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Turbulent-laminar intermittency, typically in the form of bands and spots, is a ubiquitous
feature of the route to turbulence in wall-bounded shear flows. Here we study the idealised
shear between stress-free boundaries driven by a sinusoidal body force and demonstrate
quantitative agreement between turbulence in this flow and that found in the interior of
plane Couette flow – the region excluding the boundary layers. Exploiting the absence
of boundary layers, we construct a model flow that uses only four Fourier modes in
the shear direction and yet robustly captures the range of spatio-temporal phenomena
observed in transition, from spot growth to turbulent bands and uniform turbulence.
The model substantially reduces the cost of simulating intermittent turbulent structures
while maintaining the essential physics and a direct connection to the Navier-Stokes
equations. We demonstrate the generic nature of this process by introducing stress-free
equivalent flows for plane Poiseuille and pipe flows which again capture the turbulent-
laminar structures seen in transition.

1. Introduction

The onset of turbulence in wall-bounded shear flows is associated with strong inter-
mittency, in which turbulent and laminar flow compete on long spatial and temporal
scales. More than a mere curiosity, this intermittency plays a key role in the route to
turbulence in many shear flows. Intermittent turbulence is well illustrated by decreasing
the Reynolds number in plane Couette flow – the flow between parallel rigid walls moving
at different speeds. For sufficiently large Reynolds numbers, the flow is fully turbulent
and the fluid volume is uniformly filled with characteristic streamwise streaks and rolls
of wall-bounded turbulence [Fig. 1(a)]. With decreasing Reynolds number, intermittency
first arises as a large-scale modulation of the turbulent streak-roll structures, eventually
resulting in persistent oblique bands of alternating turbulent and laminar flow [Fig. 1(c)].
As the Reynolds number is lowered further, the percentage of turbulent flow decreases
until eventually the system returns to fully laminar flow via a percolation transition
(Pomeau 1986; Bottin & Chaté 1998; Shi et al. 2013; Manneville 2015). In the case of
pipe flow, significant progress has been made in understanding the various stages of the
transition process (Moxey & Barkley 2010; Avila et al. 2011; Barkley 2011; Barkley et al.
2015). However, in systems with two extended directions such as plane Couette flow (Pri-
gent et al. 2002, 2003; Barkley & Tuckerman 2005; Duguet et al. 2010), Taylor-Couette
flow (Coles 1965; Meseguer et al. 2009; Prigent et al. 2002), and plane Poiseuille flow
(Tsukahara et al. 2014; Tuckerman et al. 2014), many basic questions remain concerning
the formation and maintenance of turbulent bands and the exact nature of the per-
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Figure 1. Uniform and banded turbulence visualised by instantaneous streamwise velocity at
the midplane, with contours from negative (blue) to positive (red) velocity. (a) At high Re, shear
turbulence uniformly fills the plane Couette geometry with characteristic low- and high-speed
streaks. (b) Comparable uniform turbulence in model Waleffe flow (introduced below). At lower
Re, banded turbulence is observed in (c) plane Couette flow, (d) Waleffe flow, and (e) model
Waleffe flow.
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colation transition, despite efforts to model and understand these features (Manneville
2004, 2009, 2015; Lagha & Manneville 2007a,b; Barkley & Tuckerman 2007; Duguet &
Schlatter 2013; Shi et al. 2013; Seshasayanan & Manneville 2015).

Plane Couette flow is generally viewed as the ideal system in which to investigate shear
turbulence due to its geometric simplicity and the constant shear rate of its laminar flow.
In the turbulent regime, however, the mean shear is far from constant. Instead it has a
low-shear core and higher-shear boundary layers associated with rigid walls. To this end,
we study a flow which surpasses PCF as an ideal computational scenario for transition
because the turbulent mean shear is nearly constant at transitional Reynolds numbers.
We show that the planar shear flow between stress-free boundaries driven by sinusoidal
body forcing reproduces the qualitative phenomena and quantitative profiles of the core
region of PCF; it has the dual advantage of requiring far lower spatial resolution for fully
resolved simulations and lending itself to faithful model reduction.

In fully turbulent plane Poiseuille flow (PPF), other authors have studied wall-bounded
turbulence without walls by modelling the boundary layers combined with POD or LES
frameworks (e.g. Podvin & Fraigneau 2011; Mizuno & Jiménez 2013). Here, we will adapt
our stress-free approach to study plane Poiseuille and pipe flows at transitional Reynolds
numbers.

