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4 LIP6, Université Pierre et Marie Curie, Paris (France)
franck.petit@lip6.fr

Abstract

A snap-stabilizing algorithm, regardless of the initial configuration of the system, guarantees that it always be-
haves according to its specification. We consider here the locally shared memory model. In this model, we propose the
first snap-stabilizing Propagation of Information with Feedback (PIF) algorithm for rooted networks of arbitrary con-
nected topology which is proven assuming the distributed unfair daemon. Then, we use the proposed PIF algorithm
as a key module in designing snap-stabilizing solutions for some fundamental problems in distributed systems, such
as Leader Election, Reset, Snapshot, and Termination Detection. Finally, we show that in the locally shared memory
model, snap-stabilization is as expressive as self-stabilization by designing a universal transformer to provide a snap-
stabilizing version of any algorithm that can be self-stabilized with the transformer of Katz and Perry (Distributed
Computing, 1993). Since by definition a snap-stabilizing algorithm is also self-stabilizing, self- and snap-stabilization
have the same expressiveness in the locally shared memory model.

Keywords: Fault-tolerance, snap-stabilization, self-stabilization, propagation of information with feedback, leader
election, reset, snapshot.

∗This paper is an extended version of preliminary results [1, 2].
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1 Introduction
Context Modern distributed systems are made of a large number of interconnected processes. Increasing the num-
ber of components (processes or links) in a distributed system means increasing the probability that some of these
components fail during the execution of a distributed algorithm. Moreover, due to the large scale, human interven-
tion to quickly repair failed components is also not possible. So, in this context, fault-tolerance, e.g., the ability of a
distributed algorithm to endure faults, is mandatory.

We consider a particular type of faults, called the transient faults. A transient fault occurs at an unpredictable time
but does not result in a permanent hardware damage. Moreover, as opposed to intermittent faults, the frequency of
transient faults is considered to be low. Consequently, network components affected by transient faults temporarily
deviate from their specifications, e.g., some messages in a link may be lost, reordered, duplicated, or corrupted.
As a result, a transient fault affects the state of the component in which it occurs. Hence, after a finite number of
transient faults, the configuration of a distributed system can be arbitrary, i.e., process memories can be corrupted and
communication links may contain corrupted messages.

In 1974, Dijkstra [3] proposed a general paradigm called self-stabilization to enable the design of distributed
systems tolerating any finite number of transient faults. Consider the first configuration after all transient faults cease.
This configuration is arbitrary, but no other transient faults will ever occur from this configuration. By abuse of
language, this configuration is referred to as arbitrary initial configuration of the system in the literature. Then, a
self-stabilizing algorithm (provided that faults have not corrupted its code) guarantees that starting from an arbitrary
initial configuration, the system recovers within finite time, without any external intervention, to a configuration from
which its specification is (always) satisfied. Thus, self-stabilization makes no hypotheses on the nature or extent of
transient faults that could hit the system, and the system recovers from the effects of those faults in a unified manner.
Such versatility comes at a price, e.g., after transient faults cease, there is a finite period of time, called the stabilization
phase, during which the safety properties of the system may be violated. Hence, self-stabilizing algorithms are mainly
compared according to their stabilization time, the maximum duration of the stabilization phase.

Several approaches have been introduced to offer more stringent guarantees than simple eventual recovery, e.g.,
fault-containment [4], superstabilization [5], and snap-stabilization [6, 7]. We focus here on the concept of snap-
stabilization, introduced by Datta et al in 1999 [6, 7]. Snap-stabilization is a stronger form of self-stabilization, as
after transient faults cease, a snap-stabilizing system immediately resumes correct behavior, without any external inter-
vention, provided the faults have not corrupted its code. More formally, starting from an arbitrary initial configuration
(i.e., the first configuration after the end of the faults), a snap-stabilizing system (always) satisfies its specification.
Hence, by definition, snap-stabilizing algorithms are self-stabilizing algorithms whose stabilization time is null.

To illustrate the advantage of snap-stabilization compared with self-stabilization, we now consider the fundamental
problem of termination detection. In this problem, any process p can be requested (by the application layer) to detect
if some distributed algorithm X has terminated. More precisely, upon a request a process should initiate a query
to know if X has terminated, and when p delivers an answer “yes” (resp., “no”), X “has terminated” (resp., “may
not have terminated”). Let Aself (resp., Asnap) be a self-stabilizing (resp., snap-stabilizing) algorithm for detecting
the termination of some distributed algorithm X . Let p be any process. If Aself starts from an arbitrary initial
configuration and X eventually terminates, then all we know is that eventually only “yes” answers will be computed
for all p’s queries, and these answers will truly indicate thatX did terminate. However, during the stabilization phase, it
is possible that p delivers “yes” answers while X actually has not terminated. In other words,Aself can compute false
(or unsafe) answers several (but a finite number of) times before finally computing true/correct answers. In contrast,
using Asnap, starting from an arbitrary initial configuration, the very first answer delivered by p to any initiated query
can be trusted to be a true answer.

It is important to note that snap-stabilizing systems are not insensitive to transient faults. For example, using
Asnap, if a transient fault occurs between an initiated query and its associated answer, then the answer may not be
correct, i.e., a process may deliver “yes” while X actually has not terminated. However, every answer returned to any
query initiated after the end of faults will be correct. In contrast, Aself just guarantees that only a finite, yet generally
unbounded, number of false answers will be returned after faults cease.

Related Work Since the seminal work of Bui et al [6, 7], many snap-stabilizing solutions, dedicated to various
problems and handling different network topologies, have been proposed. Most notably, numerous papers on snap-
stabilization deal with the Propagation of Information with Feedback (PIF) and depth-first token circulation problems.
The former has been addressed in rooted tree networks [8, 9] and arbitrary connected rooted networks [10, 11, 12].
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Similarly, snap-stabilizing algorithms that solve the depth-first token circulation are given in rooted trees [13], arbitrary
connected rooted networks [12, 14], and arbitrary connected, rooted, and identified networks [15].

Snap-stabilization has been also addressed to solve other problems in various contexts, e.g., computing binary
search trees [16], cutset detection [17], neighborhood synchronization in trees [18], global synchronization in trees [19],
committee coordination [20], computing prefix trees in Peer-to-peer systems [21], and linear message forwarding [22,
23, 24]. Notice that [24] constitutes the first attempt to deal with snap-stabilization in the context of dynamic networks.

Most of the above work is designed in the locally shared memory model. Only a few papers deal with snap-
stabilization in message-passing systems [25, 26, 27]. In [25], the authors sketch a snap-stabilizing snapshot algorithm
for oriented tree networks. The algorithms given in [26] deals with PIF and mutual exclusion in complete networks.
Mohamed et al proposed a snap-stabilizing PIF algorithm for unoriented tree networks in [27].

Motivation With such a diversity, a natural question arises: “How expressive is snap-stabilization?” This is the main
focus of this paper. The expressiveness of self-stabilization has been already investigated by Katz and Perry [28], as
they proposed a self-stabilizing snapshot algorithm working in the message-passing model and used it to transform
most of the non-self-stabilizing algorithms into self-stabilizing ones. Formally, Katz and Perry [28] consider as possi-
ble inputs of their transformer all algorithms solving problems that can be defined by a suffix-closed specification.1 In
the same paper, they also show that this condition is necessary.

In this paper, we show that for any identified distributed system in the locally shared memory model, self- and
snap-stabilization have the same expressiveness, meaning that any problem for which there exists a self-stabilizing
solution, there also exists a snap-stabilizing one, and vice versa. By definition, snap-stabilizing algorithms are self-
stabilizing algorithms whose stabilization time is null. So, the only interesting question is to demonstrate the first
part of our assertion. This result may appear surprising and even contradictory to the well-known lower bounds on
time complexity in the self-stabilization literature (e.g., Ω(D) where D is the diameter of the network [29]). We first
aim at convincing the reader that this apparent contradiction comes from a misunderstanding between the notion of
problem and the notion of specification of a problem. Once we clarify that misconception, we hope that the readers
will appreciate the interest of our approach for stabilization and the very desirable practical property we can get from
it.

The notion of problem is not easy to define, and it could be impossible to formally define it a priori, like it is
impossible for the well-known notion of set for example. The notion of specification could be easier to capture: a
specification is a set of properties or predicates that an algorithm must satisfy. We now build the framework in which
we will be able to define a problem. Classically, the correctness of a non fault-tolerant algorithm is established by
observing the system from a pre-defined configuration, called initial configuration, from which the system is supposed
to start. Moreover, the system is supposed to not suffer from any fault all along its execution. In the following, we will
say that such systems ensure a safe environment. We can now formally define the notion of problem as an equivalence
class of specifications in a safe environment where the equivalence relation is as follows: for every two specifications
SP1 and SP2, SP1 and SP2 are equivalent if and only if any algorithm satisfying SP1 in a safe environment also
satisfies SP2 in a safe environment, and vice versa.

Of course, if the environment changes and considering an equivalence relation in this new environment, some
specifications which were previously equivalent may not be equivalent anymore. For example, a specification may
or may not make the distinction between faulty and correct processes. As a consequence, one can get two different
specifications, one for each assumption. More precisely, consider the well-known (binary) consensus problem, which
considers that each process has an input value 0 or 1, and should decide unanimously (i.e. output) a value, either 0 or 1.
Let us recall two consensus specifications, thereafter denoted SP1 and SP2, which appear in the literature. SP1 [30]
can be used in the context of safe environments, while SP2 [31] applies to systems subject to process crashes. Both
Specifications SP1 and SP2 include the two following requirements:

Integrity: Every process decides at most once.

Validity: If a process decides a value v, then v was proposed by some process.

However, SP1 and SP2 differ by two different notions of termination and agreement. In Specification SP1, we have:

Uniform Termination: Every process eventually decides some value.

1A specification S is suffix-closed if there is an assertion A in (future) linear temporal logic such that for every execution e, e satisfies S if and
only if A is true in the terminal configuration of e (for finite executions) or A is infinitely often true in e.
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Uniform Agreement: No two processes decide differently.

While in Specification SP2, we have:

Termination: Every correct process eventually decides some value.

Agreement: No two correct processes decide differently.

By definition, since all processes are correct, these two specifications are trivially equivalent in a safe environment.
By the way, they define the consensus problem. However, if the system is prone to crash failures, an algorithm which
satisfied both specifications in a safe environment may satisfy neither of them, while a fault-tolerant algorithm can
satisfy Specification SP2 but not Specification SP1. Hence those two specifications, although they define the same
problem, are not equivalent in a system prone to crash failures.

In order to illustrate our discussion in the context of stabilization, let us focus on the problem of Mutual Exclusion
(MutEx). In this problem, the code of each process is divided into two sections: the non-critical and critical sections.
Processes alternate between these two sections as follows. Initially, a process executes its non-critical section. But,
sometimes, the application layer requests the process to execute its critical section. So, a process should enter its
critical section in finite time after each request. The time spent into its critical section is assumed to be a finite, yet
unbounded: each process eventually returns to its non-critical section code. Moreover, accesses to critical sections
should be managed in such way that no two critical sections are executed concurrently by two different processes.
The transition from the non-critical section to the critical section is implemented by a special code, called the entry
section. Similarly, the transition from the critical section to the non-critical section is implemented in another special
code, called the exit section. The MutEx problem then consists of the design of the entry and exit sections.

In the self-stabilization literature, the safety part of the MutEx specification is usually defined by using “static”
condition(s), i.e., by applying a predicate P over the set of system configurations. The subset of configurations such
that P is true (resp. false) is usually called the set of legitimate (respectively, illegitimate) configurations. For instance,
the legitimate configurations of a self-stabilizing algorithm are those included in the set of configurations where at
most one process is in the critical section. By contrast, the set of illegitimate configurations contains at least the
configurations where more than one process are in the critical section. Let us call any specification based on static
safety conditions a static specification.

Based on this approach, the MutEx problem is usually specified as follows.

Specification 1.1 (Static MutEx)

Safety: No two processes execute the critical section simultaneously.

Liveness: Upon a request, a process enters the critical section in finite time.

It is straightforward to show the impossibility of designing a snap-stabilizing algorithm satisfying Specification 1.1.
Indeed, since several processes may be in their critical section (simultaneously) in the arbitrary initial configuration,
the specification can be violated immediately at the beginning of the execution, regardless of the behavior of the
algorithm.

Before proposing another specification, let us focus on the notion of a starting action. The design of distributed
algorithms in a safe environment distinguishes two types of code: the spontaneous part where the code is executed
following an external (w.r.t., the algorithm) action called request (from an operator or another algorithm) and the
message reception part where the code is executed at the reception of a message. Initialization of any execution of
the algorithm is always done by the spontaneous part (if there exist several initiators, they all execute first that part).
We call the first action of the spontaneous part the starting action. It is clear that any execution in a safe environment
always starts with a starting action. Of course, this is generally not the case for stabilizing algorithms, since the first
configuration is indeterminate. So, the starting actions may not be the first actions of the execution of a stabilizing
algorithm.

We now come back to our MutEx example. Note that the execution of the entry section is triggered by a request
(liveness). In other words, every execution of a MutEx algorithm at some process locally follows the same sequential
scheme: Request, Entry Section, Critical Section, and Exit Section. So, in this problem, the starting action corresponds
to the first action of the entry section. Consider the following new specification where we modify only the safety part:

Specification 1.2 (Dynamic MutEx)
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Safety: If a requesting process p enters the critical section, then p executes the critical section alone.

Liveness: Upon a request, a process enters the critical section in finite time.

By contrast with Specification 1.1, an immediate consequence of Specification 1.2 is that an arbitrary initial con-
figuration where more than one process is executing its critical section is now not illegitimate anymore. Indeed, in
such a configuration, no process has actually entered its critical section, i.e., no process has made the transition from
the non-critical code to the critical section (using the Entry Section), i.e., no process has executed a starting action.
Actually, no request for critical section has even been made. As explained before, in self-/snap- stabilization, the
arbitrary initial configuration corresponds to a configuration that can be the result of a finite number of transient faults.
So, nothing except transient faults can explain why several processes are executing their critical section in the arbitrary
initial configuration.

Safety condition of Specification 1.2 is an implication, where the left part is true if a starting action has been
effectively executed before. Therefore, considering Specification 1.2, a configuration cannot be declared legitimate or
illegitimate without considering its past, i.e., the execution prefix that led to that configuration. This is why we call
such a specification a dynamic specification.

