase in 
NaCl reabsorption and hypertension, as encountered in 
Gordon’s hypertension syndrome[8].

Transport mechanisms in CNT and CD
Unlike upstream nephron segments, the epithelia of the 
CNT and the CD are made of two cell types, known as 
principal cells (PC) and intercalated cells (IC) (Figure 
1) with specific and different functions. Until recently, 
the reabsorption of Na+ was attributed to PC whereas 

IC were thought to be involved in acid/base excretion. 
This dogma has been revisited these last few years, as 
discussed below. 

Transport mechanisms in the PC: PC constitute 
about 60% of CNT/CCD cells and express ENaC at 
their apical membrane. Na+ reabsorption across PC is 
electrogenic and necessary for K+ secretion (Figure 1). 
The terminal part of the CNT and the CCD can reabsorb 
water owing to the osmotic gradient generated in part 
by the tubular fluid dilution that occurs in the TAL as 
well as Na+ reabsorption in the CNT/CCD through ENaC. 
The transcellular reabsorption of water is mediated by 
apical aquaporin 2 channels (AQP2) and the basolateral 
aquaporin 3 and 4 channels (AQP3 and AQP4). It is 
generally accepted that there is a decreasing longitudinal 
gradient of Na+ reabsorption and K+ secretion along 
the CNT and CCD. Under basal condition, in in vitro 
microperfusion experiments, rodent CCDs do not ex-
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Figure 1  Schematic representation of the different sodium transport systems along the nephron. A: In TAL, the apical entry of Na+ is mediated by the NKCC2. 
At the basolateral side, the Na+ exits the cell through the NKA  and the Cl- through a channel of the CLC-K family; B: DCT consists of two different sub-structures, 
the DCT1 and the DCT2. In DCT1, the entry of Na+ and Cl- is mediated by the NCC and in DCT2, a ENaC is also involved. In both structures, the exit of Na+ and Cl- 
is mediated by the NKA and a CLC-K conductance; C: In the CD, the Na+ enters the principal cells through ENaC and exits through the NKA. The system is more 
complex in the B-intercalated cells. The apical entry of of Na+ and Cl- is mediated by the functional association between the pendrin, bicarbonate/Cl- exchanger (Pds), 
and NDBCE. The system is energized by the vacuolar proton pump (H+-ATPase) and the generation of bicarbonate mediated by a CA. The exit of Na+ and Cl- is 
mediated by an AE4 and a Cl--conductance, respectively. TAL: Thick ascending limb; NKCC2: Na+/K+/2Cl--cotransporter; NKA: Na,K-ATPase; DCT: Distal convoluted 
tubule; NCC: Na+/Cl--cotransporter; ENaC: Na+ channel; CD: collecting duct; Pds: Bicarbonate/Cl- exchanger; CA: Carbonic anhydrase; NDBCE: Na+-driven 
bicarbonate/Cl- exchanger; AE4: Anion exchanger.
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SODIUM TRANSPORT REGULATION IN 
THE DISTAL NEPHRON BY CLASSICAL 
GPCRS
In the distal nephron, the sodium transport is subject to 
numerous regulatory factors (endocrine, neuroendocrine 
and paracrine) that adjust the excretion of the cation 
to homeostatic needs, maintaining constant blood 
volume and BP. Among the different regulatory systems 
orchestrating the fine-tuning of the Na+ balance, those 
that entails the stimulation of GPCR are numerous. 
Some of them have been known for many years to 
interfere with Na+ reabsorption and their ligands are 
“classical” hormones of the Na+ homeostatic system. 
Thus, it is well known that angiotensin 2 and vasopressin 
have a stimulatory effect on sodium absorption all along 
the nephron through their respective GPCRs, whereas 
bradykinin, dopamine, endothelin, and PGE2 down-
regulate sodium absorption (for review see[2]). More 
recently, novel pathways regulating Na+ absorption 
have been reported. They involve new types of ligands 
(such as proteases, lipids, and small metabolites), and 
receptors that have not all been fully characterized. In 
the following part, we will describe both “classical” and 
“novel” regulatory pathways of the Na+ reabsorption in 
the distal nephron (Table 1).

“Classical” GPCRs that activates sodium absorption in 
the distal nephron
Vasopressin receptor V2: Vasopressin (AVP) is a 
peptide secreted by the hypothalamic nuclei cells and 
stored in the posterior pituitary. It is released into the 
blood stream under dehydration and cellular volume 
shrinkage. AVP acts on three subtypes of GPCRs: V1 (ex 
V1a), V2 and V3 (ex V1b). In the kidney, AVP triggers an 
increase in water and/or sodium reabsorption through V2 
receptors. V2 receptors are located at the basolateral cell 
membrane of the ascending limb and DCT segments. 
In the CD, they are specifically present in PC[19-21]. 
In all these cells, the V2 receptor is coupled to the Gs 
protein, which rapidly activates adenylyl cyclase (AC6 
and AC3 isoforms, chiefly), increases the formation of 
cAMP and induces the activation of PKA[22]. By this way, 
the activation of V2 receptor stimulates numerous Na+ 
transporters by phosphorylation. For instance, the Na, 
K-ATPase activity is enhanced by PKA activation[23]. In 
TAL and DCT cells, NKCC2 and NCC are also targets of 
PKA, which increases their membrane expression after 
AVP activation[24,25]. The stimulation of NKCC2 and NCC 
by AVP also involved intermediary kinases, such as 
STE20/SPS1-related proline-alanine-rich kinase (SPAK) 
and oxidative stress responsive kinase 1 (OSR1), and 
may be not solely due to a direct action of PKA on the 
transporters[26]. Recent studies have shown that AVP 
increases the abundance of phosphorylated SPAK and 
phosphorylated OSR1 in mTAL and DCT cells[21,27]. Thus, 
both SPAK and OSR1 could be important vasopressin 
second messengers. Interestingly, using SPAK-/- mice, 

hibit significant net Na+ or K+ transport[9,10]. This does 
not mean that there is no functional ENaC or ROMK 
at the apical surface of PC in the CCD. In fact, both 
channels have been found to be active by patch clamp 
experiments[11,12]. The channel activity is either not 
sufficient to trigger a net flux that can be measured by 
in vitro microperfusion experiments or is compensated 
by secretion processes that remain to characterized. 
Regarding chloride transport, it has to be noted that 
such a secretion pathway has been partially described; 
it involves the basolateral transporter NKCC1 localized 
in the B-type intercalated B cells of the CCD[13]. Finally, 
significant net fluxes of Na+, Cl- and K+ are measured 
in rat or mouse in vitro perfused CCD when animals are 
either submitted to a sodium-depleted diet or chronically 
treated with corticosteroids[9,10]. Therefore the CNT/CCD 
represents a functional “transport” reserve that can be 
recruited when Na+ reabsorption (hypovolemia) and/or 
K+ secretion (hyperkalemia) is needed[9,10]. 