2. Waleffe flow

Plane Couette flow is generated by rigid parallel walls located at y = ±h moving with
opposite velocities ±U in the streamwise direction. In contrast, the system we consider is
driven by a sinusoidal body force to produce a laminar shear profile confined by stress-free
boundary conditions

ulam(y) = V sin
(π

2

y

H

)
, v(y = ±H) =

∂u

∂y

∣∣∣∣
±H

=
∂w

∂y

∣∣∣∣
±H

= 0, (2.1)

depicted in Fig. 2(a). Typically, periodic boundary conditions are imposed in the lat-
eral streamwise, x, and spanwise, z, directions. The flow was first used by Tollmien to
illustrate the insufficiency of an inflection point for linear instability (Drazin & Reid
2004). Its simplicity derives from the stress-free boundary conditions, much as stress-
free boundaries have led to simplicity and insight in thermal convection (Drazin & Reid
2004). Waleffe (1997) used the flow to illustrate the self-sustaining process and to derive
a model of eight ordinary differential equations (ODEs) capturing the essence of the pro-
cess. Extensions of this ODE model have been derived (Manneville 2004) and used to
measure turbulent lifetimes (Moehlis et al. 2004; Dawes & Giles 2011) as well as to find
unstable solutions (Moehlis et al. 2005; Chantry & Kerswell 2015; Beaume et al. 2015).
However, there has been little study of fully-resolved Waleffe flow itself in the context
of turbulence. Schumacher & Eckhardt (2001) studied the lateral growth of turbulent
spots and Doering et al. (2003) considered the bounds on energy dissipation in this sys-
tem. Here, we undertake a systematic study of Waleffe flow throughout the transitional
regime.

We simulate Waleffe flow with the freely available CHANNELFLOW (Gibson et al. 2008;
Gibson 2014) adapted to enforce stress-free boundary conditions. We employ 33 Cheby-
shev modes in the vertical direction, y, and approximately 128 Fourier modes per ten
spatial horizontal units.

We begin by comparing turbulent velocity profiles for Waleffe and plane Couette flow,
and use these to establish a scaling relationship between the flows. Figure 2 shows the
streamwise velocity of uniformly turbulent flow, averaged over time and the horizontal
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Figure 2. Waleffe flow seen as an approximation to the interior of plane Couette flow. Shown
are streamwise velocity profiles for PCF (solid/red) and WF (dashed/blue) in the uniformly
turbulent regime (PCF: Re = 500 and WF: Rew = 500). Plotted are (a) laminar flow, (b)
deviation of mean turbulent profile from laminar flow, and (c) mean turbulent profile. The
y-scale of WF is non-dimensionalised using h = 1.6H to align its stress-free boundaries (dashed
horizontals) with extrema of PCF deviation profile in (b). WF velocities are likewise scaled
by U = 1.6V so that both flows have the same average laminar shear in (a). Data are from
simulations of 2000 advective time units for [Lx, Ly, Lz] = [12, 2, 10]h.

directions, decomposed into the sum of the laminar profile and the deviation from lami-
nar. Lengths in WF have been scaled to align its stress-free boundaries with the extrema
of the PCF deviation profile [Fig. 2(b)] and velocities have been scaled to maintain the
average laminar shear [Fig. 2(a)]. WF effectively captures the interior section of PCF –
the section between the extrema of the deviation profile, Fig. 2(b), or equivalently the
section excluding the boundary layers associated with no-slip walls, Fig. 2(c). This was
first observed by Waleffe (2003) for an exact solution (exact coherent structure) shared
by PCF and by another stress-free version of PCF.