An interesting question arises from the above discussion: “Does Specification 1.2 define the MutEx safety?” Our
answer is yes. Indeed, in a safe environment, every process which is executing its critical section has previously
executed its entry section, and upon a request. So, every algorithm that satisfies Specification 1.1 also satisfies Speci-
fication 1.2, and vice versa.

Another natural question is the following: “Can we find a snap-stabilizing solution to the MutEx problem?” Again,
the answer is yes. Two algorithms that are snap-stabilizing for Specification 1.2 are proposed in [12, 26].

To conclude the discussion about the MutEx problem, starting from an arbitrary initial configuration (or equiva-
lently, after the last transient fault ceases), a snap-stabilizing MutEx algorithm does not guarantee that in this config-
uration, no two processes can be in the critical section. But, it guarantees that upon any (new) request for a process
p to enter its critical section, p will enter the critical section within finite time, and p will not do it unless it can do
it safely. Specifically, the snap-stabilizing MutEx algorithm will ensure that no other process is in the critical section
before allowing p to enter the critical section. A self-stabilizing MutEx algorithm generally does not provide such a
safety property, or simply does not consider this issue.

The MutEx example provides a generic approach for writing specifications compatible with snap-stabilization,
that can be formulated as follows: Just recognize the classical starting action in a safe environment, and add it as
the condition of the safety. So, consider the behavior of a distributed algorithm A beginning from a starting action.
If A is self-stabilizing, then within a finite time (typically, the stabilization time), A will start behaving properly.
However, during the stabilization period, behavior of A is unpredictable, i.e., it may not satisfy its specification. If A
is snap-stabilizing, it starts within finite time and its behavior after the starting action will be as per its specification.
This difference shows the extra power of snap-stabilization with respect to self-stabilization: snap-stabilization system
provides stronger safety properties.

Contribution We can say from the above discussion that the safety property provided by snap-stabilization is a
highly desirable property. Now, given that we define problems in terms of dynamic specification, another interesting
question is: “Can we provide a snap-stabilizing solution to every problem that has a self-stabilizing solution?”

We provide an answer to this question in the locally shared memory model by proceeding as follows.
We first design a snap-stabilizing Propagation of Information with Feedback (PIF) for rooted networks of arbitrary

connected topology. We prove this algorithm assuming the distributed unfair daemon, the most general daemon. To
the best of our knowledge, this is the only snap-stabilizing PIF algorithm for arbitrary connected rooted networks
which has been proven, until now, assuming the distributed unfair daemon. Its time complexity is in O(N) rounds
and O(∆ ×N3) steps, where N is the number of processes in the system and ∆ its degree. Its memory requirement
is O(logN) bits per process. The space and round complexities of our solution asymptotically match those of the
previous solutions ([10, 11]). However, contrary to the previous solutions, we could exhibited a bound on its step
complexities (O(∆×N3) steps), as it works under an unfair daemon.

Then, we use this snap-stabilizing PIF to implement snap-stabilizing versions of four fundamental distributed
algorithms: Reset, Snapshot, Leader Election, and Termination Detection.

Based on these four key algorithms, we design, in the locally shared memory model, a universal transformer
that provides a snap-stabilizing version of any algorithm which can be self-stabilized using the transformer described
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in [28]. Our transformation supports the distributed unfair daemon, the weakest scheduling assumption of the model.
This shows that snap-stabilization is as expressive as self-stabilization in the locally shared memory model.

Note that our purpose is only to demonstrate the feasibility of transforming almost any algorithm (specifically,
those algorithms that can be self-stabilized) to a corresponding snap-stabilizing algorithm. As a consequence, our
method is inefficient due to its versatility. Notice that another efficient, yet non general, transformer has been proposed
in the literature [12]. The proposed method allows to build snap-stabilizing algorithms efficient in both space and time,
however it only addresses a restricted class of problems, namely mono-initiator wave specifications.

Roadmap In the next section (Section 2), we describe the distributed system and the model we consider in this
paper. In Section 3, we formally define the concept of snap-stabilization. In the same section, we also clarify some
concepts seemingly similar in the domains of self-stabilization and snap-stabilization. In Section 4, we propose a
snap-stabilizing PIF algorithm. Using this algorithm, we then present in Section 5 snap-stabilizing solutions of the
Leader Election, Reset, Snapshot, and Termination Detection problems. In Section 6, we show their applications in
developing a universal transformer. Finally, we make some concluding remarks in Section 7.

2 Preliminaries

2.1 Distributed Systems
We consider distributed systems of N processes. Each process p can directly communicate with a subset of other
processes, called its neighbors. Communication is bidirectional. For every process p, we call degree of p, noted δp,
the number of its neighbors. Let ∆ = maxp∈V δp be the degree of the system. The topology of the system is a simple
undirected connected graph G = (V,E), where V is the set of processes and E is a set of edges representing (direct)
communication between the corresponding adjacent processes. Every process p can distinguish all its neighbors using
a local labeling. All labels of p’s neighbors are stored into the set Neigp. Neigp is locally ordered by ≺p. Moreover,
we assume that each process p can identify its local label in the set Neigq of each neighbor q. By an abuse of notation,
we use p to designate both the process p itself and its local labels.

2.2 Computational Model
We assume the locally shared memory model [3], where each process communicates with its neighbors using a finite set
of locally shared registers, henceforth called variables. A process can read its own variables and those of its neighbors,
but can write only to its own variables. We define a (distributed) algorithm to be a collection of N programs, each
operating on a single process. The program of each process is a finite ordered set of actions, where the ordering defines
priority. This priority is the order of appearance of actions in the text of the program. A process p is not enabled to
execute any action if it is enabled to execute an action of higher priority. Let A be a distributed algorithm, consisting
of a local program A(p) for each process p. Each action in A(p) is of the following form:

〈label〉 :: 〈guard〉 → 〈statement〉

Labels are only used to identify actions. The guard of an action inA(p) is a Boolean expression involving the variables
of p and its neighbors. The statement of an action in A(p) updates some variables of p. The state of a process in A
is defined by the values of its variables in A. A configuration of A is an instance of the states of processes in A. CA
is the set of all possible configurations of A. (When there is no ambiguity, we omit the subscript A.) An action can
be executed only if its guard evaluates to true; in this case, the action is said to be enabled. A process is said to be
enabled if at least one of its actions is enabled. We denote by Enabled(γ) the subset of processes that are enabled
in configuration γ. When the configuration is γ and Enabled(γ) 6= ∅, a daemon (scheduler) selects a non-empty set
X ⊆ Enabled(γ); then every process of X atomically executes its highest priority enabled action, leading to a new
configuration γ′, and so on. (The daemon realizes the asynchrony of the system.) The transition from γ to γ′ is called
a step (of A). The possible steps induce a binary relation over configurations of A, denoted by 7→. An execution of A
is a maximal sequence of its configurations e = γ0γ1 . . . γi . . . such that γi−1 7→ γi for all i > 0. The term “maximal”
means that the execution is either infinite, or ends at a terminal configuration in which no action of A is enabled at
any process.
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Each step from a configuration to another is driven by a daemon. A daemon is usually defined in terms of fairness
and distribution. There exist several kinds of fairness assumption. In this paper, we consider the weak fairness, and
unfairness assumptions. Under a weakly fair daemon, every continuously enabled process is eventually chosen by the
daemon. The unfair daemon is the weakest scheduling assumption: it can forever prevent a process from executing
an action unless it is the only enabled process. Concerning the distribution, we assume that the daemon is distributed
meaning that, at each step, if one or more processes are enabled, then the daemon chooses at least one (possibly more)
of these processes to execute an action.

We say that a process p is neutralized in the step γi 7→ γi+1 if p is enabled in γi and not enabled in γi+1, but does
not execute any action between these two configurations. Neutralization of a process can be caused in the following
situation: At least one neighbor of p changes its state between γi and γi+1, and this change makes the guards of all
actions of p false.

To evaluate time complexity, we use the notion of round [32]. This notion captures the execution rate of the slowest
process in any execution. Let e be an execution. The first round of an execution e, noted e′, is the minimal prefix of
e in which every process that is enabled in the initial configuration either executes an action or becomes neutralized.
Let e′′ be the suffix of e starting from the last configuration of e′. The second round of e is the first round of e′′, and
so forth.

3 Snap-Stabilization
The goal of this section is twofold. (1) We formally define snap-stabilization (Subsection 3.2). (2) We clarify some
concepts seemingly similar in the domains of self-stabilization and snap-stabilization (e.g., normal and legitimate
configurations in Subsection 3.1, and delay and stabilization time in Subsection 3.3).

First, as in [28], we only deal with problems that can be defined by a suffix-closed specification. Second, we
consider specifications where the classical starting action is the condition of the safety (as presented in Section 1), i.e.
the safety part of the specification is of the form P ⇒ Q, where P becomes true when a starting action is executed,
and Q checks if some safety requirements are satisfied in the following of the execution.

Consider, for example, a specification SPP of some finite problem P . Let P ⇒ Q be the safety of SPP . Let
Aself be an algorithm which is self-, yet not snap-, stabilizing for SPP . The first time a starting action of Aself is
executed, the initiated computation (which involves all or part of processes) is finite (liveness properties are always
satisfied by self-stabilizing algorithms), but may violate Q, and if applicable, SPP is not satisfied. Consequently,
to obtain self-stabilization, Aself has to repeat finite computations indefinitely, each computation being initiated by a
starting action. Solving this particular drawback is the goal of snap-stabilization. Indeed, snap-stabilization guarantees
that after the very first starting action, the (initiated) computation both satisfies the liveness of SPP (in particular, the
computation should be finite) and Q. In this case, we say that the (initiated) computation conforms to the specification
SPP .

3.1 Normal vs. Legitimate Configurations
Recall that, as explained in the introduction, the notion of intrinsic legitimate configuration is meaningless in snap-
stabilization because it is impossible to verify if the (dynamic) specification is satisfied just by looking at that config-
uration. (We need to consider the whole execution prefix that led to the configuration.) However, we can characterize
a configuration using the notions of normal and abnormal configurations (defined below), which are specific to the
snap-stabilizing paradigm.

In (self- or snap-) stabilizing systems, we consider the system immediately after transient faults cease. That is, we
study the system starting from a configuration reached due to the occurrence of transient faults, but from which no
fault will ever occur. Due to the effect of the faults, this configuration is arbitrary. Now, this configuration is referred
to as an (arbitrary) initial configuration of the system because it is the initial point of observation in the proofs.

The notion of “initial configuration” used here should be clearly distinguished from the classical notion of initial
configuration used in the non fault-tolerant algorithms. To avoid any confusion, this latter notion will be called normal
initial configuration. Consider a non fault-tolerant distributed algorithm A realizing specification SPP . As explained
in the introduction, the correctness of such an algorithm is established by observing the system from a pre-defined
configuration from which the system is supposed to start, the normal initial configuration. In this configuration,
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initiators are enabled for executing a starting action, and the other processes are quiescent, i.e., they are disabled until
being involved in a computation initiated by some initiator.

Of course, such normal initial configurations also exist in (self- and snap-) stabilizing systems. For example, in
self-stabilizing token circulation algorithms, the normal initial configuration is usually the configuration where all
processes are in the state “idle.” Besides, in case of a real deployment, the network should be initialized in the normal
initial configuration of the stabilizing algorithm.

In the following, any configuration reachable from a normal initial configuration will be called a normal configu-
ration. Any execution starting from a normal initial configuration will be termed as a normal execution. Considering
faulty networks, the system may be in a configuration which is unreachable from a normal initial configuration. We
call this type of configurations abnormal configurations. Since a configuration is defined by the state of all the pro-
cesses, we can claim that every process in a normal configuration is a normal process, i.e., the state of each process
is consistent with those of its neighbors. So, in an abnormal configuration, there exists at least one abnormal pro-
cess, a process whose state is inconsistent with those of its neighbors (nothing but a transient fault can explain this
inconsistency).

3.2 Formal Definition of Snap-Stabilization
In [6, 7], Bui et al formally defined snap-stabilization as follows:

Definition 3.1 (Snap-stabilization) A distributed algorithm Asnap is snap-stabilizing for the specification SPP if
starting from any configuration, every execution of Asnap satisfies SPP .

In the following, we justify why we consider specifications where the classical starting action is the condition of
the safety and show the consequence in the proving process.

Consider a specification SPP of some problem P , and a non fault-tolerant distributed algorithmA realizing SPP .
As explained before, the correctness of A is established by observing the system from a normal initial configuration,
from which the system is supposed to start. In this configuration, some processes (called initiators) spontaneously start
executing the algorithm with a particular portion of code, usually called initialization. First, the algorithm designer
implicitly assumes that initializations are triggered by some external (with respect to the algorithm) requests, e.g., these
requests may be generated by a user or an application. Then, the safety of SPP is proven by showing that between the
initialization and termination of A, no safety property of SPP is ever violated. Now, the system exists before the first
initialization, and again the designer implicitly assumes that the safety cannot be violated between the “real” start of
the system and the first initialization. This justifies why we consider specifications where the classical starting action
is the condition of the safety.

Since we consider specifications where the initialization (handled by the starting actions) is explicitly mentioned,
a snap-stabilizing algorithm Asnap always satisfies its specification if and only if:

1. Starting from any arbitrary configuration, Asnap can start in finite time using a special action, called starting
action; such an action is triggered by an external request.

2. Since a starting action is executed, the initiated computation of Asnap conforms to the specification.

3.3 Delay vs. Stabilization Time
Formally we distinguish three parts of the execution of a distributed self- or snap- stabilizing algorithm as follows.
Consider an execution eself of a self-stabilizing algorithm. First, because the self-stabilization only ensures that the
system eventually satisfies the intended specification, eself should include executions of starting actions infinitely
often. Then, it follows from the previous discussion that before eself starts, the safety of the specification is not
violated. Let us denote this part of the execution as a default prefix. When eself starts, the starting action may
be executed from an abnormal configuration, and the specification may not be satisfied immediately. However, the
specification is eventually true forever: eventually an initiated computation conforms to the specification. So, self-
stabilization only guarantees that there exists a suffix of eself which satisfies the specification. Let us call this suffix
a correct suffix. The first step of a correct suffix includes a starting action. So, between the end of the default prefix
and the correct suffix, the number of times the algorithm initiates (by a starting action) a computation that does not
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conform to the specification is finite, yet generally unbounded. Let us call this part of eself the stabilization factor.
Hence, eself is the concatenation of a default prefix, a stabilization factor, and a correct suffix.