In humans, a gain-of-function mutation of ENaC 
induces a constitutively active Na+ reabsorption in 
CNT and CD[14]. The continual passage of Na+ through 
the apical membrane then drives excessive K+ secre-
tion. Thus, patients with this mutation (which causes 
Liddle’s syndrome) develop severe early hypertension 
and hypokalemia[15]. Conversely, a loss-of-function 
mutation of the human ENaCα-subunit results in 
pseudo-hypo-aldosteronism 1 and is associated with 
urinary Na+ wasting, low BP (at least in children) and 
hyperkalemia[16]. 

Transport mechanisms in the type B IC: Based 
upon immuno-histochemical studies, there are at least 
four types of IC: Type A, type B, type non A-non B cells 
and bipolar cells. Types A (A-IC) and type B (B-IC) cells 
are traditionally involved in the regulation of acid/base 
balance. However, recent results demonstrate that B-IC 
play a role in the reabsorption of Na+ and Cl-[10]. These 
cells, which are found only in the CNT and the CCD 
and express the H+-ATPase pumps and Cl- channels 
(CLCK) at the basolateral membrane and the Cl-/HCO3

- 
exchanger pendrin (PDS) at the apical membrane. B-IC 
are known to secrete a high quantity of bicarbonate 
in response to metabolic alkalosis. Moreover, they are 
the only cells that reabsorb Cl- in the CNT/CCD. Even 
though the CNT and CCD do not express NCC, these two 
segments can mediate electroneutral, thiazide-sensitive 
sodium chloride absorption. Recently, Leviel et al[10], 
demonstrated a functional coupling between pendrin 
and a Na+-driven Cl-/HCO3

- exchanger (NDCBE), using 
transgenic mice models and in vitro microperfusion 
experients. This coupling results in net and electroneutral 
NaCl reabsorption in the CCD (Figure 1). More recently, 
Chambrey et al[17] showed that this system is not 
energized by Na, K-ATPase as it is the case in most cells 
but by the H+-ATPase. Na+ enters B-ICs via NDCBE and 
exits through the basolateral anion exchanger AE4, 
which is specifically expressed in this cell type[18]. 
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Cheng et al[28] showed that SPAK was important for 
NKCC2 activity in both mTAL and cTAL cells but was not 
essential for vasopressin-induced stimulation of sodium 
reabsorption. In the CCD, AVP activation of V2 elicits 
the phosphorylation of aquaporin-2 (AQP2) leading 
to its translocation to the apical membrane[22]. It also 
increases Na+ reabsorption by activating ENaC[29,30], as 
PKA phosphorylation leads to the inhibition of Nedd4-2, 
the ubiquitin ligase that promotes the endocytosis of EN-
aC[31,32]. Sodium reabsorption across the CD epithelium 
is essential for water absorption through aquaporins[33].

Angiotensin Ⅱ receptor AT1: Angiotensin Ⅱ (Ang
Ⅱ) is a hormone peptide of the renin-angiotensin-
aldosterone system (RAAS) that regulates BP and other 
physiological processes (for review see[34]). Circulating 
AngⅡ is produced by the proteolytic cleavage of an-
giotensinogen (which is continously produced by the 
liver) and involves two steps: (1) the production of 
angiotensin Ⅰ by renin, which is released by juxtaglo-
merular apparatus cells; and (2) the conversion of Ang
Ⅰ into AngⅡ by the angiotensin converting enzyme 
(ACE) that is produced by the lungs. Renin is the rate-
limiting factor that determines the levels of circulating 
AngⅡ such that the production and release of AngⅡ 
respond rapidly to hypovolemia[34]. AngⅡ can also be 
produced in various tissues like the kidneys and have 
different effects than systemic AngII (for review see[2]).

The blood level of AngⅡ is increased in some form 
of hypertension where it is involved in its development 
(see review[35]).

AngII binds to 2 subtypes of GPCRs called AT1 
(AT1a and AT1b in rodents) and AT2. AT1 isoforms are 
encoded by homologous genes, have the same affinity 
to different ligands, trigger the same signaling pathways 
and are located all along the distal nephron but AT1a 
is the predominant renal form. AT1 receptors are ex-
pressed at both apical and basolateral membrane[36-38] 

and mediate the known physiological and pathological 
actions of AngⅡ. These receptors are coupled to Gq/11, 
G12/13 and Gi/o proteins in rodents[39]. The main pathway 
triggered by AngⅡ involved Gq/11-mediated inositol 
phosphate/Ca2+ signaling. In the cTAL, AT1a receptors 
activate both the PLC/PKC/ERK and protein tyrosine 
kinase (PTK) Src pathways thereby enhancing calcium 
signaling and an increase in the activity of NKCC2[40,41]. 
Here too, the intermediary action of SPAK has also been 
proposed since AngⅡ infusion increased abundance of 
the phosphorylated forms of SPAK and NKCC2[42].

In the DCT, AngⅡ increases sodium reabsorption in 
both the DCT1 and DCT2 by binding to its AT1 receptor. 
Recent experiments have shown that the AT1a receptor 
induces an increase in NCC phosphorylation, abundance 
at the apical membrane and activity through the 
activation of WNK4 (with no lysine kinase 4), SPAK, and 
OSR1[41,43].

Both the apical and basolateral addition of Ang
Ⅱ can induce an increase in sodium reabsorption 
through ENaC in the rabbit CCD[44]. Using patch clamp 
on split open CCD, Mamenko et al[45], showed that Ang
Ⅱ activation of AT1 receptors had a double effect on 
ENaC: A rapid increase in the open probability of ENaC 
and a slower increase in the abundance of ENaC at the 
apical membrane. Interestingly, AT1 receptor-induced 
activation of ENaC was not dependent on calcium 
signaling in these cells. Instead, the AT1 receptor 
activated a Ca2+-independent PKC and triggered the 
NADPH oxidase pathway[45] (see for review[35]).

In the type B IC, activation of AT1 receptors en-
hances Cl- uptake by pendrin[46]. Pendrin activation 
and the subsequent increase in Cl- reabsorption are 
necessary for the full pressure effects of AngⅡ since 
pendrin knockout mice exhibit an attenuated BP 
response to this peptide hormone[46,47]. The signaling 
pathways between AT1 receptors and pendrin remain 
to be discovered, and AT1 receptors capacity to induce 
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Receptors G-proteins Cell location Final effector Effect on Na+ transport

Vasopressin receptor (V2R) Gs Basolateral Na, K-ATPase - AQP2 - NKCC2 - NCC - 
ENaC

Increase

Angiotensin Ⅱ receptors (AT) Gq/11 Apical/basolateral Na, K-ATPase - NKCC2 - NCC - ENaC - 
pendrin

Increase

Bradykinin receptor (B2R) Gq Basolateral Na, K-ATPase - NKCC2 - NCC - ENaC (??) Decrease
Endothelin receptors (ETA-ETB) Gi, Gq, Gs, Gα12/13 Apical/basolateral NKCC2 - ENaC - pendrin Decrease
α-adrenergic receptor (α-AR) Gi - Gq/11 Basolateral Na, K-ATPase (?) - NKCC2 - ENaC Increase (α1-AR)

Decrease (α2-AR)
β-adrenergic receptor (β-AR) Gs Apical/basolateral NKCC2 - NCC - ENaC - pendrin Increase
Prostanoïd receptors Gs – Gi Apical/basolateral NKCC2 - ENaC - pendrin Decrease (PGE2)