The preceding implies that when treating WF as the interior of PCF, WF should be
non-dimensionalised by length and velocity scales given by H = h/1.6 = 0.625h and
V = 0.625U . These values are not intended to be exact, since the extrema of the PCF
profiles depend on Re, although weakly over the range of interest here (from y/h ' ±0.60
at Re = 300 to y/h ' ±0.65 at Re = 700). This rescaling of y is almost identical to that
arrived at by Waleffe (2003) through a different line of reasoning. A value close to this
one could also be obtained from the extrema of low-order polynomial approximations,
like those used for modelling by Lagha & Manneville (2007a,b), although these y values
would necessarily deviate from the actual values with increasing Reynolds number. The
effective Reynolds number for WF, comparable to that for PCF, is then

Re ≡ Uh

ν
=

(1.6V )(1.6H)

ν
= 2.56Rew. (2.2)

where Rew ≡ V H/ν is the Reynolds number usually used for WF.
Simulating Waleffe flow in large domains, we observe robust turbulent bands emerging

from uniform turbulence as the Reynolds number is decreased. Figure 1(d) shows such
bands under conditions equivalent to those for PCF in Fig. 1(c). There is remarkably
strong resemblance in the broad features of the two flows. The primary difference is that
in WF, the positive (red) and negative (blue) streaks are less distinct and are almost
entirely separated by the turbulent band center, while in PCF the streaks are more
sharply defined and may pass through the turbulent center.

For a quantitative study of the banded structure, we simulate the flows in domains
tilted by angle θ in the streamwise-spanwise plane as illustrated in Fig. 3(d). Tilted
domains are the minimal flow unit to capture bands (Barkley & Tuckerman 2005) and
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Figure 3. Comparison of bands in (a) plane Couette flow, (b) Waleffe flow, and (c) model Waleffe
flow, showing the deviation from the laminar flow in a cross-sectional plane, averaged both in t
and along e‖. The turbulent region is centered at the middle of the domain. Through-plane flow
is depicted by contours from negative (blue) to positive (red) and in-plane flow is depicted by
arrows. Contour levels are scaled to 10% below extrema, PCF ∈ [−0.34, 0.34], WF ∈ [−0.42, 0.42]
and MWF ∈ [−0.41, 0.41]. For visibility the y-direction in all flows has been stretched by a factor
of 3. Tic marks at y = ±0.625h in frame (a) indicate the bounds of the interior region to which
Waleffe flow corresponds. (d) Planar view of a minimal titled domain in relation to a larger
domain.

they provide an efficient and focused method for quantitative analysis. Domains are short
(10h− 16h) in the direction along the bands, e‖, and long (40h− 120h) in the direction
across the bands, e⊥, i.e. along the wavevector of the pattern. We fix the angle at θ = 24◦,
that of the bands seen in Fig. 1. This angle is typical of those observed in experiments
and numerical simulations of PCF in large domains (Prigent et al. 2002; Duguet et al.
2010) and is that used in previous work (Barkley & Tuckerman 2005, 2007; Tuckerman
& Barkley 2011) on tilted domains.

In Figs. 3(a) and 3(b) we compare bands in Waleffe flow to those of plane Couette flow,
under equivalent conditions using the re-scaling (2.2) of WF. Mean flows are visualised
in the (e⊥, ey)-plane, with averages taken over the e‖ direction and over 2000 advective
time units. The red and blue regions indicate the flow parallel to the turbulent bands,
primarily along the edges of the bands, while the arrows show circulation surrounding
them. The banded structure in Waleffe flow is almost identical to that found in the
interior of plane Couette flow. Waleffe (2003) made similar observations regarding exact
coherent structures in no-slip and stress-free versions of plane Couette flow. The main
qualitative difference between the flows is the greater separation of the regions of positive
and negative band-aligned flow in WF [Fig. 3(b)]. This is a manifestation of the streak
separation in Fig. 1(d).

We also consider the fluctuations, ũ, about the mean flow. In figure 4 we see that in
both PCF and WF the turbulent kinetic energy is largest in the interior. Beneath this
we plot ∂y〈ũṽ〉, which dominates the turbulent force. (See Barkley & Tuckerman (2007)
for a full discussion of the force balance that prevails in turbulent-laminar banded flow.)
Although the turbulent force is very large in the near-wall regions of PCF, it mainly acts
to counterbalance the large dissipation due to the steep gradients near the walls. In the
interior of PCF, both dissipative and turbulent forces are much weaker, as is the case for
the entirety of Waleffe flow.