Now, consider an execution esnap of a snap-stabilizing algorithm. By definition, as soon as esnap starts, even if the
starting action is executed from an abnormal configuration, the initiated computation conforms to the specification, so
the suffix starting from this step is a correct suffix. Thus, esnap is the concatenation of a default prefix and a correct
suffix, from where esnap (always) satisfies the specification. Thus, proving an algorithm A to be snap-stabilizing may
involve showing the following two steps. (i) Any execution includes at least one step which contains a starting action
(i.e., the default prefix is finite). (ii) Starting from this step, the initiated computation conforms to the specification
(i.e., the suffix starting from this step is a correct suffix).

Consider now an external request for a process to initiate an algorithm. We first observe the behavior of a non
fault-tolerant distributed algorithm from this point. For instance, assume one requests to print a file, and then makes
the same request for a second file. So the printing of the second file is delayed until the previous printing has finished.
Take the second request as the initial point of the observation: we observe a delay before the printing algorithm starts
for this request.

Observe now the execution of a distributed (self- or snap-) stabilizing algorithm. As above, an initiator may have
to wait before starting the algorithm. Precisely, it has to wait until the default prefix is done. By analogy with the
previous example, we call delay the duration of the default prefix. After the delay, the behavior depends on whether
the algorithm is self- or snap-stabilizing. In the case of self-stabilization, the stabilization factor may not be empty.
We call the execution time of this factor the stabilization time.2 In snap-stabilization, the stabilization factor is empty,
and consequently, the self-stabilization time is null.

We should emphasize here that the notion of delay and stabilization time are clearly different. The impact of
the delay is to slow down the algorithm, whereas during the stabilization time, the specification of the algorithm is
violated.

4 Snap-Stabilizing PIF
The concept of Propagation of Information with Feedback (PIF), also called Wave Propagation, has been introduced
by Chang [33] and Segall [34]. PIF has been extensively studied in the distributed literature because many fundamen-
tal algorithms, e.g., Reset, Snapshot, Leader Election, Termination Detection, etc. can be solved using a PIF-based
approach. Two snap-stabilizing versions of the PIF were presented for arbitrary networks [10, 11]. The major advan-
tage of the snap-stabilizing solution proposed here is that it is proven under the distributed unfair daemon. It is also
important to note that we obtain this result without degrading the performance. The round and space complexities of
our solution match the previous results.

The PIF scheme can be informally described as follows. A process, called initiator, starts the first phase of the
PIF wave by broadcasting a message m in the network (this phase is called broadcast phase). Then, each non-initiator
acknowledges the receipt of m to the initiator (this phase is called feedback phase). The PIF wave terminates when the
initiator has received an acknowledgment from all other processes. In arbitrary distributed systems, any process may
need to initiate a PIF wave. Thus, any process can be the initiator of a PIF wave and several PIF algorithms may run
simultaneously. To cope with the concurrent executions, every process maintains the identity of the initiators.

In this section, we consider the problem in a general setting of the PIF scheme where we assume that the PIF is
initiated by a process called the root, denoted by r. We can formally specify a PIF wave as follows:

Specification 4.1 (PIF Wave) A finite execution e = γ0, . . ., γi, γi+1, . . ., γt is called a PIF Wave if and only if the
following condition is true:
If r broadcasts a message m in the computation step γ0 7→ γ1, then:

[PIF1] For each p 6= r, there exists a unique i ∈ [1, t− 1] such that p receives m in γi 7→ γi+1, and
[PIF2] In γt, r receives an acknowledgment of the receipt of m from every process p 6= r.

Remark 4.1 In practice, to prove that a PIF algorithm is snap-stabilizing, we have to show that every execution of
the algorithm satisfies the following two conditions: (i) if r has a message m to broadcast, it will do so in a finite time,
and (ii) starting from any configuration where r broadcasts m, the system satisfies Specification 4.1.

2Notice that, in the self-stabilization literature, the delay is included in the stabilization time. We conjecture that the stabilization time complexity
is of the same order of magnitude with or without including the delay. Actually, we did not find any counter-example until now.
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Algorithm 4.1 PIF for p = r
Input: Neigp: set of (locally) ordered neighbors of p;
Constants: Parp =⊥; Lp = 0;
Variables: Sp ∈ {B, F , P , C}; Quep ∈ {Q, R, A};
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Set Macro:
Childrenp = {q ∈ Neigp :: (Sq 6= C) ∧ (Parq = p) ∧ (Lq = Lp + 1) ∧ [(Sq 6= Sp)⇒ (Sp ∈ {B, P} ∧ Sq = F )]};

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Predicates:
CFree(p) ≡ (∀q ∈ Neigp :: Sq 6= C)
Leaf(p) ≡ [∀q ∈ Neigp :: (Sq 6= C)⇒ (Parq 6= p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Neigp :: (Parq = p)⇒ (Sq = F )]
AnswerOk(p) ≡ (Quep = A) ∧ [∀q ∈ Neigp :: (Sq 6= C)⇒ (Queq = A)]

Guards:
Broadcast(p) ≡ (Sp = C) ∧ Leaf(p)
Feedback(p) ≡ BLeaf(p) ∧ CFree(p) ∧AnswerOk(p)
Preclean(p) ≡ (Sp = F ) ∧ [∀q ∈ Neigp :: (Parq = p)⇒ (Sq ∈ {F , C})]
Cleaning(p) ≡ (Sp = P ) ∧ Leaf(p)
Reset(p) ≡ (Sp ∈ {B, F}) ∧ [(Sp = B)⇒ CFree(p)] ∧ [[(Quep = Q) ∧ (∀q ∈ Neigp :: (Sq 6= C)⇒ (Queq ∈ {Q, R}))]

∨ [(Quep = A) ∧ (∃q ∈ Neigp :: (Sq 6= C) ∧ ((Queq = Q) ∨ (q ∈ Childrenp ∧Queq = R)))]]
Answer(p) ≡ (Sp ∈ {B, F}) ∧ [(Sp = B)⇒ CFree(p)] ∧ (Quep = R) ∧ (∀q ∈ Childrenp ::Queq ∈ {W , A})

∧ [∀q ∈ Neigp :: (Sq 6= C)⇒ (Queq 6= Q)]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Actions:
PIF Part:

B-action :: Broadcast(p) → Sp := B; Quep := Q; /* Starting Action */
F -action :: Feedback(p) → Sp := F ;
P -action :: Preclean(p) → Sp := P ;
C-action :: Cleaning(p) → Sp := C;

Question Part:
QR-action :: Reset(p) → Quep := R;
QA-action :: Answer(p) → Quep := A;

4.1 The Algorithm
The algorithm provided in Algorithms 4.1 and 4.2 implements a snap-stabilizing PIF. This algorithm, referred to as
PIF in the following, is divided in three parts: the PIF, Question, and Correction Part.

The PIF Part is the main part of the algorithm. It implements the actions corresponding to each of the three phases
of the PIF wave, i.e., the broadcast phase, the feedback phase following the broadcast, and the cleaning phase which
cleans the trace of the feedback so that the root becomes able to broadcast another message, if necessary.

A process initiates the feedback phase when it cannot broadcast the message because all its neighbors have already
received the message from some other neighbors. However, as we consider here that the initial configuration can be
arbitrary, the system can initially contain some processes that broadcast a message whose source is not the root. Thus,
when a process is ready to initiate the feedback phase because all its neighbors seem to have received the message
(from the root), it must be sure that its neighborhood have really received the message of the root and, so, none of its
neighbors is participating to the broadcast of any erroneous message. That is the goal of the Question Part. A question
is emitted to the root by a process p each time it receives a new broadcast message. Then, pwaits an authorization from
the root to execute its feedback phase: this authorization actually corresponds to the reception by p and its neighbors
of a positive answer from the root.

Finally, note that the Correction Part contains the actions dealing with the error correction.

We now describe in details the three parts of Algorithm PIF .

4.1.1 PIF Part

Let us consider as normal initial configuration any configuration γ where every process p satisfies Sp = C. The
variable Sp gives the status of p w.r.t. the PIF and status C (which stands for clean) means that p is not involved into
and PIF wave. In γ, B-action at r is the only enabled action (B means broadcast). So, r executes B-action in the first
step: r switches to the broadcast phase by executing Sr := B (when Sr = B, r is supposed to broadcast a message to
all its neighbors) and initiates a question by Quer := Q. When a process p waiting for a message (Sp = C) has one
of its neighbors q involved in the broadcast phase (Sq = B), p receives the message from q by executing B-action:
p switches to the broadcast phase (Sp := B), initiates a question (Quep := Q), points out to q using Parp, and
sets its level Lp to Lq + 1. (Typically, Lp contains the length of the path followed by the broadcast message from r
to p.) Process p is now in the broadcast phase and is supposed to broadcast the message to all its neighbors except
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Parp. Using this mechanism, a spanning tree rooted at r (w.r.t. the Par variables) is dynamically built during the
broadcast phase. Let us call Tree(r) this tree. Eventually, the broadcast reaches some process p that cannot broadcast
the message because all its neighbors have already received the message from some other neighbors (∀q ∈ Neigp,
Sq 6= C ∧ Parq 6= p). Such a process p is called a leaf and waits for an authorization from the root to switch to the
feedback phase. This authorization is a positive answer to p and its neighbors to the question previously asked by p
(AnswerOk(p)). After receiving an authorization, p switches to the feedback phase by F -action (Sp := F ). The
feedback phase is then propagated up into Tree(r) as follows: A non-leaf process q switches to the feedback phase
when the following conditions are true:

1. All its children in Tree(r) satisfy S = F (BLeaf(q)) meaning that all the processes it has sent the message
have executed their feedback.

2. None of its neighbors satisfies S = C (CFree(q)), i.e., none of its neighbors is waiting for a message.

3. It is authorized by the root (AnswerOk(q)) to ensure that all its neighbors involved in a PIF wave effectively
participates in the PIF wave from r.

Thanks to that, all processes eventually participate in both broadcast and feedback phases, and the feedback phase
eventually ends at r. At that point, the cleaning phase needs to be executed so that the root can broadcast another
message. The cleaning phase just consists of a PIF on Tree(r), the tree built during the broadcast phase. Such a PIF
is initiated by r when it detects the end of the feedback phase: r broadcasts a P (meaning Preclean) value in Tree(r)
towards the leaves and following the Par pointer (see P -action). The corresponding feedback phase then cleans the
tree in a bottom-up fashion (C-action).

4.1.2 Question Part

The questions (and the corresponding answers) are used to prevent the following problem. When the system starts from
an arbitrary configuration, a process p may receive a message from r while one of its neighbors q satisfies Sq ∈ {B,
F} ∧ q /∈ Tree(r). Actually, q is in a tree rooted at a process different from r, called an abnormal tree. We will
see later that such abnormal trees are eventually deleted using the Correction Part. But, while q is in an abnormal
tree, p must not switch to the feedback phase. Otherwise, q will not receive the broadcast message from p, and as
a consequence, q may never receive the message sent by r. Hence, the goal of the question (and its answer) is to
ensure that p switches to the feedback phase only when all its neighbors are in Tree(r) (i.e., only after all its neighbor
received the message from r). The question mechanism is implemented using the Que variables. Quep ∈ {Q, R, A}
for p = r and Quep ∈ {Q, R, W , A} for p 6= r. The Q and R values are used to reset the part of the network relevant
to a question. The W value corresponds to the request of a process: “Do you authorize me to feedback?”. The A value
corresponds to the positive answer sent by r: r is the only process able to initiate an A value.

We now explain how this phase works. A question is initiated at p by executing Quep := Q each time p switches
to the broadcast phase. This action forces all its neighbor q satisfying Sq 6= C to reset Queq to R (QR-action). After
every q (every neighbor of p) has reset, p also executes QR-action. The R values are then propagated up the trees of
p and every q (and only the trees). By this mechanism, all A values (in particular, the A values present since the initial
configuration) possibly in the path from p (resp. q) to its source (w.r.t. the Par variable) are erased . So, from that
point onwards, when an A value reaches a requesting process or one of its neighbors, this value must have been sent
by r and the process obviously is in Tree(r).