Increase 
Dopamine receptors Gs – Gi Basolateral Na, K-ATPase Decrease
Proteinase-activated receptor (PAR) Gq/11 Basolateral Na, K-ATPase - NKCC2 - ENaC - pendrin/

NDCBE
Increase

Sphingosine-1 phosphate receptor G12/13 - Gi- Gq ? ENaC Decrease
Nucleotide-like receptors (P2X-P2Y) Gq (P2X) Gi (P2Y) Apical/basolateral NKCC2 (?) - NCC - ENaC Decrease
Oxaloacetate receptor (OXGR1) Gq Apical Pendrin/NDCBE Increase

Table 1  Recapitulation of the G-protein coupled receptors families present in the the distal nephron

NDBCE: Na+-driven bicarbonate/Cl- exchanger; OXGR1: 2-oxoglutarate receptor 1; NKCC2: Na/K/2Cl.
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sodium reabsorption through NDBCE remains unknown. 
In summary, through the activation of AT1 receptors, 
AngⅡ induces an increase in Na+ reabsorption all along 
the distal nephron by activating apical Na+ entry through 
NKCC2, NCC, ENaC and the pendrin/NDCBE functional 
complex[35].

Catecholamine receptors: Catecholamines [adrena-
line, also called epinephrine (E), and noradrenaline, also 
called norepinephrine (NE)] mediate the sympathetic 
regulation of BP[48]. E and NE are synthetized by neurons 
and the adrenal gland[49]. Both cathecholamines act by 
binding to 9 different subtypes of adrenergic receptors 
(ARs) that belong to 3 different groups (α1-AR, α2-
AR or β-AR). All three classes of receptors contribute 
to the control of BP by acting on the central nervous 
system (CNS), the cardio-vascular system, and the 
kidney. In the latter organ, all segments of the nephron 
as well as juxtaglomerular granular cells are in contact 
with sympathetic nerve terminal extremities releasing 
noradrenaline[50]. Renal nerve activation enhances 
sodium reabsorption all along the nephron and promotes 
renin secretion. Conversely, renal denervation inhibits 
sodium retention and renin secretion (for review, see[51]).

a/α1-AR and α2-AR: Three molecular species of 
receptors α1-AR have been cloned: α1A-AR, α1B-AR, 
and α1D-AR[52]. In the TAL only α1B-AR and α1D-AR 
are expressed, and they are coupled to Gαq/11 proteins 
that activate PLC-β[53,54] and trigger the IP3/DAG/
PKC pathway[55,56]. In the CNT/CCD, all three α1A-AR 
are expressed[57] where their effects have not been 
determined. 

The α2-AR receptors (α2A-AR, α2B-AR, and α2C-
AR)[52], are coupled to Gi proteins and inhibit the 
formation of cAMP[58-61]. In the distal nephron, α2-AR is 
expressed in the TAL and CD with a higher abundance 
in the medulla[62]. In the rat cTAL, α2-AR activation has 
recently been shown to induce NO production via a 
PI3K/NOS pathway and to inhibit chloride absorption[63]. 
In the rat CCD, α2-AR activation inhibits AVP-induced 
cAMP production[64,65] and blunts the AVP-dependent 
stimulation of Na+ and water transport[66]. 

In the CCD, the activation of the α2A- and/or α2C-
receptors by catecholamines has a dose-dependent 
effect on ENaC activity[67]. At low concentrations, NE trig-
gers the inhibition of Na+ and water transport, whereas 
higher concentrations have the opposite effects. Since 
renal NE concentrations have never been measured 
precisely, one can only speculate that depending on the 
intensity of sympathetic activity, sodium transport could 
be either activated or inhibited along the nephron.

b/β-AR: Three subtypes of the β-AR receptors are 
known (β1-AR, β2-AR and β3-AR). In the distal nephron, 
β1-AR is expressed in the cTAL, at the apical pole of DCT 
cells, in all CNT cell types and preferentially in the IC 
of the CCD[68,69]. Using β1-AR or β2-AR knock-out mice 
models, Mu et al[70] demonstrated that the activation of 

β2-AR by isoproterenol but not that of β1-AR induces salt-
sensitive hypertension. β2-AR is expressed in the DCT 
and in the CD where its expression increases along the 
cortico-medullar axis[71]. No staining of β2-AR has been 
found in the rat TAL[71]. β-AR receptors are coupled to GS, 
they stimulate cAMP production by the adenylyl cyclase 
and induce the activation of PKA[72]. In the cTAL, β-AR 
activation elicits an increase in the expression of NKCC2 
at the apical membrane[73]. This increase is dependent 
on cAMP formation and PKA activation[73].

Using β1-AR knockout mice and β2-AR knockout mice, 
Mu et al[70] showed that in DCT NE induces an increase 
in NCC expression and phosphorylation through the 
activation of β2-AR. Terker et al[74], recently demonstrated 
that β-AR activation enhances NCC phosphorylation 
through the activation of oxidative stress-response 
kinase 1 OSR1 rather than through SPAK.

In the CCD, we found that β-AR activation leads to 
increased pendrin activity by triggering its translocation 
to the cell surface[75]. Furthermore, application of isopro-
terenol on in vitro microperfused mice CCD elicited 
rapid NaCl reabsorption. These results suggest that 
the CCD participates in adrenergic-dependent Na+ 
retention. The finding that β-AR activation enhances 
electroneutral Na+ reabsorption in both the DCT and CD 
is consistent with the results of Mu et al[70] showing that 
HCTZ, a specific inhibitor of NCC in the DCT and of the 
electroneutral pathway in the CNT/CCD, blunts the BP 
elevation observed under isoproterenol infusion and salt 
loading. Interestingly, in a more distal segment of the 
CD (i.e., the IMCD) β2-AR stimulation activates sodium, 
chloride and fluid secretion through a cAMP dependent 
pathway[76]. To our knowledge, the underlying mechanis-
ms remain unknown.

Altogether, these studies show that renal sympathetic 
nerves can deliver NE to the basolateral membrane 
of distal tubule cells. Interestingly, depending on the 
concentration of NE and on the type of receptors (α-AR 
or β-AR) that are activated, the sympathetic nervous 
system could increase sodium absorption either in all 
distal tubule cells or preferentially in a few cell types. 
More experiments are needed to define the exact 
mechanisms by which of NE acts in the distal nephron. 
Regarding all the SNS effects on kidney, it is now evident 
that renal sympathetic nerves play an important role in 
sodium balance (for review see[77]). 

Indeed, increased salt intake stimulates sympathetic 
activity in the kidney and in brain,. Moreover, the renal 
NE metabolism is modified in hypertensive rats[78] as 
well as in in obese patients with hypertension[79]. Renal 
denervation has been shown to prevent or attenuate 
hypertension in a wide variety of animal models of 
hypertension (for review see[51]). In humans, following 
successful clinical trials, the techniques of renal nerve 
ablation are now spreading in Europe[80]. However, 
recent clinical investigations on randomized renal 
denervation trials known as “symplicity HTN-3” have 
shown that renal denervation has limited efficacy[81,82]. 
These investigations, however, are subject to criticism 
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and more studies will be needed to assess the benefits 
of renal denervation[83].