We have surveyed the intermittency in Waleffe flow as a function of Reynolds number.
In the tilted domain, bands emerge from turbulence at Re ≈ 640 and turbulent patches
are still observed with long lifetimes (O(103) time units) at Re ≈ 250, consistent with
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Figure 4. Comparison of turbulent fluctuations, ũ, in plane Couette flow and Waleffe flow
for turbulent bands plotted in figure 3. (a,b) Turbulent kinetic energy, k = 1

2
〈ũ · ũ〉 for PCF,

(contours [0, 0.08]) and WF (contours [0, 0.05]) respectively, averaged as in figure 3(a-c). (c,d)
Dominant turbulent force contribution in the band-aligned direction, ∂y〈ũṽ〉 for PCF (contours
[−0.017, 0.017]) and WF (contours [−0.017, 0.017]). Dashed lines in figures (a,c) show the bounds
of the interior region to which Waleffe flow corresponds.

Rew = Re/2.56 ≈ 110 previously found (Schumacher & Eckhardt 2001, Fig. 2). In PCF
the equivalent range is 325 . Re . 420 (Bottin et al. 1998; Bottin & Chaté 1998; Shi
et al. 2013; Tuckerman & Barkley 2011).

3. Modelling Waleffe flow

Motivated by the simplicity of Waleffe flow and its ability to capture turbulent-band
formation without the boundary layers present near rigid walls, we have developed a
minimal model using only leading Fourier wavenumbers in the shear direction y. Our
model of Waleffe flow (MWF) can be written as

u(x, y, z) = u0(x, z)+ u1(x, z) sin(βy) + u2(x, z) cos(2βy) + u3(x, z) sin(3βy),
(3.1a)

v(x, y, z) = v1(x, z) cos(βy) + v2(x, z) sin(2βy) + v3(x, z) cos(3βy), (3.1b)

w(x, y, z) = w0(x, z)+ w1(x, z) sin(βy) + w2(x, z) cos(2βy) + w3(x, z) sin(3βy), (3.1c)

where β = π/2H. To further simplify, we use a poloidal-toroidal plus mean-mode repre-
sentation

u = ∇× ψ(x, y, z)ey +∇×∇× φ(x, y, z)ey + f(y)ex + g(y)ez, (3.2)

where ψ, f and g match the y-decomposition of u and φ that of v. Substituting (3.2) into
the Navier-Stokes equations and applying Fourier orthogonality in y, we derive our gov-
erning equations, which are seven partial differential equations in (x, z, t) and six ODEs
for the mean flows f and g. The original eight-ODE model, derived by Waleffe (1997) to
illustrate the self-sustaining process, is contained within the system and can be recovered
by reducing the number of modes in y and imposing a single Fourier wavenumber in x and
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Figure 5. Growth of a turbulent spot in model Waleffe flow at Re = 160. The flow is initialised
with a poloidal vortex and subsequent evolution is visualised by streamwise velocity at the
midplane. At early times (t = 250), a large-scale quadrupolar flow dominates as shown by
streamlines of the y-averaged flow (contour lines, only plotted away from the spot for visibility).
By t = 1250 bands begin to develop and form a zigzag across the domain. The bands continue
to grow, and by t = 3000 a complex array of bands fills the domain.

z. Our model is closely related to a series of models by Manneville and co-workers of WF
and PCF (Manneville 2004; Lagha & Manneville 2007a,b; Seshasayanan & Manneville
2015). The first three of these attempted to capture localised dynamics with only two
modes in y. Turbulent bands were not spontaneously formed or maintained; instead, spots
grew to uniform turbulence. Most recently, and in parallel with our work, Seshasayanan
& Manneville (2015) showed that a model of PCF with four polynomial modes in the
wall-normal direction produced oblique bands, albeit over a narrow range of Re.

We simulate the model using a Fourier pseudo-spectral method in (x, z) and time step
using backward Euler for the linear terms and Adams-Bashforth for the nonlinear terms.
The effective low resolution in y results in a decreased resolution requirement in (x, z),
with only four modes needed per spatial unit, compared with ∼ 10 for PCF and WF.