As we have discussed before, eventually the broadcast phase reaches some leaves of Tree(r) and these leaves
need an authorization from the root to start the feedback phase. In this case, each leaf p executes Quep := W (QW -
action), providing that Quep = QueParp = R and meaning that p is now waiting for an answer from r. The W value
is then propagated up in the tree of p (and only this tree) as follows. A non-leaf process q can execute QW -action if
Quep = QueParp = R, all its children satisfy Que ∈ {W , A}, and no neighbor has S = C. When the W values
reaches all the children of r, Quer = R and r executes QA-action. r broadcasts an answer A in its tree, and so on.
Hence, every time a process p initiates a question, we are sure that p and its neighbors that were in Tree(r) when the
question was sent eventually receive an A value. On the contrary, the neighbors of p that were in abnormal trees do
not receive any A value before leaving their trees (using the Correction Part). Suppose now that a neighbor q of p
such that Sq = C attaches to a tree before the question was answered. Then q executes Queq := Q, and either q is in
Tree(r) and q eventually receives an A value, or q is in an abnormal tree and Queq remains different from A until q
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Algorithm 4.2 PIF for p 6= r
Input: Neigp: set of (locally) ordered neighbors of p;
Variables: Sp ∈ {B, F , P , C, EB, EF}; Parp ∈ Neigp; Lp ∈ [1 . . . `] with ` ≥ N ; Quep ∈ {Q, R, W , A};
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Set Macros:
Childrenp = {q ∈ Neigp :: (Sq 6=C) ∧ (Parq=p) ∧ (Lq=Lp+1) ∧ [(Sq 6= Sp)⇒ ((Sp∈{B, P} ∧ Sq = F ) ∨ (Sp=EB))]};
Pre Potentialp = {q ∈ Neigp :: Sq = B ∧ Lq < ` };
Potentialp = {q ∈ Pre Potentialp :: ∀q′ ∈ Pre Potentialp, Lq ≤ Lq′};

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Predicates:
CFree(p) ≡ (∀q ∈ Neigp :: Sq 6= C)
Leaf(p) ≡ [∀q ∈ Neigp :: (Sq 6= C)⇒ (Parq 6= p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Neigp :: (Parq = p)⇒ (Sq = F )]
AnswerOk(p) ≡ (Quep = A) ∧ [∀q ∈ Neigp :: (Sq 6= C)⇒ (Queq = A)]
GoodS(p) ≡ (Sp = C) ∨ [(SParp 6= Sp)⇒ ((SParp = EB) ∨ (Sp = F ∧ SParp ∈ {B, P}))]
GoodL(p) ≡ (Sp 6= C)⇒ (Lp = LParp + 1)
AbRoot(p) ≡ ¬GoodS(p) ∨ ¬GoodL(p)

Guards:
EFAbRoot(p) ≡ (Sp = EF ) ∧AbRoot(p) ∧ [∀q ∈ Neigp :: (Parq = p ∧ Lq > Lp)⇒ (Sq ∈ {EF , C})]
EBroadcast(p) ≡ (Sp ∈ {B, F , P}) ∧ [¬AbRoot(p)⇒ (SParp = EB)]
EFeedback(p) ≡ (Sp = EB) ∧ [∀q ∈ Neigp :: (Parq = p ∧ Lq > Lp)⇒ (Sq ∈ {EF , C})]
Broadcast(p) ≡ (Sp = C) ∧ (Potentialp 6= ∅) ∧ Leaf(p)
Feedback(p) ≡ BLeaf(p) ∧ CFree(p) ∧AnswerOk(p)
Preclean(p) ≡ (Sp = F ) ∧ (SParp = P ) ∧ [∀q ∈ Neigp :: (Parq = p)⇒ (Sq ∈ {F , C})]
Cleaning(p) ≡ (Sp = P ) ∧ Leaf(p)
Reset(p) ≡ (Sp ∈ {B, F}) ∧ [(Sp = B)⇒ CFree(p)] ∧ [[(Quep = Q) ∧ (∀q ∈ Neigp :: (Sq 6= C)⇒ (Queq ∈ {Q, R}))]

∨ [(Quep ∈ {W , A}) ∧ (∃q ∈ Neigp :: (Sq 6= C) ∧ ((Queq = Q) ∨ (q ∈ Childrenp ∧Queq = R)))]]
Wait(p) ≡ (Sp ∈ {B, F}) ∧ [(Sp = B)⇒ CFree(p)] ∧ (Quep = R) ∧ (QueParp = R)

∧ (∀q ∈ Childrenp ::Queq ∈ {W , A}) ∧ (∀q ∈ Neigp :: (Sq 6= C)⇒ (Queq 6= Q))
Answer(p) ≡ (Sp ∈ {B, F}) ∧ [(Sp = B)⇒ CFree(p)] ∧ (Quep = W ) ∧ (QueParp = A)

∧ (∀q ∈ Childrenp ::Queq ∈ {W , A}) ∧ (∀q ∈ Neigp :: (Sq 6= C)⇒ (Queq 6= Q))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Actions:
Correction Part:

EC-action :: EFAbRoot(p) → Sp := C;
EB-action :: EBroadcast(p) → Sp := EB;
EF -action :: EFeedback(p) → Sp := EF ;

PIF Part:
B-action :: Broadcast(p) → Sp := B; Parp := min≺p (Potentialp); Lp := LParp + 1; Quep := Q;
F -action :: Feedback(p) → Sp := F ;
P -action :: Preclean(p) → Sp := P ;
C-action :: Cleaning(p) → Sp := C;

Question Part:
QR-action :: Reset(p) → Quep := R;
QW -action :: Wait(p) → Quep := W ;
QA-action :: Answer(p) → Quep := A;

leaves its tree. Hence, when a process switches to the broadcast phase from the root, it does not feedback before all its
neighbor are in Tree(r).

4.1.3 Correction Part

The error correction code deals with the abnormal processes p such that Sp 6= C and p /∈ Tree(r). The abnormal
processes are arranged into abnormal trees rooted at some non-root processes satisfying AbRoot, the abnormal roots.
An abnormal root is a non-root process in an incoherent state w.r.t. its parent. A process cannot reach this state in a
normal execution. For example, any process p that does not satisfy AbRoot(p) verifies the following conditions:

1. If p is in the broadcast phase, then its parent is in the broadcast phase too.

2. If p is in the feedback phase, then its parent is in the broadcast phase, the feedback phase, or is involved in the
Preclean process (the broadcast of the cleaning phase).

3. If p satisfies Sp = P (Preclean), then its parent is also involved in the Preclean process.

4. If p is involved in the PIF wave (Sp 6= C), then its level Lp must be equal to one plus the level of its parent.

The other conditions that p has to verify if it is not an abnormal root are related to the correction process and will be
presented later.

Before explaining the correction mechanism, let us now clarify the notion of tree. We consider here two kinds of
trees: the normal and abnormal trees. The normal tree is the only tree rooted at r. An abnormal tree is a tree rooted at
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a non-root process satisfying AbRoot. Let p be a process such that (p = r)∨AbRoot(p). ∀q ∈ V , q ∈ Tree(p) if and
only if there exists a sequence of processes (p0 = p), ..., pi, ..., (pk = q) such that, ∀i ∈ [1...k], pi ∈ Childrenpi−1

(among the neighbors designating pi−1 with Par only those satisfying S 6= C ∧ ¬AbRoot are considered as pi−1
children).

The error correction consists of the removal of all the abnormal trees. To remove an abnormal tree Tree(p), we
cannot simply set Sp to C. Since Tree(p) may contain several processes, if we simply set Sp to C, p can participate
again in the broadcast of the tree it was the root of. This scheme can be repeated many times, and may slow down
the progression of the normal tree Tree(r). We solve this problem by executing a paralyzing PIF on the abnormal
trees before removing them. To apply this method, we use two additional states in the S variables: EB and EF ,
for p 6= r only (EB and EF respectively means error broadcast and error feedback). If p is an abnormal root, it
broadcasts the value EB in the S variable of its tree (EB-action). When p receives feedback (EF -action), p knows
that all the processes q of its tree satisfy Sq = EF and no process can now receive the broadcast phase from any q
(indeed, Sq 6= B, ∀q). Process p can then leave its tree (each paralyzed tree is removed in a top-down fashion using
EC-action), and will try to receive the broadcast from one of the processes q only when q will participate in another
broadcast. In this manner, all abnormal trees eventually disappear from the system.

Finally, due to the error correction, any process p must satisfy some other conditions so that it is not considered an
abnormal root.

5. If p is in the broadcast phase of the error correction (Sp = EB), then its parent is also in the broadcast phase of
the error correction.

6. If p is in the feedback phase of the error correction process (Sp = EF ), then its parent is either in the broadcast
or in the feedback phase of the error correction process.

4.2 Proof of Snap-Stabilization of Algorithm PIF
We prove that Algorithm PIF implements a snap-stabilizing PIF assuming a distributed unfair daemon in two steps.

(i) We first prove that Algorithm PIF is snap-stabilizing for the PIF specification — Specification 4.1, page 10 —
under a (distributed) weakly fair daemon (note that this daemon is stronger than the unfair daemon).

(ii) We then show that each wave executed by Algorithm PIF contains a finite number of steps.

By these two claims, it is clear that Algorithm PIF is a snap-stabilizing PIF for a distributed unfair daemon. Indeed,
by (ii) we can claim that an unfair daemon cannot prevent any PIF wave from being executed forever, and by (i) we
can claim that Algorithm PIF satisfies the PIF specification beginning from the first wave.

4.2.1 Definitions

Below we define some items used in proofs and show some of their characteristics.

Definition 4.1 (Path) The sequence of processes P = p0,p1,p2,. . .,pk is called a path if ∀i, 1 ≤ i ≤ k, pi ∈ Neigpi−1
.

The processes p0 and pk are respectively termed as the initial and final extremities of P. We denote by |P| the length of
P (= k).

In the following definition, we define a special path by using the Par variables linking a process to the root of the
(normal or abnormal) tree it belongs.

Definition 4.2 (PPath) For every process p such that Sp 6= C, PPath(p) is the unique path p0,p1,p2,. . .,(pk = p)
satisfying the following conditions:

1. ∀i, 1 ≤ i ≤ k, (Spi
6= C) ∧ (Parpi

= pi−1) ∧ ¬AbRoot(pi).

2. (p0 = r) ∨ AbRoot(p0).

Using the notion of PPath we now formally define the notion of tree.
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Definition 4.3 (Tree) For every process p such that (p = r) ∨ AbRoot(p), we define Tree(p) as the set of processes
such that: ∀q ∈ V , q ∈ Tree(p) if and only if Sq 6= C and p is the initial extremity of PPath(q).

Notation 4.1 Let T be a tree. Let p ∈ T and p0, p1, p2, . . . (pk = p) its PPath. ∀i, 1 ≤ i ≤ k, pi−1 is the parent of pi
in T . Conversely, pi is a child of pi−1 in T . The height of pi in T (= |PPath(pi)|) is denoted by h(pi). The height of
T , noted H , is equal to max({h(q), q ∈ T}).

We now distinguish two kinds of trees: the normal and abnormal trees.

Definition 4.4 (Normal Tree) A tree containing only processes p such that (p = r)∨¬AbRoot(p) is called a normal
tree.

Observation 4.1 By definition, the system always contains one normal tree: the tree rooted at r. In the case where
Sr = C, Tree(r) is still defined but Tree(r) = ∅.

Definition 4.5 (Abnormal Tree) Any tree rooted at a process other than r is called an abnormal tree.

In the following two definitions, we introduce the notions of Alive and Dead trees. These two notions allows us to
distinguish a tree that can still grow (Alive) from a tree that cannot (Dead).

Definition 4.6 (Alive) A tree T satisfies Alive(T ) (or is called Alive) if and only if ∃p ∈ T such that Sp = B.

Definition 4.7 (Dead) A tree T satisfies Dead(T ) (or is called Dead) if and only if ¬Alive(T ).

Observation 4.2 No process can attach to a Dead tree.

The following definition characterizes the paralyzing processes of abnormal trees.

Definition 4.8 (E-Dead) A tree T satisfies E-Dead(T ) (or is called E-dead) if and only if ∀p ∈ T , Sp ∈ {EB,EF}.

Observation 4.3 E-Dead(T )⇒ Dead(T ).

Definition 4.9 (S-Trace) Let Y be a tuple of processes (Y = (p0, p1, . . ., pk)). S-Trace(Y ) = S0S1 . . . Sk is the
sequence of the values of Variable S of processes pi (i = 0 . . . k).

The fact that any process at height h > 0 in a tree satisfies ¬AbRoot leads to the following two observations. These
observations can be easily verified by induction on the height of the processes starting from height one.

Observation 4.4 The normal tree, Tree(r), always satisfies one of the two following cases:

1. Tree(r) = ∅ ∧ Sr = C, or

2. ∀p ∈ Tree(r), S-Trace(PPath(p)) ∈ B∗F ∗ ∪ P ∗F ∗.

Observation 4.5 For an abnormal tree T , ∀p ∈ T , S-Trace(PPath(p)) ∈ EB∗EF ∗ ∪ EB∗B∗F ∗ ∪ EB∗P ∗F ∗.

4.2.2 Proof assuming a Weakly Fair Daemon

We first prove that any execution of Algorithm PIF is deadlock-free. To prove that, we consider two cases. We
first analyze the configurations containing some abnormal trees (Lemma 4.1), then the configurations containing no
abnormal tree (Lemma 4.2).

Lemma 4.1 In any configuration containing some abnormal trees, there exists at least one enabled process.
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Proof. Assume by contradiction, that there exists a configuration γ containing some abnormal trees where no process
is enabled. Among the abnormal trees in γ, consider Tree(ar) with the root ar with the maximal level value Lar.

If there exists a process p in Tree(ar) such that Sp ∈ {B,F ,P}, then there exists q ∈ PPath(p) such that
Sq ∈ {B,F ,P} ∧ (q = ar ∨ SParq = EB) by Observation 4.5. In both cases, EB-action is enabled at q, a
contradiction.

So, by the hypothesis of the contradiction, every process p in Tree(ar) satisfies Sp ∈ {EB,EF}: Tree(ar) is
E-Dead and S-Trace(PPath(p)) = EB∗EF ∗ for any p by Observation 4.5. If Sar = EF , then every process p in
Tree(ar) satisfies Sp = EF . Moreover, every neighbor q of ar, such that (Parq = ar)∧ (Lq > Lar) is in Tree(ar)
if Sq 6= C. Otherwise, q satisfies AbRoot(q), and as ar is the abnormal root with the maximal level value, we obtain
a contradiction. Hence, every neighbor q of ar such that (Parq = ar) ∧ (Lq > Lar) satisfies Sq ∈ {C,EF} and
EC-action is enabled at ar, a contradiction. So, by the hypothesis of the contradiction again, we have Sar = EB
and we can deduce that there exists a process p in Tree(ar) such that (Sp = EB) ∧ (∀q ∈ Childrenp, Sq = EF ).
Similarly, we can conclude that EF -action is enabled at p, a contradiction.

Hence, in any configuration containing some abnormal trees, there exists at least one enabled process, a contradic-
tion. 2

Lemma 4.2 In any configuration containing no abnormal trees, there exists at least one enabled process.

Proof. Assume, by contradiction, that there exists a configuration γ containing no abnormal trees where no process
is enabled. In this case, Tree(r) is the only tree in the system.

If Sr = C (the normal tree is empty), then every process p satisfies Sp = C and B-action is enabled at r, a
contradiction.

So, Sr 6= C and every process p in Tree(r) satisfies S-Trace(PPath(p)) ∈ B∗F ∗ ∪ P ∗F ∗ by Observation 4.4.

• Assume that Tree(r) is Dead. In this case, S-Trace(PPath(p)) = P ∗F ∗ holds for every process p in Tree(r).
If there exists a process p in Tree(r) such that Sp = F , then there exists a process q in PPath(p) having its
P -action enabled. Otherwise, (∀p ∈ Tree(r), Sp = P ), C-action is enabled at each leaf of Tree(r). Hence, if
Tree(r) is Dead, there exists at least one enabled process, a contradiction.

• Assume that Tree(r) is Alive. Then there exists a process p in Tree(r) such that Sp = B by Definition 4.6 and
every process q in Tree(r) satisfies Sq ∈ {B,F} by Observation 4.4. Also, note that every process such that
Sp = B also satisfies CFree(p). Otherwise, there exists at least one neighbor of p with its B-action enabled.