“Classical” GPCR that inhibits sodium absorption in the 
distal nephron
Bradykinin B2 receptor: Bradykinins are autocrine 
and paracrine hormones that are generated in different 
tissues by the cleavage of kininogen by kallikrein (for 
review see[84]). Bradykinins, via their actions on the 
heart, blood vessels, and kidneys, play an important 
role in cardiovascular homeostasis (reviewed in[85]). 
Along with bradykinin receptors B1 and B2 (which are 
two GPCRs), bradykinins and kallikrein form the kinin/
kallilrein system (KKS).

In the kidney, all components of the KKS are pro-
duced in the distal nephron[86-88]. Kallikrein is a serine 
protease that is produced by DCT and CNT cells and 
secreted into the tubular lumen and extracellular space. 
Kininogen is produced by all distal nephron cells, which 
all express B2 receptors at their basolateral membrane 

In vitro experiments on rodent CCDs showed that 
kallikrein activates ENaC by cleaving its regulatory 
subunit γ[89] and that it directly inhibits the H,K-ATPase 
type 2[90]. Therefore, kallikrein that is secreted apically 
could simultaneously activate ENaC and inhibit the H, 
K-ATPase type 2[89,90]. Kallikrein that is secreted on the 
basolateral side is thought to act through bradykinin 
formation and B2 receptors coupled to Gq proteins. In 
the cTAL, B2 activation in turn activates the MAPK/ERK1,2 
signaling pathway and increases intracellular calcium 
concentrations like AT1 activation[40]. Surprisingly, NaCl 
reabsorption is inhibited following B2 receptor activation 
but enhanced following AT1 receptor activation[40]. The 
molecular mechanisms that allow the same transduction 
pathway to yield two opposite responses need to be 
determined in this segment. In CCDs perfused in vitro 
from DOCA treated rat, activation of B2 receptor sby 10-9 
mol/L bradykinin inhibits the electroneutral and thiazide 
sensitive NaCl reabsorption[91]. Meanwhile, neither the 
transepithelial potential, nor the K+ secretion is inhibited 
by B2 receptor activation, which clearly indicates that 
ENaC activity is not diminished under these conditions[91]. 
A higher concentration of bradykinin (10-7 mol/L) has 
been shown to lower the open probability (Po) of ENaC 
via the activation of the B2/Gq/11/PLC pathway[92]. A 
role of B2 receptors in inhibiting salt reabsorption is 
confirmed by the phenotype of B2 knockout mice, which 
exhibit salt-sensitive hypertension[93]. 

KKS is a complex system having the ability to either 
stimulate or to inhibit Na+ reabsorption. To understand 
these opposite effects, it is necessary to consider the 
physiological context in which this system is triggered. 
For instance, KKS is known to be strongly upregulated 
by a high dietary K+ intake, a condition under which the 
levels of AngII and renin are low. The overall action of 
KKS in the distal nephron would then favor K+ secretion 
and limit excessive Na+ retention: Firstly, the inhibition 
of Na+ reabsorption in the cTAL would increase the 
delivery of fluid and Na+ to the distal nephron; secondly, 

the direct role of luminal kallikrein on ENaC and the H, 
K-ATPase would favor K+ secretion by stimulating its 
excretion (through both ROMK and MaxiK channels) 
and inhibiting its retention. In other situations, for 
instance when salt intake is increased, the stimulated 
KKS stimulation would inhibit the electroneutral (at low 
concentrations of bradykinin) or the electrogenic (at high 
concentration of bradykinin) Na+ reabsorption pathways. 
This may explain why the absence of one component of 
the KKS induces salt-sensitive hypertension (for review 
see[94]). More investigations are needed to understand 
how the renal effects of KKS are orchestrated to favor 
either K+ secretion or Na+ secretion, two apparently 
antagonistic situations.

Endothelin receptors ETA and ETB: Endothelin 1 
(ET-1) is an endothelial cell-derived peptide that is the 
most potent vasoconstrictor of the body[95]. ET-1 plays 
important roles in the physiology and physiopathology 
of all organs and is an important factor in the control of 
sodium homeostasis and BP (reviewed by[96]). There are 
three different endothelins (ET-1, ET-2 and ET-3), the 
first of which, (ET-1) has been the most studied. The 
plasma levels of ET-1 are lower than its tissue levels. 
Moreover, ET-1 that is produced by renal tubular cells is 
essentially secreted at the basolateral pole. This is why 
ET-1 is considered to be a paracrine/autocrine hormone.

ET-1 binds to two GPCRs known as the ETA and 
ETB receptors[97,98]. Almost all cells express ETA and/or 
ETB receptors: In the nephron, ETB is the predominant 
endothelin receptor. These receptors are coupled to 
many different G proteins: Gi, Gq, Gs, and Gα12/13

[99,100].
In the rat cTAL, ET-1 activates basolateral ETB rece-

ptors, which triggers the production of NO and the 
subsequent inhibition of NKCC2[101,102], leading to a 
reduction in transepithelial Cl- and Na+ fluxes. However, 
ET-1 does not inhibit the AVP-stimulated cAMP accumu-
lation in the rat cTAL[103,104]. To our knowledge, the roles 
of ET-1 and ETB in the DCT have not been investigated. 
In contrast, the effects of ET-1 and ETB in the CD have 
been extensively studied. CD cells, particularly those in 
the inner medulla produce more ET-1 than any other 
nephron cell. ET-1 decreases Na+ reabsorption in the 
isolated CCD and the IMCD[105,106]. As opposed to finding 
in the cTAL (see above), ET-1 triggers the inhibition 
of the AVP-stimulated chloride transport in the CCD 
through PKC activation[105]. In addition to counteracting 
the effects of AVP, ET-1 also inhibits ENaC activity 
through both MAP kinase-dependent and NO-dependent 
pathways[107]. ETB activation has functional consequences 
on IC. Indeed, in IC-A, it activates H+-ATPase and in 
IC-B, it reduces pendrin activity (for review see[108]). 

Interestingly, ET-1 production by CD cells seems to 
be regulated by the extracellular fluid volume (ECFV) 
status (for review see[96]). Mice with a specific deletion of 
the ET-1 gene in the CD are hypertensive under normal 
conditions and develop salt-sensitive-hypertension[96]. 
These observations could reflect an increase in sodium 
reabsorption in the CD but further experiments are need-
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ed to confirm this hypothesis. Several animal models 
of hypertension are, in fact, associated with increased 
vascular ET-1 synthesis (for review see[109]), which may 
be understood as a compensatory mechanism to try to 
reduce BP[96].