At high Re, uniform turbulence is observed in the model [Fig. 1(b)], displaying the
usual streamwise-aligned streaks generated by rolls. Streaks in MWF, as well as in WF
(not shown), typically have shorter streamwise extent than those in PCF. Reducing Re,
bands are found [Fig. 1(e)] which are difficult to distinguish from those in fully resolved
Waleffe flow [Fig. 1(d)]; this is also true for bands computed in the tilted domain [Fig. 3(b)
and (c)]. The most notable qualitative difference between MWF and WF is the increased
separation of the band-aligned flow regions and of the related circulating in-plane flow. We
find bands in the model for Reynolds numbers Re ∈ [125, 230], a large relative range of Re
and an approximate rescaling of Re ∈ [250, 640] for fully resolved Waleffe flow. The most
likely reason for the shift in Re is the lack of high-curvature modes in the wall-normal
direction, i.e. small spatial scales which would be associated with higher dissipation.
However, in a model for pipe flow (Willis & Kerswell 2009) with few azimuthal modes,
the Re for transition increased relative to that of fully resolved flow.

We investigate the formation of bands via spot growth in the model. As in Schumacher
& Eckhardt (2001), laminar flow is seeded with a Gaussian poloidal vortex

u = ∇×∇×A exp
[
−a2xx2 − a2yy2 − a2zz2

]
ey, (3.3)

here with coefficients ax = az = 0.25/h, ay = 2/h. Dependence in y is approximated
by projecting onto the four y modes of (3.1). The developing spot in Fig. 5 matches
the many facets of spot growth seen in a variety of other shear flows. At early times
(t = 250), growth is predominantly in the spanwise direction, as has been commonly
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observed (Schumacher & Eckhardt 2001; Duguet & Schlatter 2013; Couliou & Monchaux
2015). An accompanying large-scale quadrupolar flow quickly develops, which we indi-
cate in Fig. 5(a) by means of streamlines of the y-averaged flow away from the spot.
Quadrupolar flows have been reported around growing spots in PCF (Duguet & Schlat-
ter 2013; Couliou & Monchaux 2015), in Poiseuille flow (Lemoult et al. 2014), and in a
low-order model for PCF (Lagha & Manneville 2007a). At later times, structures develop
that are recognisable as oblique bands [compare our t = 1250 with Fig. 1 of Duguet &
Schlatter (2013)]. By t = 3000, these structures have pervaded the whole domain.

4. Plane Poiseuille flow

To further demonstrate the applications of this stress-free modelling we consider plane
Poiseuille flow (PPF), generated here by enforcing constant mass flux in the horizontal di-
rections. The laminar profile in a reference frame moving with the mean velocity is shown
as the red curve of figure 6(a). A natural extension of the PCF case would be to approxi-
mate the parabolic PPF with a cosine body forcing and stress-free boundaries. However,
such a flow develops a linear instability at Re = 80, far below expected transition. The bi-
furcating eigenvector is the stress-free equivalent of the classic Tollmien-Schlichting wave
of PPF, which becomes unstable at Re = 5772. To remove this unstable mode, we en-
force symmetry across the channel midplane, effectively juxtaposing WF (blue) with its
mirror-symmetric counterpart (grey). Because of this, no new simulations are necessary,
since all results concerning WF can be used, merely by using the rescaling appropriate
to PPF. WF should now be non-dimensionalised by length and velocity scales given by
H = 0.825h/2 and V = 0.8252U/2. The conventional PPF Reynolds number and the
corresponding one for WF in this context are

Re ≡ Uh

ν
=

(2V )(2H)

0.8253ν
≈ 7.12

V H

ν
= 7.12 Rew, (4.1)

where U is based on the mean Poiseuille flow. As was the case for PCF these values are
not intended to be exact, since the extrema of the PPF profiles depend on Re (from
y/h ' ±0.78 at Re = 1300 to y/h ' ±0.86 at Re = 2400). A “true” rescaling of the
flow would be Reynolds number dependent but a fixed value suffices for our purpose.
As in the PCF case, the length scale found by Waleffe (2003) using the exact coherent
structures is close to that found here using the turbulent mean profile; a value within
this range could also be obtained from the extrema of the low-order polynomials used
by Lagha (2007) to model PPF. Our remapped existence range for bands in Waleffe flow
is Re ∈ [700, 1800] and compares well with Re ∈ [800, 1900] in PPF (Tuckerman et al.
2014).

Figure 7 shows the mean structure of turbulent bands in PPF and in its stress-free
counterpart. Excluding the boundary layers of PPF, there is very good agreement be-
tween the structures in these flows. By construction, the lower half of figure 7(b) is
identical to figure 3(b). The lower half of figure 7(a) also strongly resembles 3(a). The
resemblance between turbulent bands in these two flows solidifies the prevalent view of
PPF as two PCFs (Waleffe 2003; Tuckerman et al. 2014).