In order to obtain the contradiction, we now show that if there exists a process p such that (Sp 6= C)∧ (Quep 6=
A), then there exists at least one enabled action of the question part which is enabled. To prove that, we focus
on the Que variables.

– Assume that there exists a process p such that (Sp 6= C) ∧ (Quep = Q). If ∃q ∈ Neigp such that
(Sq 6= C)∧ (Queq /∈ {Q,R}), then QR-action is enabled at q, a contradiction. Otherwise, (∀q ∈ Neigp,
(Sq 6= C) ⇒ (Queq ∈ {Q,R})), QR-action is enabled at p, a contradiction. Hence, every process p
satisfies (Sp 6= C)⇒ (Quep = Q).

– Assume that there is a process p such that (Sp 6= C) ∧ (Quep = R). Suppose p 6= r. If QueParp 6= R,
then QR-action is enabled at Parp. So, ∀q ∈ PPath(p), Queq = R. In this case, at least one of those
processes p satisfies ∀q ∈ Childrenp, Queq ∈ {W ,A}. Moreover, we already know that if Sp = B, p
satisfies CFree(p). So, QW -action is enabled at p, a contradiction. Hence, for every process p 6= r, we
have (Sp 6= C)⇒ (Quep 6= R). Let us now assume that (Sr 6= C) ∧ (Quer = R). As ∀q ∈ Childrenr,
Quer ∈ {W ,A} and (Sr = B)⇒ CFree(r), QA-action is enabled at r, a contradiction.

– Finally, assume that there exists a process p such that (Sp 6= C)∧ (Quep = W ). From the previous cases,
we know that for every process p, (Sp 6= C) ⇒ (Quep ∈ {W ,A}), more specifically, (Sr 6= C) ⇒
(Quer = A). Now, similar to the previous case, it is easy to see that if there exists some processes such
that (S 6= C) ∧ (Que = W ), at least one has its QW -action enabled, a contradiction.

Hence, every process p such that Sp 6= C satisfies Quep = A, and so, p also satisfies AnswerOk(p). We
assumed that there exists at least one process p in Tree(r) such that Sp = B. Among the processes p satis-
fying Sp = B, at least one p′ satisfies BLeaf(p′) (by Observation 4.4, every process p in Tree(r) satisfies
S-Trace(PPath(p)) = B∗F ∗). Because p′ also satisfies CFree(p′), F -action is enabled at p′, a contradiction.
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Hence, in any configuration containing no abnormal trees, there exists at least one enabled process, a contradiction. 2

By Lemmas 4.1 and 4.2, we can claim the following result:

Theorem 4.1 In any configuration, there exists at least one enabled process.

Lemmas 4.3 to 4.7 are used to show that the network contains no abnormal tree in O(N) rounds (Lemma 4.7).

Lemma 4.3 If EB-action is enabled at p, it remains enabled until it is executed by p.

Proof. Assume by contradiction that EB-action is enabled at p in γ and not in the next configuration γ′, but p did
not execute EB-action in the step γ 7→ γ′. Let q ∈ Neigp such that Parp = q (p 6= r). EBroadcast(p) involves
variables S andL of p and q only. Also,EB-action is the enabled action at pwith the highest priority (EC-action and
EB-action cannot be enabled at p at the same time). So, if p did not move in γ 7→ γ′, p still satisfies Sp ∈ {B,F ,P},
Parp = q in γ′, and q executes an action in γ 7→ γ′ which updates the value of Sq and/or Lq , so that ¬EBroadcast(p)
in γ′. Finally, from EBroadcast(p), we know that Sp ∈ {B,F ,P} ∧ [AbRoot(p) ∨ (¬AbRoot(p) ∧ SParp = EB)]
in γ. Let us now study the following two cases:

• AbRoot(p) in γ. (AbRoot(p) ∧ Sp ∈ {B,F ,P}) ⇒ EBroadcast(p), so ¬AbRoot(p) in γ′. Assume that
¬GoodL(p) in γ (note that AbRoot(p) ≡ ¬GoodS(p) ∨ ¬GoodL(p)). As Sp ∈ {B,F ,P}, Parp = q and
GoodL(p) in γ′, Lp = Lq + 1 in γ′. q must execute the B-action. Now, as Sp ∈ {B,F ,P} and Parp = q in
γ, q satisfies ¬Leaf(q) and B-action is disabled at q in γ, a contradiction. Hence, assume that GoodL(p) ∧
¬GoodS(p) in γ andGoodS(p) in γ′. In this case, S-Trace(q,p) ∈ {BP ,FB,CB,CF ,CP ,PB,FP ,EFB,EFF ,EFP}
in γ and EB-action is the only action that q may execute (in particular, B-action is disabled at q because
¬Leaf(q)). Now, if q executes EB-action, then Sq = EB in γ′ and, as Sp ∈ {B,F ,P} in γ′ (p did not move
in γ 7→ γ′), EB-action is still enabled at p in γ′, a contradiction.

• (¬AbRoot(p) ∧ SParp = EB) in γ. By checking all actions of Algorithm PIF , we can see that, as Sq = EB,
EF -action is the only action that q may execute in γ 7→ γ′. Now, (¬AbRoot(p)⇒GoodL(p))⇒ (Lp = Lq+1)
and (Lp = Lq +1∧Sp ∈ {B,F ,P})⇒¬EFeedback(q). So,EF -action is disabled at q in γ, q did not execute
any action in γ 7→ γ′, and as a consequence p is still enabled in γ′, a contradiction.

2

Lemma 4.4 If EF -action is enabled at p, it remains enabled until it is executed by p.

Proof. Assume by contradiction that EF -action is enabled at p in γ and not in the next configuration γ′ (i.e.,
¬EFeedback(p) in γ′), but p did not execute EF -action in the step γ 7→ γ′. Let q ∈ Neigp such that Parp = q
(p 6= r). As EF -action is the enabled action at p with the highest priority (when, EF -action is enabled, EC- and
EB-actions are disabled), p did not move in γ 7→ γ′ and Sp = EB in γ′. Now, (¬EFeedback(p) ∧ Sp = EB)⇒
(∃q ∈ Neigp :: Parq = p∧Lq > Lp∧Sq /∈ {EF ,C}). So, there exists at least one neighbor of p, say q, that executes
an action in γ 7→ γ′ and that satisfies (Parq = p) ∧ (Lq > Lp) ∧ (Sq /∈ {EF ,C}) in γ′ (so that ¬EFeedback(p) in
γ′). There are two possibilities as discussed below:

• q satisfies (Parq 6= p ∨ Lq ≤ Lp) in γ, but after executing an action, q satisfies (Parq = p ∧ Lq > Lp ∧ Sq /∈
{EF ,C}) in γ′. As Parq = p ∧ Lq > Lp in γ′ and B-action is the only action that updates Variables Parq or
Lq , q executes B-action in γ 7→ γ′. By B-action, q can only designate a process q′ such that Sq′ = B in γ.
Now, Sp = EB in γ. So, Parq 6= p in γ′, a contradiction.

• q satisfies (Parq = p ∧ Lq > Lp ∧ Sq ∈ {EF ,C}) in γ, but after executing an action, q satisfies (Parq =
p ∧ Lq > Lp ∧ Sq /∈ {EF ,C}) in γ′. If Sq = C in γ, then q can only executes B-action in γ 7→ γ′, and as in
the previous case, Parq 6= p in γ′, a contradiction. So, Sq = EF in γ and EC-action is the only action that q
may execute in γ 7→ γ′. In this case, q still satisfies (Parq = p ∧ Lq > Lp ∧ Sq ∈ {EF ,C}) in γ′ (Sq := C in
γ 7→ γ′), a contradiction.

2
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Lemma 4.5 Let p ∈ V such that Sp ∈ {EB,EF}. Sp ∈ {EB,EF} holds (at least) until the tree of p is E-Dead.

Proof. Consider a process p such that Sp ∈ {EB,EF}. By checking the actions of Algorithm 4.2, we can derive
that when Sp = EB, the next action that p will execute is EF -action, i.e., Sp := EF . Similarly, if Sp = EF , the
next action that p will execute is EC-action, i.e., Sp := C. Also, if p executes EC-action, AbRoot(p) holds. Hence,
p executes EC-action only when it is the root of its abnormal tree, Sp = EF , and its abnormal tree, Tree(p), is
E-Dead by Observation 4.5. 2

Lemma 4.6 All abnormal trees become E-Dead in at most N − 1 rounds.

Proof. Let NotEi be the set of processes p such that p is in an abnormal tree and Sp /∈ {EB,EF} at the first
configuration of Round i. Let us define the function F : N→ N as follows:

F(i) =

{
∞ if NotEi = ∅,
minp∈NotEi

({h(p)}) otherwise.

By Definition 4.8, F(i) =∞ (i.e., NotEi = ∅) if and only if all abnormal trees are E-Dead. So, to prove the lemma,
we have to show that F(N − 1) =∞. We first show that if NotEi 6= ∅, then F(i) < F(i+ 1).

Assume by contradiction that there exists an execution satisfyingF(i) ≥ F(i+1) whileNotEi 6= ∅ for a particular
round i, i.e., at the beginning of Round i + 1, there is a process p in an abnormal tree such that Sp /∈ {EB,EF} and
h(p) ≤ F(i) (in particular, p is in an abnormal tree which is still not E-Dead). By Lemma 4.5, we know that any
process q such that Sq ∈ {EB,EF} satisfies Sq ∈ {EB,EF} until its tree is E-Dead. So, two cases are possible for
p.

a) p attaches to an abnormal tree at the height h ≤ F(i) during Round i (note that p may have left an abnormal
tree before). By Observations 4.2 and 4.3, p hooks on to an abnormal tree which is still not E-Dead. Also, from
B-action, p attaches to an abnormal tree at the height h only if there exists a neighbor of p, say q, such that q is
in an abnormal tree, Sq = B, and h(q) ≤ F(i)− 1. Now, by definition of F and Lemma 4.5, such a process q
does not exist, a contradiction.

b) p satisfies (Sp ∈ {B,F ,P}) ∧ (h(p) = F(i)) at the first configuration of Round i, p remains in its tree during i,
and still satisfies (Sp ∈ {B,F ,P}) ∧ (h(p) = F(i)) at the first configuration of Round i+ 1.

1. If h(p) = 0, then, by Definitions 4.3 and 4.4, p 6= r and AbRoot(p): EB-action is continuously enabled
at p (Lemma 4.3). As the daemon is weakly fair, p sets Sp toEB before the end of the round and p satisfies
Sp ∈ {EB,EF} until its tree is E-Dead (Lemma 4.5), a contradiction.

2. If h(p) > 0, then p satisfies ¬AbRoot(p). Now, (¬AbRoot(p)∧ Sp /∈ {EB,EF})⇒ (SParp 6= EF ) and
(SParp 6= EF ∧ h(Parp) = F(i) − 1)⇒ (SParp = EB). So, EB-action is continuously enabled at p
(Lemma 4.3). As the daemon is weakly fair, p sets Sp to EB before the end of the round and p satisfies
Sp ∈ {EB,EF} until its tree is E-Dead (Lemma 4.5), a contradiction.

Hence, if NotEi = ∅, then F(i) < F(i + 1). Now, the maximal value of F(i) when NotEi 6= ∅ is N − 2, i.e., the
maximal height in any abnormal tree (all processes except the root can be in an abnormal tree). So, in the worst case,
F returns∞ from Round i = N − 1, i.e., all abnormal trees are E-Dead in at most N − 1 rounds. 2

Lemma 4.7 The system contains no abnormal tree in at most 3N − 3 rounds.

Proof. By Observation 4.5 and Lemma 4.6, each process p in abnormal trees satisfies S-Trace(PPath(p)) =
EB∗EF ∗ in at most N − 1 rounds. Then no process can attach to these trees by Observations 4.2 and 4.3. We can
also observe that no process p can leave any abnormal tree tree before Sp = EF (only the root can leave its abnormal
tree by EC-action when any process q in its tree satisfies Sq = EF ). Moreover, while there exists processes q in
an abnormal tree such that Sq = EB, there exists (among the processes q) at least one process q′ which has its EF -
action continuously enabled (by Observation 4.5 and Lemma 4.4). So, the worst case is obtained when any process
of an abnormal tree satisfies S = EB. In this case, it is necessary to propagate the EF value from the leaves to the
root. H + 1 rounds are necessary for this propagation where H is the maximal height of the tree. Now, all processes
except the root can be in an abnormal tree. This implies that the maximal height is N − 2. Thus, in at most N − 1
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additional rounds, the system reaches a configuration γ where each process p in an abnormal tree satisfies Sp = EF .
In γ, every process p satisfies one of the following cases: (i) Sp = C, (ii) Sp = EF and p is in an abnormal tree,
or (iii) Sp ∈ {B,F ,P} and p is in the normal tree. From γ, the EC-action is continuously enabled at each root
of each abnormal tree until all abnormal trees disappear (indeed, except the EC-actions, actions can be executed
in the normal tree only). Hence, the EC-actions will clean the successive abnormal roots until all abnormal trees
disappear. In the worst case again, N −1 rounds are necessary to clean all abnormal trees. Hence, the system contains
no abnormal trees in at most 3N − 3 rounds. 2

The following lemma allows us to show that, starting from any configuration, the root can eventually start a PIF wave
by B-action (Theorem 4.2).

Lemma 4.8 From any initial configuration containing no abnormal trees, r executes B-action in at most 6N rounds.

Proof. Clearly, from such a configuration, the worst case is the following: The root satisfies Sr = B and all the
other processes have their S variable equal to C. Indeed, in this case, the system has to perform almost a complete
PIF wave (a complete wave except the first step: B-action of r). According to Algorithm PIF , B-action is then
propagated to all processes in at most N − 1 rounds. (Note that after executing B-action, a process is enabled to
execute QR-action, so B-actions and QR-actions work in parallel.) After all processes executed their B-action,
one extra round is necessary for the leaf processes of the broadcast to set their Que variable to R. Then, the W value
is propagated into the Que variables by QW -action. The time used by the QW -actions is bounded by the maximal
height of the tree, i.e.., N − 1 rounds (all processes, except the root, execute QW -action). By a similar reasoning
taking in account that r also executes the respective actions, it is obvious that all the QA-actions, F -actions, P -
actions, and C-actions are successively propagated into the tree in at most N rounds. Hence, after 6N − 1 rounds,
the system reaches a configuration where any process p satisfies Sp = C and the root executes B-action during the
next round (more precisely, in the next step since r is the only enabled process). 2

By Lemmas 4.7 and 4.8, the following result holds.