Prostanoid receptors: Prostaglandins are lipid 
mediators generated by cyclooxygenase (COX) that 
metabolizes arachidonic acid. The cellular concentration 
of COX-derived prostaglandins is modulated by several 
extracellular and intracellular factors. Prostaglandins have 
many effects in pain, inflammation, cell proliferation and 
body homeostasis. Signaling prostaglandins are PGE2, 
PGI2, PGF2, PGD2 and thromboxane A2 (TxA2). Prostag-
landins are rapidly degraded which limits the scope of 
their action to autocrine and paracrine functions[110]. 
Prostaglandins act on nine specific prostaglandin rece-
ptors encoded by nine different genes. All are lipid-
like GPCRs: Prostaglandin D2 receptor 1 and 2 (DP1 
and DP2); Prostaglandin E receptor 1 to 4 (EP1-EP4); 
Prostaglandin F receptor (FP); Prostaglandin I2 receptor 
(IP) and thromboxane A2 receptor (TxA2R). The kidney 
expresses all four EP receptors, the FP receptor and 
TxA2R (for review see[111]). 

In the cTAL, EP receptors that bind PGE2 have 
been reported to antagonize the action of AVP[112]. In 
this segment, EP3 is coupled to Gi and the presence 
of PGE2 was shown to inhibit AVP-induced cAMP accu-
mulation induced by AVP and therefore to blunt the 
NaCl reabsorption[112]. Moreover, EP3 activates a Rho-
kinase/PKC/ERK pathway that inhibits the basolateral 
potassium channels. Since potassium recycling at the 
basolateral membrane is necessary for Na,K-ATPase 
function, inhibition of these channels is sufficient to 
reduce Na+ reabsorption all along the cTAL[113]. As for the 
CNT/CD, these segments express all four EP receptors. 
In the rabbit CCD, the use of specific agonists and 
antagonists demonstrated that PGE2 activation of EP1 
inhibits ENaC through a calcium signaling pathway[114]. 
In other studies, PGE2 has been shown to induce the 
inhibition of Na+ reabsorption by decreasing the amount 
of cytosolic cAMP through a Gi coupled receptor, thought 
to be EP3[115]. Recent studies have shown that increases 
in luminal flow rate activate the release by epithelial cells 
of PGE2 in the lumen of rabbit CCD perfused in vitro. 
The prostaglandin secretion is dependent on calcium and 
MAP-kinase signaling. The flow-dependent production 
of PGE2 activates luminal EP receptors and triggers the 
inhibition of Na+ reabsorption[116]. In the rabbit CCD, 
Chabardès et al[112] also reported that PGE2 antagonized 
the effects of AVP, as seen in the cTAL. However, this 
effect was not observed in the rat CCD[112].

Investigation of the regulatory system involving 
prostaglandin and their receptors has led to the identifi-
cation of a cross-talk between the intercalated and PC 
of the CCD (see below)[117].

FP receptors are present in rabbit DCT cells and CCD 
PC where their activation was shown to inhibit sodium 
and water reabsorption[118]. However, nothing is known 

regarding the effect of FP activation in mice or rats.
Finally, the thromboxane A2 receptor is localized in 

the TAL segment where it is activated by a peroxidized 
derivative of PGF2, 8-iso-prostaglandin-F2α (8-iso-
PGF2α)[119]. In the kidney, 8-iso-PGF2α induces vasocon-
striction, which may impact renal blood flow[120]. In the 
TAL, TxA2R activation stimulates PKA and induces an 
increase in chloride reabsorption across NKCC2[121]. 
Increased concentrations of 8-iso-PGF2α and other 
isoprostanes have been observed in both the urine 
and plasma of hypertensive subjects. Enhanced NaCl 
retention in response to 8-iso-PGF2α may contribute to 
the pathogenesis of hypertension[121].

Dopamine receptors: Dopamine is a catecholaminergic 
neurotransmitter necessary for the function of neurons. 
It is involved in many different physiological functions 
related to CNS as well as peripheral organs or tissues[122]. 
In the kidney, proximal cells expressing dopamine 
decarboxylase produce dopamine from the precursor 
L-dihydroxyphenylalanine. Dopamine is then released 
by cells at the apical and basolateral poles possibly 
by multiple amino acid transporters[123]. Dopamine is 
subsequently eliminated either by urine excretion or 
methylation and deamination. Dopamine concentrations 
are 1000-fold higher in kidneys (nmol/L range) than in 
plasma (pM range)[124,125], and increase even more after 
sodium loading[126,127]. As described below, dopamine 
modulates the renal Na+ transport through an autocrine 
or paracrine pathway[128].

Dopamine binds to five different receptors (D1R to 
D5R) encoded by five different genes classified into D1-
like coupled to Gs proteins (D1 and D5) and D2-like 
coupled to Gi/o proteins (D2, D3, and D4) subtypes[129]. 
Since the two receptor subtypes signal through different 
G proteins and are present in the kidney, one might 
expect dopamine to have opposite effects depending on 
the receptor subtypes it binds to. However, dopamine 
has been reported to inhibit Na+ transport at multiple 
sites along the renal tubule by acting on major Na+ 
transporters[130].

In the distal nephron, D3 is the only dopamine 
receptor expressed in the cTAL but its role in this seg-
ment is not known. In fact, D1-like receptors agonists 
have been shown to down-regulate Na, K-ATPase 
activity in the mTAL, but the cTAL has not been proven 
to be sensitive to dopamine[131]. The DCT and CNT/CCD 
express all 5 dopamine receptors (see[132] for review). 
In the CCD, D1-like receptors reduce activity of Na, 
K-ATPase through a cAMP/PKA pathway. Moreover, 
phospholipase A2 (PLA2) stimulation is necessary to 
inhibit the pump[133]. This inhibitory pathway has been 
described in the proximal tubule[134,135].

Vasopressine and aldosterone effects have been 
shown to be antagonized by the D4 receptor in the 
CD[136]. More recently, a D2-like receptor agonist was 
reported to induce the inhibition of basolateral potassium 
transporters Kir4.1 and Kir5.1. Given that these channels 
are essential for K+ recycling and maintaining the 
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basolateral membrane resting potential, their inhibition 
induces a decrease in sodium reabsorption[137].

Recent reviews clearly delineate the antihypertensive 
role of dopamine and dopamine receptors[124,138]. For 
instance, renal dopamine production is decreased in 
some cases of hypertension and some human popu-
lations (African-American, Japanese) do not raise their 
renal production of dopamine in response to a NaCl or 
protein load. This may contribute to the development 
of salt-sensitive hypertension in these particular ethnic 
groups[139]. The observation that D3-/- mice have a 
diminished ability to excrete an acute or chronic NaCl 
load, leading to the expansion of ECFV support the 
idea that the renal dopamine pathway regulate BP 
(see[140] for review). However, in patients with essential 
hypertension or in hypertensive animal models, D1-like 
receptor agonists fail to induce natriuresis[141]. 

REGULATION OF SODIUM TRANSPORT 
IN THE DISTAL NEPHRON BY “NOVEL” 
GPCRS
“Novel” GPCR that activate sodium absorption in the 
distal nephron
Proteinase-activated receptors: The example of 
proteinase-activated receptors 2: Proteases play 
important roles in the regulation of sodium transport in 
the distal nephron and BP, by stimulating the maturation 
of hormones or through their direct interactions with ion 
transporters (see above). In addition, proteases act by 
activating specific receptors of the so-called protease-
activated receptor family (PAR).