The low-order model of Waleffe flow derived for PCF in section 3 carries over in a
straightforward manner to PPF and is therefore not shown. A five-mode model of wall-
bounded PPF was derived by Lagha (2007) and used to study spot growth.
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Figure 6. Doubled Waleffe flow seen as an approximation to the interior of plane Poiseuille flow.
Shown are streamwise velocity profiles for PPF (solid/red) and WF (dashed/blue and grey) in
the uniformly turbulent regime (PPF: Re = 1800 and WF: Rew = 500). Plotted are (a) laminar
flow, (b) deviation of mean turbulent profile from laminar flow, and (c) mean turbulent profile.
The y-scale of WF is non-dimensionalised using H = 2h/0.825 to align its stress-free boundaries
(dashed horizontals) with extrema of PCF deviation profile in (b). WF velocities are likewise
scaled by V = 2U/0.8252 so that both flows have same average laminar shear in (a). Data are
from simulations of 2000 advective time units for [Lx, Ly, Lz] = [12, 2, 10]h.

(a) PPF Re = 975 [L‖, Ly, L⊥] = [6.6, 2, 26.4]h

(b) WF Re = 960 = 7.12Rew [6.6, 1.65, 26.4]h

e⊥

ey

Figure 7. Comparison of bands between plane Poiseuille flow (top) and doubled Waleffe flow
(bottom). Contours of streamwise velocity [−0.4, 0.4], and arrows for inplane velocity. Domain
size and Reynolds number for PPF was chosen to match with the (rescaled) WF bands plotted
in figure 3(b). This comparison excels near the midplane in PPF and confirms that PPF can be
viewed as two plane Couette flows; compare figures 7(a) and 3(a).

5. Stress-free pipe flow

Finally, we turn to pipe flow (PF), the third canonical wall-bounded shear flow, in
which intermittency takes the form of puffs. We introduce a Bessel function body force
which drives a laminar flow confined by cylindrical stress-free boundaries

uz,lam(r) =
V

1− J0(k′0)
J0

(
k′0
r

R

)
, ur(r = R) =

∂uz
∂r

∣∣∣∣
R

=
∂

∂r

(uθ
r

)∣∣∣∣
R

= 0 (5.1)

where k′0 ≈ 3.83 is the first non-zero root of J ′0.
Simulations are conducted using openpipeflow.org (Willis & Kerswell 2009) adapted

to enforce stress-free conditions on the pipe walls. As before, we first consider uniform
turbulence (figure 8) and nondimensionalise our stress-free flow to match the turning
points in the deviation. This results in R = 0.86D/2 and V = 0.862 · 2U and a Reynolds
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Figure 8. Stress-free pipe flow (SPF) seen as an approximation to the interior of pipe flow
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flow, (b) deviation of mean turbulent profile from laminar flow, and (c) mean turbulent profile.
The r-scale of SPF is non-dimensionalised using R = 0.86D/2 to align its stress-free boundaries
(dashed horizontals) with extrema of PF deviation profile in (b). SPF velocities are likewise
scaled by V = 2 · 0.862U so that both flows in (a) have the same average laminar shear. Data
are from simulations of 2000 advective time units for pipes of length 5D.
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Figure 9. A turbulent puff in stress-free pipe flow. (a) Streamwise velocity along the pipe (only
partial pipe shown) and (b-e) (r, θ)-slices along the pipe [indicated by red lines in (a)] with
arrows of in-plane velocity. Motivated by figure 8 the red circles show the location of the walls
for the corresponding wall-bounded flow, highlighting the absence of boundary layers in the
stress-free case. Nine contours are used for streamwise velocity varying in [-0.86,0.48].

number

Re =
UD

ν
=

V R

0.863ν
≈ 1.57Rew. (5.2)

where D/2 is the pipe radius and 2U is the maximum laminar speed. Like the cosine
forced version of PPF, stress-free pipe flow undergoes a linear instability at low Reynolds
number (Re ≈ 340), below the existence range of turbulence. Therefore to study laminar-
turbulent intermittency (here turbulent puffs) we impose the symmetry

Rn : u(r, θ, z)→ u(r, θ + 2π
n , z), n ≥ 2 (5.3)

which stabilises the laminar flow. We will only present results from R3 here but alternate
choices (e.g. two and four) produce comparable results.