Theorem 4.2 Starting from any initial configuration, r executes B-action in at most 9N − 3 rounds.

We now conclude the proof by showing (in Theorem 4.3) that an execution starting from r executing a B-action
satisfies the PIF specification (Specification 4.1, page 10). To prove this, we use the following two technical lemmas.

Lemma 4.9 Let p be a process in Tree(r). p can leave Tree(r) only when Tree(r) is Dead.

Proof. By Definition 4.4, Tree(r) is a tree containing only processes p such that (p = r)∨¬AbRoot(p). So, to leave
Tree(r), any process p must execute C-action, and as a consequence, p must be a leaf that satisfies Sp = P . Now,
by Observation 4.4, if Sp = P , then any process q in PPath(p) satisfies Sq = P , particularly, Sr = P . Finally, by
Observation 4.4 again, Sr = P implies that any process in Tree(r) satisfies S ∈ {F ,P}, which implies Tree(r) is
Dead. 2

Lemma 4.10 Let p be a process in an abnormal tree such that Quep ∈ {Q,R}. While p does not leave the tree,
Quep 6= A.

Proof.
Assume that p also satisfies AbRoot(p). If Sp ∈ {EB,EF}, then Sp ∈ {EB,EF} holds until it leaves the

tree (Lemma 4.5), so, QA-action is disabled at p until it leaves the tree. If Sp ∈ {B,F ,P}, then EB-action is
continuously enabled at p (Lemma 4.3). Now, EB-action has a higher priority than QA-action. So, p cannot execute
QA-action before EB-action. After executing EB-action, Sp = EB and we arrive at the previous case.

Assume now that p satisfies ¬AbRoot(p). Two cases are then possible.

- Quep = R. The R value is then propagated up in PPath(p). As Queq = R, a process q in PPath(p) will
modify Queq only by QW -action and only when QueParq = R. Also, to switch Queq to A, q must satisfy, in
particular, Queq = W and QueParq = A (only r can switch from R to A). So, there always exists an R value
in PPath(p) that provides such a process q to switch Queq from W to A. Hence, R values are barriers for the
A values, and while p is in the tree, p cannot receive any A.
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- Quep = Q. If p remains in the tree, thenQuep remains equal toQ until p executesQR-action. After executing
QR-action, Quep = R and we arrive at the previous case.

2

Theorem 4.3 From any configuration where r executes B-action, the execution satisfies Specification 4.1 (page 10).

Proof. We first prove Property [PIF1] of Specification 4.1, which is, every process receives any message m sent by
r exactly once.

1. Assume that there exists some process that never receives the message m. Then, as the network is connected,
there exists a process p which never receives m, but one of its neighbors, q, does. When q receives m, it executes
B-action: q sets Sq to B and Queq to Q.

• Assume that Sp 6= C. If Quep ∈ {W ,A}, then (Sq ,Queq) will stay equal to (B,Q) until p executes
QR-action. p eventually executes QR-action: Quep := R. Now, since Sp 6= C and p never receives m,
we can deduce that p is in an abnormal tree and Quep remains not equal to A until p leaves the tree by
Lemma 4.10. So, until p leaves the tree, q cannot execute F -action (q does not satisfy AnswerOK(q)).
By Lemma 4.7, p eventually leaves the tree, Sp = C eventually holds.

• Assume that Sp = C holds or eventually holds. While Sp = C, q cannot executeF -action (Feedback(q)⇒
CFree(q)). If p attaches to another abnormal tree again (B-action), then (Sp,Quep) := (B,Q) and
Quep 6= A holds until p leaves the tree (Lemma 4.10). So, as before, q cannot execute F -action. Now, by
Lemma 4.7, the system does not contain any abnormal tree in a finite time. So, eventually p continuously
satisfies Sp = C and ∀p′ ∈ Neigp, (Sp′ 6= C)⇒ (Parp′ 6= p), i.e., p continuously satisfiesBroadcast(p).
As the daemon is weakly fair, p eventually receives m by executing B-action, a contradiction.

Hence, each process receives m at least once.

2. Assume that there exists a process p which receives the message m at least twice. Clearly, p 6= r, and according
to the algorithm, p successively executes the B-, F -, P -, and C-action for m before it satisfies Broadcast(p)
for m again. After executing P -action, S-Trace(PPath(p)) = P ∗ (Observation 4.4) particularly, Sr = P . By
Observation 4.4 again, Sr = P implies that any process q in Tree(r) satisfies S-Trace(PPath(q)) = P ∗F ∗,
and in this case, Tree(r) is Dead. So, there is no process q such that Sq = B for m. Hence, p cannot receive m
for a second time, a contradiction.

We now show Property [PIF2]. First, by Case 1 above, we know that each process attaches to the normal tree (by
B-action) during the broadcast of m. Also, by Lemma 4.9, after attaching to Tree(r), the processes cannot leave the
tree before it is Dead. Now, by Lemma 4.2, r eventually executes B-action again, and r executes B-action only if
Sr = C. So, Tree(r) is eventually empty, and Tree(r) is Dead. By Observation 4.4, Tree(r) is Dead if and only if
any process p in Tree(r) satisfies S-Trace(PPath(p)) = P ∗F ∗. Also, r changes Sr to P only when Sr = F . So,
the system eventually reaches a configuration where any process p is in Tree(r) and satisfies Sp = F . r eventually
receives an acknowledgment from every non-root process.

Hence, after r executes B-action, the execution satisfies Specification 4.1. 2

By Remark 4.1 (page 10), Theorems 4.2, and 4.3, the following theorem is obvious.

Theorem 4.4 Algorithm PIF is snap-stabilizing for Specification 4.1 under a distributed weakly fair daemon.

4.2.3 Proof assuming an Unfair Daemon

To complete the proof of snap-stabilization of Algorithm PIF under a distributed unfair daemon, we need to show
that each PIF Wave is finite in terms of steps. We first show that the abnormal trees can only generate a finite number
of actions during the whole execution.

Lemma 4.11 Any non-root process p that attaches to an abnormal tree (byB-action) cannot execute F -action before
leaving the tree.
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Proof. When attaching to an abnormal tree, any process p sets (Sp,Quep) to (B,Q). From that point on, Quep 6= A
holds until p leaves the tree (Lemma 4.10). Hence, while p is in the tree, ¬AnswerOk(p) holds, and F -action is
disabled at p. 2

From Lemma 4.11, we can deduce the following corollary:

Corollary 4.1 During the whole execution, any non-root process p cannot execute F -action more than once while it
is not in Tree(r).

To execute P - or C-action while a process is in an abnormal tree the second time, it must execute an F -action before.

Corollary 4.2 During the whole execution, any non-root process p cannot execute P -action or C-action more than
once while it is not in Tree(r).

Lemma 4.12 After attaching to an abnormal tree (by B-action), a non-root process leaves the tree only when it is
Dead.

Proof. Two actions allow p to leave the tree: C-action and EC-action. So, we prove the lemma with the two
following claims:

• p cannot execute C-action. After attaching to the tree, p cannot execute F -action until it leaves the tree
(Lemma 4.11). So, while p is in the tree, Sp 6= F , and p cannot execute P -action. Hence, while p is in the tree,
Sp 6= P , and C-action is disabled at p.

• p executes EC-action only if its tree is Dead. If p executes EC-action, then p satisfies (Sp = EF ) ∧
AbRoot(p). So, p is the root of its abnormal tree, Tree(p). Sp = EF implies that any process q in Tree(p)
also satisfies Sq = EF by Observation 4.4: Tree(p) is Dead. Hence, p execute EC-action only if its tree is
Dead.

2

By Lemma 4.12 and Observation 4.2, the next lemma follows:

Lemma 4.13 During the whole execution, any non-root process q attaches to the abnormal tree rooted at p (p 6= r) at
most once.

Lemma 4.14 During the whole execution, O(N2) attaching actions (B-action) are executed in the abnormal trees.

Proof. By Lemma 4.13, we know that each non-root process (N −1 of them) can executeB-action to attach at most
once to each abnormal tree. Then the system may contain at most N − 1 abnormal trees. Hence, O(N2) B-actions
can be executed in the abnormal trees. 2

By Lemma 4.14, and Corollaries 4.1 and 4.2, we obtain the following result.

Lemma 4.15 During the whole execution, the abnormal trees generate an overhead of O(N2) actions of the PIF Part.

We now focus on the Question Part.

Lemma 4.16 Let p be a non-root process such that AbRoot(p). While AbRoot(p), p cannot execute any action of the
Question Part.

Proof. Assume by contradiction that p executes an action of the Question Part while satisfying AbRoot(p). In this
case, p also satisfies Sp ∈ {B,F}. Then, (Sp ∈ {B,F} ∧AbRoot(p))⇒ EBroadcast(p), and as EB-action has an
higher priority than any action of Question Part, if p moves, then p executes EB-action, a contradiction. 2

Lemma 4.17 Each B-action generates O(∆×N ) actions of the Question Part.
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Proof. By executing B-action, a process p sets (Sp,Quep) to (B,Q). Then, Quep remains equal to Q until the
following condition holds: ∀q ∈ Neigp, (Sq 6= C) ⇒ (Queq ∈ {Q,R}). If a neighbor of p, say q, executes QR-
action, then Sq 6= C and q satisfies Queq = R until p executes Quep := R (QR-action). Finally, when each
neighbor q of p satisfies (Sq 6= C) ⇒ (Queq ∈ {Q,R}), p can execute QR-action. So, each B-action generates at
most ∆ + 1 new R values in the system.

In the worst case, these R values (O(∆)) are then propagated up in (and only in) the PPath of p and its neighbors
q such that Sq 6= C (using QR-action) until a process v such that (v = r) ∨ AbRoot(Parv) (Predicate Reset and
Lemma 4.16). Now, the number of processes in each PPath is bounded by N . So, the cost of these propagations is in
O(∆×N ) actions.

In the worst case again, p and all its neighbors q such that Sq 6= C (O(∆)) execute Que := W . Also in the worst
case, the generated W values are propagated up in (and only in) the PPath of p and its neighbors q such that Sq 6= C
(using QW -action) until a process v such that (v = r) ∨ AbRoot(Parv) (Predicate Wait and Lemma 4.16). So,
similar to the R values, the cost of these propagations is O(∆×N ) actions.

Finally, in the worst case, each of the O(∆) W values previously generated is propagated into the normal tree. In
this case, each W value may generate a broadcast of an A value into the whole normal tree. (r is the only process able
to generate a new A value). So, once again the cost of these broadcasts is O(∆×N ) actions.

Hence, each B-action generates O(∆×N ) actions of the Question Part. 2

Lemma 4.18 During the whole execution, the abnormal trees generate an overhead of O(∆ × N3) actions of the
Question Part.

Proof. A process propagates a question in trees (i.e., actions of the Question Part) due to the initial configuration or
when it attaches to a tree (B-action). Each time it attaches to an abnormal tree, it generates O(∆×N ) actions of the
Question Part (Lemma 4.17). Note that the number of actions of the Question Part generated if it is in an abnormal
tree since the initial configuration, is of the same order (O(∆×N )). Then,O(N ) processes are in abnormal trees in the
initial configuration, and O(N2) processes attach to abnormal trees in the execution (Lemma 4.14). Thus, abnormal
trees generate O(∆×N3) actions of the Question Part. 2

Finally, we evaluate the overhead due to the Correction Part.

Lemma 4.19 During the whole execution, O(N2) actions of the Correction Part are executed to delete the abnormal
trees.

Proof. In the worst case, each process in abnormal trees has to successively execute the three actions of the Correction
Part (i.e.,EB-,EF -, andEC-action) in order to leave its tree. So, any process leaves an abnormal tree inO(1) actions
of the Correction Part. Now, O(N ) processes are in abnormal trees at the initial configuration and O(N2) processes
attach to abnormal trees during the whole execution (Lemma 4.14). Hence, the lemma is trivially verified. 2

From Lemmas 4.15, 4.18, and 4.19, we can deduce the following result:

Lemma 4.20 During the whole execution, the abnormal trees generate an overhead of O(∆ × N3) actions before
getting deleted.

We now show that, from any configuration, Tree(r) (the normal tree) can only generate a finite number of actions
before the root starts a PIF wave (by B-action). As the correction part is not used in the normal tree, it is not
considered in the following.

By Lemma 4.9 (page 19) and Observation 4.2, we get the following result:

Lemma 4.21 From any configuration, each non-root process attaches to Tree(r) (by B-action) at most once before
r executes B-action.

Lemma 4.22 From any configuration, before r executes B-action, each process executes F -action at most once
while it is in Tree(r).
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Proof. Assume by contradiction that before r execute B-action, a process p executes F -action at least twice while
it is in Tree(r). After the first execution of F -action, p satisfies Sp = F . Then, according to the algorithm, p must
successively executes the P -, C-, and B-action before it executes F -action again. Then, any process q in Tree(r)
satisfies Sq 6= B when p executesC-action (Tree(r) is Dead by Lemma 4.9). Hence, r must initiate another broadcast
by B-action so that p attaches to Tree(r) by B-action, a contradiction. 2

Using a reasoning similar to the one used for Corollary 4.2, we can deduce the following corollary from Lemma 4.22:

Corollary 4.3 From any configuration, before r executes B-action, each process executes P -action and C-action at
most once while it is in Tree(r).

By Lemmas 4.21, 4.22, and Corollary 4.3, we get the following:

Lemma 4.23 From any configuration, O(N ) actions of the PIF Part are executed in Tree(r) before r executes B-
action.

Lemma 4.24 From any configuration, Tree(r) generates O(∆ × N2) actions of the Question Part before r executes
B-action.

Proof. Similar to the proof of Lemma 4.18, and Lemmas 4.17 and 4.21, it is easy to see that Tree(r) generates
O(∆×N2) actions of the Question Part before r executes B-action. 2

By Lemma 4.23 and 4.24, we obtain the following result:

Lemma 4.25 From any configuration, Tree(r) generates O(∆×N2) actions before r executes B-action.