PARs are activated trough the proteolytic cleavage 
of their N-terminal domain. This cleavage unmasks a 
peptide sequence that binds to the inner binding site 
and activates the receptor. It is possible to “artificially” 
activate these receptors by using agonist peptides that 
have the same sequence as the masked ligand[142,143]. 
For instance, the design of human- and mouse-specific 
agonists of PAR2[144] has enabled investigators to eluci-
date the particular role of PAR2 in systems that express 
many PARs. 

The PAR family consists of 4 members (denoted 
PAR1 to PAR4) that are activated by different pro-
teases. PAR1 and PAR3 are exclusively activated by 
thrombin[145,146]. PAR4 can be activated by thrombin 
and trypsin[145,147]. PAR2 is fully insensitive to thrombin 
but activated by trypsin and other serine proteases[148]. 
It can also be activated by cysteine proteases such as 
Derp-1[149] and be disabled by certain serine proteases 
(e.g., cathepsin-G) witch cleave the N-terminal domain 
of the receptor beyond the peptide ligand[142]. PAR2 is 
expressed in all tissues tested so far. In the kidney, PAR2 
is expressed in epithelial, mesangial, and endothelial 
cells (ECs) but also in interstitial fibroblasts and infla-
mmatory cells that invade the kidney[150].

PAR2 is involved in inflammatory responses, and 
it plays a coordinating role in all inflammation steps. 

PAR2 activation triggers a specific response in each cell 
type it is expressed in: The relaxation of blood vessels, 
increased vascular permeability, granulocyte infiltration 
and leukocyte adhesion, the activation of the production 
of cytokines IL-6 and IL-8, and finally the transmission 
of pain from nerve cells[151]. In the kidney, PAR2 is 
involved in the renal inflammation that is observed in 
IgA nephropathy[152] and crescent glomerulonephritis[153]. 
In addition, PAR2 activates monocyte chemo-attractant 
protein-1[154], which stimulates the production of IL-6 
and IL-8 in renal tubular cells[155]. In addition, PAR2 has 
been shown to modulate substrate and ion transport in 
many epithelia (lungs, gastro-intestinal tract, lacrimal 
and salivary glands)[156,157].

PAR2 is expressed along the entire nephron but at 
higher levels in the distal nephron[158,159]. Using in vitro 
microperfusion of rat and mouse renal tubules, we first 
reported that PAR2 may activate Na+ reabsorption in 
the cTAL (Figure 2). We showed that PAR2 is expressed 
at the basolateral pole of cTAL cells and is probably 
coupled to a Gq/11 protein, since it induced calcium 
signaling and activated a PLC/PKC/ ERK1,2 pathway. This 
latter pathway induces in turn the stimulation of Na, 
K-ATPase activity and an increase in the paracellular 
permeability to sodium. Interestingly, the PAR2-induced 
increase in sodium reabsorption was partly related to a 
rise in the apparent affinity of Na, K-ATPase to sodium. 
The latter effect was induced by another signaling 
pathway involving PLC and a calcium-insensitive PKC 
that did not activate ERK1,2 phosphorylation[158]. We next 
characterized the role of PAR2 in mouse and rat CCDs, 
where it is expressed at the basolateral membrane 
of ICs and PCs (Figure 3). PAR2 triggered calcium 
signaling in both types of cells and induced an increase 
in the maximum Na, K-ATPase transport rate (Vmax) 
through ERK phosphorylation. Under our experimental 
conditions, PAR2 increased sodium reabsorption through 
ENaC only slightly. This could be explained by the 
fact that the ERK pathway inhibits the apical sodium 
channel[160]. The increase in sodium reabsorption induced 
by PAR2 activation stemmed mostly from the thiazide-
sensitive, electroneutral NaCl reabsorption pathway of 
the B-IC, which was found to be dependent on ERK 
phosphorylation. Using Na-depleted PAR2-/- mice, we 
showed that PAR2 activation was necessary to induce 
transport across the electroneutral NaCl reabsorption 
pathway of the B-IC. Indeed, compared to control mice, 
PAR2-/- mice exhibited excessive and rapid renal Na+ loss 
during sodium depletion and developed hypotension[159].

This hypotension cannot result from the absence 
of vascular PAR2 effects because in ECs, PAR2 triggers 
the production of NO, thereby inducing vasodilation and 
decreasing BP[161-163]. Proteases that cleave PAR2 at the 
surface of distal nephron cells in response to sodium 
depletion have not yet been identified. They could 
include serine proteases that are secreted close to PAR2. 
A membrane-bound serine protease such as matriptase 
MT-SP1 (which is encoded by the gene St14) could 
be a good candidate since it is one of the rare serine 
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proteases that has been shown to activate PAR2 in 
vivo, at the surface of ectoderm cells during neural tube 
closure[164]. Moreover, matriptase is expressed in human 
CD cells[165]. Further investigations have to be carried out 
to identify the protease(s) that activate(s) renal PAR2 in 
vivo.

In light of its effects on Na+ reabsorption, over-
activation of PAR2 in the kidney could lead to inap-
propriate sodium retention and hypertension. Two 
observations strengthen this hypothesis. First, the PAR2-
encoding gene (coagulating factor Ⅱ receptor like 1; 
F2RL1) is localized in a region of the genome associated 
with low renin hypertension in humans (q13 position on 
the fifth chromosome). Interestingly, f2rl1 is localized 
in a region rich in polymorphisms in the Lyon rat (q12 
region on the 2nd chromosome), which is a model of 
low renin hypertension[166,167].

As mentioned above, PAR2 is also involved in the 
inflammatory response, a condition known to be related 
to the development of hypertension[168]. Macrophages 
and other inflammatory cells secrete numerous prot-
eases that can activate or disable PAR2: Granzyme 
B, Elastase, tPA, plasmin, Cathepsin G and kallikrein 
2, 12 and 4[169]. PAR2 could therefore play a role in 
inflammation-induced hypertension. Lohman et al[170] 

designed the first bio-compatible molecule capable of 
inhibiting PAR2. This molecule, called GB88, has been 
shown to reduce inflammation and cardiovascular 
damage triggered by a high fat diet in rats. Moreover, 
GB88 significantly diminishes BP in these animals[171]. 
Further investigations are needed to determine whether 
renal PAR2 is implicated in the BP-lowering effects of 
GB88.