In this symmetry subspace, turbulent puffs are found for stress-free pipe flow over a
range of Reynolds numbers Re ∈ [2400, 3500]; an exemplar is plotted in figure 9. For
conventional rigid-wall pipe flow in this subspace, turbulent puffs are first observed at
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Re ≈ 2400, an increase from Re ≈ 1750 (Darbyshire & Mullin 1995) for no imposed
symmetry. The structure and length scales of these puffs is comparable with their wall-
bounded counterparts. Excitation occurs upstream [figure 9(b-c)] generating fast and
slow streaks which slowly decay downstream [9(e)]. The success of model Waleffe flow
combined with the low azimuthal resolution model of Willis & Kerswell (2009) suggest
that a model with one spatial dimension (z) is possible. However the complexity of
cylindrical coordinates, particularly the coupled boundary conditions, prevents further
work at this time.

6. Conclusion

Since at least the 1960s (e.g. Coles 1962) there has been interest in understanding
the ubiquitous turbulent-laminar intermittency observed at the onset of turbulence in
wall-bounded shear flows. We have demonstrated that shear alone is the necessary ingre-
dient for generating these structures; the boundary layers of wall-bounded flows are not
essential. The robustness of this concept is demonstrated, not only by turbulent bands
in stress-free versions of PCF and PPF, but also by puffs in stress-free pipe flow. Our
rescaling yields quantitative correspondence to the range of existence and the length
scales of these phenomena. In planar geometry, we exploit the absence of rigid walls to
propose a simple four-vertical-mode model that captures all the essential physics in the
shear-dependent direction. This provides a direct link between ODE models of the self-
sustaining process (Waleffe 1997) and the modelling of turbulent-laminar coexistence.
The absence of rigid walls opens the possibility of exploring large-scale features of tran-
sitional turbulence without the complications and numerical requirements of sharp gra-
dients. This should greatly facilitate the numerical study of percolation in systems with
two extended directions, while maintaining a direct connection with the Navier-Stokes
equation.
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GENCI (Grand Équipement National de Calcul Intensif).

REFERENCES

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset
of turbulence in pipe flow. Science 333, 192–196.

Barkley, D. 2011 Simplifying the complexity of pipe flow. Phys. Rev. E 84, 016309.
Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M. & Hof, B. 2015 The rise of

fully turbulent flow. Nature 526, 550–553.
Barkley, D. & Tuckerman, L. S. 2005 Computational study of turbulent laminar patterns

in Couette flow. Phys. Rev. Lett. 94, 014502.
Barkley, D. & Tuckerman, L. S. 2007 Mean flow of turbulent–laminar patterns in plane

Couette flow. J. Fluid Mech. 576, 109–137.
Beaume, C., Chini, G. P., Julien, K. & Knobloch, E. 2015 Reduced description of exact

coherent states in parallel shear flows. Phys. Rev. E 91, 043010.
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108, 229–248.

Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.

Couliou, M. & Monchaux, R. 2015 Large-scale flows in transitional plane Couette flow: A
key ingredient of the spot growth mechanism. Phys. Fluids 27, 034101.

Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe
flow. J. Fluid Mech. 289, 83–114.

Dawes, J. H. P. & Giles, W. J. 2011 Turbulent transition in a truncated one-dimensional
model for shear flow. Proc. R. Soc. A 467, 3066–3087.

Doering, C. R., Eckhardt, B. & Schumacher, J. 2003 Energy dissipation in body-forced
plane shear flow. J. Fluid Mech. 494, 275–284.

Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability . Cambridge University Press.

Duguet, Y. & Schlatter, P. 2013 Oblique laminar-turbulent interfaces in plane shear flows.
Phys. Rev. Lett. 110, 034502.

Duguet, Y., Schlatter, P. & Henningson, D. S. 2010 Formation of turbulent patterns near
the onset of transition in plane Couette flow. J. Fluid Mech. 650, 119–129.

Gibson, J. F. 2014 Channelflow: A spectral Navier-Stokes simulator in C++. Tech. Rep.. U.
New Hampshire, Channelflow.org.
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