By Lemmas 4.20 and 4.25, we can claim the following:

Theorem 4.5 From any configuration, r executes B-action in O(∆×N3) steps.

A complete PIF wave is executed between two executions of B-action at r.

Corollary 4.4 From any configuration, a wave of Algorithm PIF is executed in O(∆×N3) steps.

By Theorem 4.4 and Corollary 4.4, we obtain the following result:

Theorem 4.6 Algorithm PIF is snap-stabilizing for Specification 4.1 under a distributed unfair daemon.

The following additional property of Algorithm PIF will be used later to design a snap-stabilizing reset algorithm. It
can be deduced from the proof of Property [PIF2] in Theorem 4.3 (page 20) and Theorem 4.6.

Property 4.1 After r starts to broadcast a message m, the system reaches a configuration in a finite number of rounds
(resp., steps) where all processes have acknowledged the receipt of m.

4.3 Complexity Analysis
We first consider the complexity in terms of steps:

Delay: By Theorem 4.5, we can state that the delay of Algorithm PIF is O(∆×N3) steps.

Complete PIF wave: By Corollary 4.4, Algorithm PIF executes a complete PIF wave in O(∆×N3) steps.

We now consider the complexity in terms of rounds:

Delay: By Theorems 4.2 (page 19), we can state that the delay of Algorithm PIF is at most 9N − 3 rounds.

Complete PIF wave: We can deduce from Theorem 4.2, and Lemmas 4.7, and 4.8 (pages 18 and 19) that Algorithm
PIF executes a complete PIF wave in at most 9N − 3 + 6N = 15N − 3 rounds.

Hence, the round complexities of Algorithm PIF asymptotically match those of the previous solutions ([10, 11])
using the same memory requirement, namely O(logN ) bits per process. Furthermore and contrary to the previous
solutions, Algorithm PIF has bounded step complexities due to the fact that it works under an unfair daemon.
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5 Other Key Algorithms
In this section, we present four essential snap-stabilizing algorithms to develop a universal transformer (see Section
6). These four algorithms are based on the snap-stabilizing PIF algorithm presented in previous sections.

5.1 Snap-Stabilizing Leader Election
A leader election algorithm ensures that upon termination of the algorithm, exactly one process is distinguished as
the leader among all the processes of the network. Our purpose here is not to propose a very efficient leader election
algorithm, but rather to show that we can design a snap-stabilizing leader election algorithm based on AlgorithmPIF .
Below we describe a basic solution.

We first design a snap-stabilizing maximum ID computation using Algorithm PIF . In the following, we refer to
this algorithm as AlgorithmM. Every process in the network runs AlgorithmM in parallel. Some processes may
not initiate their own version of Algorithm M on their own. However, upon receiving an M message from some
other process, they also initiate the same algorithm. When the PIF waves corresponding to AlgorithmM terminate,
all processes have elected the same ID corresponding to the leader.

In this paper, we use a weaker version of the leader election in the following sense: Each process just checks if it
is the actual leader (usingM) only when it needs to. In the rest of the paper, we refer to this algorithm as LE .

5.2 Snap-Stabilizing Reset
The reset algorithm is used in a faulty environment to “reset” the system to a pre-defined “good” configuration for a
problem P . A good global configuration can be restricted to a normal initial configuration (see Section 3) to simplify
the design process. Any normal configuration can be used as a good configuration. Our approach to design the reset
algorithm is similar to the one in [35].

We restrict the reset algorithm to be initiated by one and only one initiator, called i. We call this rooted reset
algorithm RPi . i uses Algorithm PIF as follows: (a) i initiates the broadcast of an “abort” message and stops its
local execution of P . (b) Upon receiving the message, the non-initiators also abort their local execution of P . (c) All
the processes (including i) reset their variables related to the problem P when they feedback. (d) Finally, the processes
can roll back their local execution of P only when they stop participating in the PIF wave corresponding toRPi . Since
Algorithm PIF is snap-stabilizing, all the processes will receive the abort message. From Property 4.1 (page 23),
after starting RPi , the system reaches, in a finite time, a configuration where all processes have their variables reset.
Hence, after i stops participating in the PIF wave, the system is guaranteed to be in a normal initial configuration.

5.3 Snap-Stabilizing Snapshot
The problem of distributed snapshot is quite challenging in a faulty environment. The problem is to collect some data
about the system. This data must be adequate to verify the coherence of the system. The consistent snapshot consists
in a collection of local states of all processes such that this collection can correspond to some normal configuration of
the problem.

Our solution, noted SP , is an adaptation in our model (locally shared memory) of the snapshot algorithm provided
in [36] (written in the message-passing model). So, before we present our algorithm, we briefly describe the main idea
of the snapshot algorithm in [36] applied on a problem P . In this algorithm, a process initiates the snapshot by first
recording the state of P and then broadcasting a marker to all its neighbors. Upon receiving the first marker message,
a process records its own state of P and sends the marker to all its neighbors (including the sender of the marker). A
marked process records every message received from a neighbor which did not send the marker yet. When a process
i receives a marker from all its neighbors, i completes its participation in the snapshot algorithm by sending a report
(recorded state and messages) to the initiator. In our model (locally shared memory), the messages are modeled by the
ability of a process to read the state of its neighbors. So, the collection of the recorded messages at i from a neighbor
j (in the message-passing model) is replaced by the history of change of state of j after the marking event of p and
before that of q.

The aim of Algorithm SP is to gather at the initiator the histories of local states of each process from the beginning
to the end of its participation to the snapshot (actually a PIF wave). In our solution, we use a local stack at each process
to store its history. Upon receiving a broadcast message, a process p resets its stack to its current local configuration.
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This local configuration is constituted by the state of p and its neighbors (the variables related to the problem P plus
the PIF variables). Then, at each move, the new local configuration is pushed onto the stack until the feedback. During
the feedback phase, the process pushes its current configuration on the stack for the last time and merges its own
report (actually its stack) and that of its children (in the tree built during the broadcast phase) in a report variable. As
Algorithm PIF ensures that any process that executes the broadcast and the feedback phase, the report variable of
the initiator includes the report of that process at the end of the feedback phase. At least as much data as the snapshot
algorithm of [36] are saved during the execution of Algorithm SP . Hence, we obtain a consistent snapshot when
Algorithm SP terminates.

5.4 Snap-Stabilizing Termination Detection
The termination detection can be (may not be efficiently) performed using any snapshot algorithm. Using SP , our
termination detection algorithm just needs to check the reports at the end of any snapshot. For any snapshot started after
the termination of the algorithmA, the report of any process consists of two identical configurations: the current local
configurations at the broadcast and the feedback, in that order. In the following, we denote by T DA the termination
detection algorithm for the algorithm A.

6 Transformer
Let A be an algorithm designed for any identified network of arbitrary topology (note that A is neither self- nor snap-
stabilizing). In this section, we show how to transform A into a snap-stabilizing algorithm.

First, we define some composition definitions used in this section. A fair parallel composition of two algorithms
A and B is an algorithm denoted by A||B, where actions of A (resp., B) occur infinitely often in any execution if an
infinite number of configurations contains enabled actions ofA (resp.,B). A sequential composition of two algorithms
A and B is the algorithm denoted by A → B, where B can start if and only if A has terminated. The starting of B
can be also dependent on some input predicate c: A→

c
B means that B can start if and only if A has terminated and c

is true.

Remark 6.1 As in [28], we assume that:

1. We can define for A a predicate OK which characterizes the normal configurations of the system. This predicate
can be computed by a snapshot.

2. If A solves an infinite problem, then the problem can be defined by a suffix-closed specification.

Moreover, we assume that each process knows an upper bound on the number of processes in the network.
By Remark 6.1 (Part 2), every execution of A can be seen as an infinite repetition of finite sub-executions. Every

sub-execution is initiated using a starting action. Any starting action is triggered upon an external (w.r.t. the algorithm)
request only. For example, the depth-first token circulation can be seen as successive depth-first traversals of the
network, each of them starts upon receiving an external request.

We now present the ideas of the transformer by considering two classes of algorithms:

(a) The algorithms that have a unique initiator (the algorithm is associated to a process and cannot be merged with
a similar algorithm initiated by another process).

(b) The algorithms that can be initiated by several processes.

6.1 Single Initiator Algorithm
Consider an algorithm A which is from Class (a) with Process i as initiator. A simple attempt to transform A into a
snap-stabilizing algorithm is to reset the network usingRAi before starting A. So, we addRAi as an header of A such
that A starts only after RAi terminates, i.e., we consider the algorithm RAi → A and the starting action of RAi → A
is the one of RAi . Thus, starting A now implies first running RAi and then A. As the system has been reset for A in a
snap-stabilizing manner, obviously, A behaves as in a non-faulty situation, i.e., according to its specification.
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Assume now that no starting action ofRAi was executed after a fault occurred, butRAi → A is still running. Then,
there is no guarantee that RAi → A terminates. Hence, we cannot ensure that the execution will contain at least one
starting action of RAi → A. Since RAi is snap-stabilizing, we know that RAi eventually terminates. So, the reason
whyRAi → Amay not terminate is due to the fact thatAmay not terminate (recall thatA is not even self-stabilizing).
To prevent the system from this kind of deadlock or livelock, a checking procedure must be added to detect if the
system is not in a normal configuration and, in this case, abort the current execution before starting a new one. The
checking procedure consists of taking snapshot of the system regularly (using the snap-stabilizing snapshot algorithm
SAi ). We use the snapshots to compute two predicates: OK which characterizes the normal configurations of the system
and TD which determines ifA is terminated. As explained in Subsection 5.4, we can use Algorithm SAi for termination
detection. Process i now waits until SAi returns either ¬OK or TD, before startingRAi → A.

In order to design the checking procedure without fairness assumptions (i.e., under an unfair daemon), we must
not execute snapshots concurrently with A. Otherwise, an unbounded number of steps of A can be executed before
the completion of the first snapshot. Hence, we propose to schedule at most one step of A per process, using a PIF
wave, before executing a snapshot of the system. After that, if the configuration is a normal one (i.e., if SAi returns
OK), we repeat the procedure until A terminates (i.e., until SAi returns TD). Otherwise, we abort the current execution
so that i can start RAi → A. Hence, the checking procedure ensures that RAi → A eventually starts, but without
risking to abort any normal execution of A.

The checking procedure is designed as follows: PIFAi waves and SAi waves are performed in sequence until the
predicate ¬OK ∨ TD is satisfied (at i). During each wave of PIFAi , any process can execute at most one action of A:
upon receiving a broadcast wave. Since ¬OK ∨ TD is satisfied, i can start RAi → A (upon a request Reqi) without
risking to abort a normal execution of A. Indeed, either the behavior is fuzzy (¬OK) or the previous execution of A is
terminated (TD).

Hence, we obtain a new algorithm, TRANS1A, which is shown in Figure 6.1.

PIFi
A

Si
A

Ri
A

OK ⋀ ¬TD

Reqi ⋀ (¬OK ∨ TD)

Figure 6.1: TRANS1A

The projection upon the variables of RAi → A of any execution of TRANS1A can be decomposed as a default
prefix followed by complete executions ofRAi → A. The default prefix is:

- Either, a suffix ofRAi → A if SAi always returns OK,

- Or, any fuzzy behavior ofRAi → A (without any starting action) stopped by SAi returning ¬OK.

Finally, as any execution of TRANS1A just consists of sequences of PIF waves, it is guaranteed that any execution
of TRANS1A is finite in terms of steps even if the daemon is assumed to be unfair. Hence, the following theorem
immediately follows:

Theorem 6.1 Let A be a distributed algorithm which has a unique initiator. Then, the transformed algorithm
TRANS1A is snap-stabilizing for the specification of the problem solved by A under a distributed unfair daemon.
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Implementation in the locally shared memory model Before presenting how to implement TRANS1A, let us define
the predicate X .End(p). We have already seen in Section 4 that any process p satisfies Sp = C in Algorithm
PIF when p is waiting for the next broadcast message, i.e., when it does not participate in any PIF wave. Let
X .End(p) ≡ (Sp = C) be a predicate for a process p in the specific PIF-based algorithm X . In particular, when
X .End(i) is satisfied, any PIF wave of X started by i (if any) is now terminated.

In the discussion above Theorem 6.1, we have seen thatRAi must not start before a snap-stabilizing snapshot (i.e.,
SAi ) returns ¬OK∨ TD. So, we have to add the condition SAi .End(i)∧ (¬OK∨ TD) into the guard of the starting action
ofRAi , meaning thatRAi can start only when SAi terminates and outputs (¬OK ∨ TD).

During its participation in a reset, any process p (including i) must stop its local executions of PIFAi (following
the explanation given in Subsection 5.2) and SAi (if a snapshot is done concurrently with a reset, the snapshot may
incorrectly output ¬OK). For that reason, we add the conditionRAi .End(p) in the guard of each action of each process
p (including i) in Algorithms PIFAi and SAi .

Until SAi .End(i) ∧ (¬OK ∨ TD) is satisfied, waves of PIFAi and SAi must be executed in sequence. For this, we
use an additional variable Turni ∈ {1, 2}. This value determines the next wave to be performed: Turni = 1 (resp.
Turni = 2) means that this is the turn of PIFAi (resp. SAi ). Hence, Turni is set to 1 at the termination of each
wave of RAi and SAi . Conversely, Turni is set to 2 at the end of each PIFAi wave. Then, a PIFAi can start only if
SAi .End(i)∧(OK∧¬TD)∧(Turni = 1), meaning that PIFAi can start only when SAi terminates, outputs (OK∨¬TD),
and this is the turn of PIFAi . Thus, this condition must be added in the guard of the starting action of PIFAi . For
similar reasons, the condition PIFAi .End(i)∧ (OK∧¬TD)∧ (Turni = 2) must be added in the guard of the starting
action of SAi .

Finally, each process p can execute an action ofA only when switching to the broadcast phase in PIFAi . To apply
this mechanism, each action of p in A needs to be moved into the statement of its broadcast action in PIFAi (the
guard of each action being replaced by the corresponding if statement).

6.2 Multi-Initiator Algorithm
Let A be a distributed algorithm of Class (b), p be a process, and e be a normal execution of A. During e, p should be
eventually enabled to startA using a starting action upon receiving a request. Moreover, at that time the starting action
should be continuously enabled until p is activated by the daemon. Otherwise, the liveness part of the specification of
A can be violated in a safe environment.