α-Ketoglutarate receptor OXGR1: α-Ketoglutarate 
(αKG) is a metabolite of the Krebs cycle and may serve 
as a cofactor for many enzymes. Moreover, αKG is 
the ligand of the 2-oxoglutarate receptor 1 (OXGR1), 
a GPCR coupled to Gq and mainly expressed in renal 
distal tubules, in the pendrin-positive cells (type B 
IC)[172]. αKG is reabsorbed in the proximal nephron 
and TAL after glomerular filtration. This reabsorption is 
stimulated by acidosis, which, therefore, decrease αKG 
urinary excretion. Conversely, base loading stimulates 
αKG secretion by the proximal segments, leading to an 
increase of its urine excretion[173-175]. Since αKG is not 
reabsorbed after the TAL segments[173], modifications 
of its urine amount are proportional to variations 
occurring in the lumen of distal nephron. By comparing 
wild type mice and OXGR1-/- mice, we[176] showed that 
apical but not basolateral αKG acts through OXGR1 in 
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Figure 3  Signalling pathways trigger by protease-activated receptor 2 
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CNT/CCD type B IC to stimulate HCO3
- secretion and 

NaCl reabsorption. Our metabolic studies indicate that 
urinary αKG levels change very rapidly under acute 
acid-base stress. It is well known that acute acidosis 
activates, whereas alkalosis inhibits, NaCl reabsorption 
in the proximal tubule and ascending limb[177]. Since 
αKG concentration in the CNT/CCD decreases in acute 
acidosis and increases in acute alkalosis, αKG/OXGR1 
could be considered as a paracrine system allowing 
proximal and distal parts of the nephron to communicate 
(Figure 4). Similarly, this communication system bet-
ween proximal and distal tubule may serve to set the 
bicarbonate excretion by B-type IC under either acute 
acidosis or alkalosis. This system is sufficiently sensitive 
and rapid to respond to the daily variations in the dietary 
acid-base load as well as modifications of the metabolic 
production of acid and base.

Another recent study highlights the importance of 
the αKG/OXGR1 paracrine system[178]. This study reports 
that αKG/OXGR1 mediates the adaptation of the CNT/
CCD to the down-regulation of NCC in the DCT in SPAK-

null mice. In these mice, Oxgr1 expression is increased 
but remains exclusively localized in pendrin-positive 
cells, the number of these cells being strikingly increased 
in the CNT/CCD. Interestingly, in the proximal tubule of 
these mice, sodium transporter expression is augmented 
but the expression of OAT1 (Slc22a6, that transports 
αKG), is down-regulated. Moreover, the expression of 
glutaminase and glutamate dehydrogenase, which are 
essential for ammoniagenesis and αKG production, is 
up-regulated in the proximal tubule. This should raise 
αKG production and secretion by proximal tubule cells 
and elevate luminal αKG concentration in SPAK-null 
mice, which is actually observed. Alkalosis is one of the 
consequences of NCC down-regulation. SPAK-null mice 
develop alkalosis, which could stimulate the αKG/OXGR1 
paracrine system. The investigators postulated that 
the αKG/OXGR1 paracrine system may be activated 
by AngII, since this hormone stimulates the metabolic 
pathways that enhance ammoniagenesis and αKG 
formation in proximal tubule cells[179]. This system may 
be of particular importance to help restoring Na+ balance 
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and BP in hypovolemic conditions[178].

“Novel” GPCR that inhibit sodium absorption in the 
distal nephron
Sphingosin-1-phosphate receptors: The first step 
in the synthesis of sphingosine-1-phosphate (S1P) is 
the hydrolysis of sphingomyelin (a component of cell 
membranes) into ceramide by sphingomyelinases. 
Ceramide is then hydrolyzed by ceraminidases to form 
sphingosine, which is in turn phosphorylated within 
the cell by sphingosine kinase SphK, an enzyme that 
comes in two isoforms (SphK1, SphK2), to form S1P. 
The intracellular concentration of S1P is maintained 
constant by the recycling of S1P into sphingosine by 
two sphingosine phosphatases and/or the degradation 
of S1P by a sphingosine lyase[180]. The major source 
of blood S1P is thought to be the red blood cells, 
vascular ECs, and activated platelets[181,182]. Plasma S1P 
concentration varies from 200 nmol/L to 900 nmol/L 
in humans and rodents[183]. In this compartment, the 
majority of S1P is bound to serum proteins such as high 
density lipoprotein and albumin[184]. S1P is involved in 
many different cellular processes from proliferation to 
regulation of tight junctions, etc.[185,186]. S1P may act 
directly upon molecular targets in the cytosol or nucleus 
to modulate gene expression, but S1P can also act as 
an extracellular signaling molecule since specific S1P 
membrane transporters allow it to be extruded into the 
extracellular compartment[187].

Sphingosin-1-phosphate is the ligand of a family of 
5 GPCR, denoted S1P1-5[188]. S1P1, S1P2, and S1P3 are 
ubiquitously expressed, whereas S1P4 and S1P5 exhibit 
more restricted distribution (lung, lymphoid system and 
brain). S1P1 receptors are exclusively coupled to Gi/o; 
they can activate Akt and Rac and down-regulate PKA 
by inducing a decrease in cAMP cytosolic concentration. 
S1P2 and S1P3 receptors are most efficiently coupled 
to G12/13, leading to Rho activation, and to Gq, thereby 
activating the PLC/PKC/calcium signaling pathway[183]. 

Recently, the expression of SphK1 as well as S1PRs 
was demonstrated in whole kidney and in isolated 
renal cells. In the rat, S1P1-3 are more abundant in 
the medullary than in the cortical CD[189]. The cellular 
localization (i.e., apical or basolateral) remains uncertain 
to date. Preliminary results from in vitro microperfusion 
of mouse CCDs indicate that S1P administration induces 
a functional response, suggesting that S1P receptors 
are expressed at the basolateral side of the CCD cells 
(unpublished observation by Morla L).

Intravenous and intrarenal infusions of S1P lead to 
renal vasoconstriction and cause natriuresis and diure-
sis despite a reduction in renal blood flow. Moreover, 
these effects have been shown to stem from both 
S1P1 activation and down-regulation of the AC/PKA 
pathway[190]. Interestingly, the effects of S1P1 activation 
on sodium and water excretion are additive to those 
of methylisobutylamiloride, furosemide, and HCTZ 
-which respectively inhibit apical Na+ transporters in 
the proximal tubule, cTAL, and DCT/ CNT/CCD- but not 

to those of amiloride, a specific inhibitor of ENaC. This 
suggests that thenatriuretic and diuretic effects of S1P1 
stem from PC. Finally it can also be noted that a S1P1 
antagonist has anti-natriuretic properties[189].

The main characteristics of glomerulonephritis 
(proliferation of mesangial cells, stimulation of matrix 
production and inflammation) may involved the SphK1/
S1P signaling system. Indeed, many studies have 
shown that S1P1, S1P2, and S1P3 are involved in inflam-
mation and fibrosis in the glomerulus and proximal 
tubule[191-193]. However, so far, investigation of the specific 
pathophysiological contribution of each S1P receptor and 
SphK subtypes are not sufficiently selective and potent 
to yield clear-cut answers as to which of these should be 
targeted for treatment[194].

The recent study of Wilson et al[195] suggests that 
SphK1 is necessary for AngII-induced calcium signaling 
in isolated vascular smooth muscle cells and that store-
operated calcium channels represent the exclusive 
intracellular target of SK1/S1P. Moreover, it shows that 
SphK1-/- mice do not develop hypertension following the 
infusion of angiotensin, suggesting its putative role in 
the AngII-induced hypertension[195].

Purinergic receptors (P2Y): Extracellular ATP and 
other nucleotides constitute local, intra-renal factors 
that regulate kidneys function. These nucleotides are 
secreted by all tubular cells on both apical and baso-
lateral sides, either by exocytosis of nTP-filled vesicles 
or by specific nTP channels. ATP release occurs under 
mechanical stimulation. Cells express at their apical 
membrane a primary cilium that senses the flow rate. 
When luminal flow rises, the bending of the cilia is 
sufficient to induce ATP release at both poles of epithelial 
cells. ATP and other nucleotides can also be secreted 
under cell volume enhancement[196,197]. 

To date, seven P2X (P2X1-7) and eight P2Y (P2Y1,2,4,6,11-14) 
receptors have been identified. P2X are ligand-gated 
ion channels and P2Y are GPCRs. Since this review is 
primarily focused on GPCRs, we do not discuss here the 
role of P2X receptors in the distal nephron. Most P2Ys 
are coupled to Gq and their stimulation leads to the 
activation of PLCβ and intracellular calcium signaling. 
The P2Y12-14 receptors may form a subfamily, as they 
appear to be coupled to Gi/o and their stimulation triggers 
the inhibition of the AC/PKA pathway[198]. Many of these 
receptors subtypes are expressed along the nephron 
on both apical and basolateral cell membranes. Each 
nephron segment bears a specific combination of P2Y 
and P2X and these combinations vary from one species 
to another[199].

Reviews of recent studies of transgenic anima-
ls[198,200-202] indicate that P2Y2 plays an important role in 
sodium and water handling by the kidney. 

P2Y2 receptors are expressed in cTAL[203], mDCT[204] 
and CD cells[205-207] and are generally found at apical and 
basolateral membranes, where their activation induces 
calcium signaling. 

NKCC2 abundance and furosemide-induced natriu-
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resis are both higher in P2Y2
-/- mice, which suggests 

that P2Y2 receptors are an important modulator of 
sodium absorption in the cTAL; however their effects on 
sodium transport in the cTAL have not been assessed 
directly[199].

In the CNT/CCD of P2Y2
-/- mice, the open probability 

(Po) of ENaC is higher but its apical expression in PC 
is reduced. The activation of P2Y2 by extracellular ATP 
should therefore inhibit ENaC activity. This effect is 
mediated in part by stimulation of PLC, which hydrolyzes 
PIP2 into IP3 and DAG. Since PIP2 binding to the β 
subunit of ENaC increases its open probability, reducing 
the amount of PIP2 in the apical membrane leads to a 
down-regulation of ENaC activity[201]. In addition, P2Y2 

activation raises cytosolic (Ca2+) through IP3-mediated 
Ca2+ release from internal stores. ENaC is indirectly 
inhibited by intracellular Ca2+, for instance through the 
Ca2+-specific activation of Nedd4.2, an ubiquitin ligase 
that promote the endocytosis of ENaC[201]. In mDCT cells, 
a recent study showed that P2Y2 receptor activation and 
calcium signaling causes a decrease in NCC expression, 
owing at least partly to the destabilization of NCC 
mRNAs[208].

Purines and P2Y2 seem to be part of a negative 
feedback system that is activated to protect nephron 
cells from oxidative stress under high hormonal stimul-
ation[209]. AVP, for instance, stimulates ATP release and 
P2Y2 activation in the cTAL and CCD[210]. Moreover, 
studies of P2Y2

-/- mice have revealed the importance 
of this receptor in sodium homeostasis and BP main-
tenance, as these mice exhibit an increase in BP[211]. 
Interestingly, under aldosterone infusion and salt loading, 
the activity of ENaC and the salt-induced rise in BP are 
greater in P2Y2

-/- mice than in WT mice. Thus, P2Y2 are 
important modulators of the action of aldosterone in the 
distal nephron, as they mediate the suppression of ENaC 

activity observed in WT mice under a high salt diet and 
mineralocorticoid infusion, a phenomenon known as the 
“aldosterone escape”[201].

Interestingly, Zhang et al[212] showed that the blunted 
aldosterone escape in P2Y2

-/- mice is associated with an 
impaired increase in PGE2 and NO urine excretion under 
high salt loading and aldosterone infusion. These results 
suggest that P2Y2 are important activators of the cellular 
production of paracrine and autocrine messengers known 
to down-regulate the main sodium transporters in the 
nephron[213]. Gueutin et al[117] recently found that mouse 
CCDs are able to release PGE2 in a pathophysiological 
situation (Figure 5). Their study showed that ATP is 
released from B-type IC when H+-ATPase is down-
regulated, and that luminal ATP activates P2Y2 receptors 
and calcium signaling in principal and IC. Interestingly, 
activation of the purinergic receptor induces the release 
of PGE2, which is known to inhibit sodium and water 
absorption in the distal nephron through the activation 
of EP1, EP3 and EP4 as described above. The effects of 
ATP through P2Y2 activation or those of PGE2 through PE 
receptors on the Na+/Cl- electroneutral transport system 
in IC remain unknown[117].

CONCLUSION
This review recapitulates the “classical” and “novel” 
signaling pathways mediated by GPCRs that regulate 
Na+ reabsorption in the distal nephron. The number 
of GPCRs that have been found to stimulate or inhibit 
the reabsorption of Na+ in the distal nephron is stri-
kingly large. However, the GPCRs discussed here may 
only be the tip of the iceberg. Indeed, by analyzing 
transcriptomic data, Pradervand et al[214] have identified 
the expression of 78 different GPCRs in the mouse 
DCT/CNT and CCD, many of which have not yet been 
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Figure 5  Cross-talk between principal and intercalated cells, example of the inhibition of the vacuolar proton pump. In this particular situation, the ATP is 
released by the B-intercalated in the lumen cell through connexion and then binds and activates the P2Y2 receptors. This activation leads to prostaglandin (PGE2) 
synthesis and release in both side of the cells. It binds to the EP receptors in principal cells, inducing, then, the inhibition of the Na+ reabsorption. NDBCE: Na+-driven 
bicarbonate/Cl- exchanger; PGE2: Prostaglandin; B-IC: Type B intercalated cells.
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attributed a role in the kidney. Some of the most abun-
dant GPCRs found by these investigators are known 
to be involved in the effects of chemokines, in the 
development of the CNS, in the immune system, or in 
the recognition of pheromones. The exploration of their 
role in the distal nephron and the potential discovery 
of their impact on Na+ transport represent a wide-open 
field of new regulators of extracellular volume and BP.

In our opinion, the next important challenge is not 
only to discover new regulatory processes but also 
to understand how they are linked. As shown in this 
review, the activation of some GPCRs induces the 
stimulation of Na+ reabsorption whereas others trigger 
the inhibition of Na+ transport. The fine-tuning of 
renal Na+ excretion clearly requires the simultaneous 
activation of different pathways (even with antagonistic 
effects) in the distal nephron. Moreover, depending 
on the physiological context (e.g., the amplitude and 
duration of the stimulus), these different pathways are 
activated or inhibited to varying extents. Two scenarios 
can be imagined: (1) the global response involving the 
activation of many GPCRs is orchestrated by an initial 
conductor or a few conductors, such as the RAAS or 
CNS; and (2) all the systems controlled by GPCRs are 
assembled into a complex network consisting of positive 
and negative feedback loops acting in series. The 
existence of such a connected network would explain 
why several models characterized by a single GPCR 
deficiency (a given GPCR knockout mice, for instance) 
exhibit strong alterations in sodium handling, since the 
absence of one component would perturb the entire 
network.
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