Remark 6.2 After the system is in a normal configuration, upon a receiving a request, any initiator will be eventually
enabled continuously to start A.

We now propose to transform A into a snap-stabilizing algorithm working under a weakly fair daemon. We then
explain how to make the transformed algorithm working under an unfair daemon.

Unlike the single-initiator case, an initiator cannot blindly reset the system before starting A. Indeed, such a reset
may interrupt an execution started by some other initiator. The idea here is to let executeA by all processes to prevent
deadlocks. However, we should carefully address the execution of starting actions. So, we precede the initialization
of a process i in A by the execution of the headerHAi . As in Class (a), the initialization of the transformed algorithm
is the one of HAi . More precisely, upon receiving a request, a process i waits until it is able to start A. Then, it first
initializesHAi , then delays the initialization of A until the completion ofHAi .

PROTOCOLHAi
(1) IF LE i RETURNS i THEN /* i is the actual leader */
(2) LAi
(3) ELSE
(4) RIAi
(5) ENDIF

The goal of the headerHAi is to check if the system is in a normal configuration. If not, the system is reset. So, at
the termination ofHAi , the system is in a normal configuration, and i can start A.

The snapshot and the reset of the system must be exclusively executed by a single process. So, the first part ofHAi
consists of waking up the leader so that it performs these two algorithms. Process i first initiates a snap-stabilizing
leader election LE i. At the termination of LE i, the following two cases are possible:
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1. i is the leader of the network. Then, i executes Algorithm LAi (see Line 2 in HAi ). This algorithm ensures that
the leader (here i) will execute a snapshot alone, possibly followed by a reset, using CRAi .

2. i is not the leader of the network. Then, i requests the leader of the network the permission to initiateA. To send
the request, we use RIAi (based on PIF) (see Line 4 in HAi ). Process i initiates the broadcast of a “Request
for Initialization of A” message, then waits for the end of the feedback phase.

Note that a process j is able to receive broadcasts of RIA initiated by some other processes if and only if it
satisfies Brdj ≡ (∃k ∈ Neigj ,RIAk .S = B).

As Algorithm RIAi is snap-stabilizing, the request will be received by every process, in particular the actual
leader of the network. Let ` be this leader. Upon receipt of a “Request for Initialization of A” from i (i.e., when
Brdj is satisfied), any process j launches LAj . j waits for the termination of LAj before executing its feedback
phase. However, no process but ` will go further than the leader control (see Line 1 in Algorithm LA). So,
during the feedback phase ofRIAi , ` will be the only process able to stop the progression of the feedbacks until
it is sure that the configuration is compatible with an initialization by i. At the end ofRIAi , i can initialize A.

PROTOCOL LAi
/* LAi is called either in Line 2 ofHAi or upon the receipt of some broadcasts fromRIA. */
/* In case of several broadcasts, they are all handled simultaneously. */
/* However, after that, no new broadcast fromRIA is accepted at i * until LAi terminates. */
/* Moreover, all feedbacks fromRIA are locked at i until LAi terminates. */
/* Once LAi is terminated, any enabled feedback is executed before i * starts LAi again. */
(1) IF LE i RETURNS i THEN
(2) WHILE (LE i RETURNS i) AND (T DCR

A

i RETURNS ¬TD) DO;
(3) CRAi
(4) ENDIF

For every process j, if j 6= `, the execution of LAj is simply execution of LEj . Otherwise, the leader ` should
execute another algorithm, called Algorithm CRA (see Line 3). However, before initiating CRA, ` must ensure that
no other algorithm CRA is running in the system. So, we need a snap-stabilizing termination detector rooted at `
(T DCR

A
), which computes the predicate TD defined as follows: TD is true if and only if there exists no algorithm

CRA running on the system. Once ` exits the “while loop” in Line 2 of LA` , it is guaranteed to execute CRA alone.
Similar to the case of a unique initiator, we use a snap-stabilizing snapshot algorithm SA to design CRA. Algo-

rithm SA computes the predicate OK related to A (Line 2). Then, if the result of the snapshot is ¬OK, Reset RA is
executed (Line 3).

PROTOCOL CRAi
(1) IF LE i RETURNS i THEN /* i is the actual leader */
(2) SAi
(3) IF ¬OK THENRAi ENDIF
(4) ENDIF

So, at the termination ofHAi , the system is in a normal configuration and i can initialize A.
In summary, an initiator i executes the algorithmHAi → A. Upon receiving a broadcast of someRIAi with i 6= j,

a non-initiator j executes LAj in parallel with A. If j is not involved into any RIA, then j either continues executing
A if A is running nor does anything if there is no execution of A.

However due to the arbitrary initial configuration, an execution ofA which has not been properly initiated can lead
the system to a deadlock or a livelock. So, to prevent such a situation we use a control algorithm: PCRAj controls of
the correctness of the configurations. As previously, this control has to be executed by the leader alone. But, it has to
be implemented at each process. Thus, the first action is to check if the process is the actual leader. In that case, the
leader executes CRA (line 2) to check the correctness of the configuration, and performs a reset if the system is in an
abnormal configuration.
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PROTOCOL PCRAi
(1) IF LE i RETURNS i THEN /* i is the actual leader */
(2) CRAi
(3) ENDIF

Hence, the transformed version, TRANS2A, of A is the fair parallel composition A||SNAP , where SNAP is
defined in Figure 6.2.

Li
AHi

A

¬Reqi ⋀ Brdi 

PCRi
A

Reqi

Reqi

¬Reqi ⋀ Brdi 

¬Reqi ⋀ ¬Brdi 

¬Reqi ⋀ ¬Brdi 

Figure 6.2: SNAPi

Remark 6.3 LE , SA, T D, andRA are snap-stabilizing finite algorithms (since they are based on the snap-stabilizing
algorithm PIF).

From Remark 6.3, we obtain the following result:

Lemma 6.1 Every execution of Algorithm CRA is finite (even without any starting action).

By Remark 6.3 and Lemma 6.1, we can claim the following:

Corollary 6.1 Every execution of Algorithm PCRA is finite (even without any starting action).

Lemma 6.2 Every process which is not the actual leader of the network can execute Algorithm CRA at most once.

Proof. Any process i executes CRA inside LA and PCRA. Since they are never executed in parallel, to execute
CRA twice, a process i has to initiate LE . As the result of LE is different from i, and consequently i cannot execute
CRA. 2

Lemma 6.3 Every execution of Algorithm LA is finite (even without any starting action).

Proof. First from Remark 6.3, Line 1 terminates. Consider then the execution of the while loop (Line 2 of LA).
If the process is not the leader, the loop cannot be executed more than twice (due to the result of LE). Otherwise,
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by Lemma 6.2, overall the processes which are not the leader will execute CRA at most n − 1 times. So, eventually,
T DCR

A
will return TD equal to true, and Line 2 also terminates. Finally, by Lemma 6.1, Line 3 terminates. 2

RIAi is a snap-stabilizing PIF where the broadcast and feedback phases can only be locally blocked on some
process j because it is executing LAj . Now, once LAj is terminated, j executes its enabled feedbacks of RIA before
starting LAj again. Hence, by Lemma 6.3, we can conclude with the following corollary.

Corollary 6.2 Every execution of AlgorithmRIA is finite (even without any starting action).

By Remark 6.3 and Corollary 6.2, we can state the following:

Corollary 6.3 Every execution of AlgorithmHA is finite (even without any starting action).

Lemma 6.4 At the end of the first execution of Algorithm LA initiated by the leader, the system is in a normal config-
uration (w.r.t. A) and no more resets will be initiated.

Proof. Since the execution of LA is finite (Lemma 6.3), during the last execution of T DCR
A

, no process was
running CRA while executing the part of T DCR

A
. So, if a process later executes CRA, it must have initiated the

execution. Since it is not the leader, it cannot execute anything other than the leader election part (LE). So, at the end
of the while loop, no process except the leader can execute a snapshot or a reset. When the leader ends CRA, either
the system has been reset to a normal starting configuration (for A), or the system is in a normal configuration (not
necessarily a starting configuration) because the result of SA was a normal configuration (OK was true). 2

Corollary 6.4 LA is a snap-stabilizing finite algorithm for the following specification: if i is the leader, then at the
end of LAi , the system is normal (w.r.t. A) and no more resets will be initiated.

Lemma 6.5 The leader executes CRA infinitely many times.

Proof. Assume that the leader ` only executes LA` and HA` finitely many times. Then ` executes PCRA infinitely
many times. LE` will return ` infinitely many times, so ` executes CRA infinitely many times. 2

Lemma 6.6 Within finite time, the system is in a normal configuration w.r.t. A.

Proof. By Lemmas 6.1, 6.2, and 6.5, eventually the leader executes CRA alone. Consider the first time CRA
is started by the leader alone. When that execution terminates, either the system has been reset to a normal starting
configuration (for A), or the system is in a normal configuration (not necessarily a starting configuration) because the
result of SA was a normal configuration (OK was true). 2

Theorem 6.2 TRANS2A is snap-stabilizing under the distributed weakly fair daemon w.r.t. the specification of the
problem solved by A.

Proof. Let i be an initiator of A. By Lemma 6.3, and Corollaries 6.1 and 6.3, i eventually launches HAi . By
Corollary 6.3,HAi is performed in finite time. Now, during this execution ofHAi , the leader ` must have executed LA` .
So, once HAi is done, the system is in a normal configuration w.r.t. A and will not be reset any more, by Lemma 6.4.
Hence, from that point onwards, iwill eventually startA (by Remark 6.2) andAwill behave as expected (in particular,
from the previous lemmas and corollaries, A will never be deadlocked). 2

Note that the implementation of TRANS2A in the locally shared memory model follows the same guidelines as the
ones discussed at the end of Section 6.1 for TRANS1A.

Let us now consider the issue of fairness. We borrow the same ideas as in [37, 38]. We first construct an algorithm
called T F which is total fair [38] in any identified network, meaning that each of its executions under the distributed
unfair daemon contains an infinity of actions at each process. Then, we compose TRANS2A with T F using the cross-
over composition [37]—details are given below. The resulting algorithm, noted TRANS2A � T F , satisfies the same
safety properties as TRANS2A. Moreover, it enforces the liveness properties of TRANS2A in such a way that they now
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endure a distributed unfair daemon. Hence, we obtain our final result: TRANS2A � T F is snap-stabilizing under the
distributed unfair daemon w.r.t. the specification of the problem solved by A.

First, to construct the total fair algorithm T F we proceed as follows. We endow each process i with one instance
of Algorithm PIF , noted PIF i. Each process i executes infinitely many PIF i waves in sequence. Notice that for
every i, j such that i 6= j, instances of PIF i and PIF j run in parallel. Now, since

• the number of processes is finite,

• there are exactly as many instances of PIF as processes which run at a time (each instance PIF i executes its
own waves in sequence), and

• each complete wave of each instance PIF i is executed within a finite number of steps (Corollary 4.4, page 23),

we can deduce that at least one instance PIF i performs infinitely many complete PIF waves in any execution
assuming a distributed unfair daemon. By definition, each complete PIF wave involves all processes. Consequently,
T F is a total fair algorithm.

Then, by composing our transformer TRANS2A (which works assuming a distributed weakly fair daemon, see
Theorem 6.2) with T F using the cross-over composition, we obtain a transformer which works assuming a distributed
unfair daemon. Indeed, the cross-over composition has been designed as a tool for scheduler management. Informally,
in the composition A�B, the (initial) actions of A are synchronized with actions of B: the actions of A are performed
only when an action of B is performed too, in the same step. So, the execution of A is fully driven by B, i.e., B acts
as a scheduler for A. Hence, if B is a total fair algorithm, then in any execution of A � B, every process which is
continuously enabled w.r.t. A executes an action of A within finite time, and we are done.

Formally, the cross-over compositionA�B consists in the following rewriting rules. For every action LA :: GA →
SA of A, and for every action LB :: GB → SB of B, Algorithm A �B contains the action

LA,B :: GA ∧GB → SA;SB

Moreover, for every action LB :: GB → SB of B, Algorithm A �B contains the action

LonlyB :: GB ∧ ¬Gall → SB

where Gall is the disjunction of all guards of actions in A.
Hence, with TRANS2A � T F , we obtain the following result.

Theorem 6.3 Let A be any multi-initiator distributed algorithm. Then, A can be transformed into a snap-stabilizing
algorithm for the same specification working under a distributed unfair daemon.

From Theorems 6.1 and 6.3, we can claim the following final result:

Theorem 6.4 Let A be any single- or multi-initiator algorithm satisfying Remark 6.1. Then, A can be transformed
into a snap-stabilizing algorithm for the same specification working under a distributed unfair daemon.

7 Conclusion
In this paper, we assumed the same hypothesis as in [28], i.e., we consider any distributed algorithm that can be semi-
automatically (modulo a predicate on configurations) transformed into a self-stabilizing algorithm by the transformer
of [28]. Yet, while message-passing is assumed in [28], we consider here a stronger model, the local shared memory
model of communication. Our goal was to study the expressiveness of snap-stabilization in that model.

To achieve this, we first explained how to automatically generate dynamic specifications of problems so that we
can design snap-stabilizing algorithms. We then presented the first snap-stabilizing Propagation of Information with
Feedback (PIF) algorithm for asynchronous arbitrary networks which is proven assuming a distributed unfair daemon.
This algorithm is a key module in the sense that it can be used to design numerous snap-stabilizing algorithms, e.g.,
reset, snapshot, leader election, and termination detection. We demonstrated that this PIF algorithm is also a critical
tool to transform almost any algorithm into a snap-stabilizing version, semi-automatically. Our PIF-based transformer
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shows that, in the locally shared memory model, self-stabilization and snap-stabilization have the same expressiveness,
i.e., any problem that admits a self-stabilizing algorithm also admits a snap-stabilizing solution, and vice versa.

Due to the great safety feature of snap-stabilization, it is now crucial to solve this open question : “What is the
expressiveness of snap-stabilization in asynchronous message passing?” Following the impossibility result of [26], this
question cannot hold for deterministic snap-stabilizing algorithms on systems with unbounded or unknown capacity
channels. Nevertheless, the expressiveness of snap-stabilization in the asynchronous message-passing model with
known bounds on link capacity is a challenging open question, in particular when considering identified networks of
arbitrary topologies.3
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