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Abstract

Objective

Word finding depends on the processing of semantic and lexical information, and it involves

an intermediate level for mapping semantic-to-lexical information which also subserves lexi-

cal-to-semantic mapping during word comprehension. However, the brain regions implement-

ing these components are still controversial and have not been clarified via a comprehensive

lesion model encompassing the whole range of language-related cortices. Primary progres-

sive aphasia (PPA), for which anomia is thought to be the most common sign, provides such

a model, but the exploration of cortical areas impacting naming in its three main variants and

the underlying processing mechanisms is still lacking.

Methods

We addressed this double issue, related to language structure and PPA, with thirty patients

(11 semantic, 12 logopenic, 7 agrammatic variant) using a picture-naming task and voxel-

based morphometry for anatomo-functional correlation. First, we analyzed correlations for

each of the three variants to identify the regions impacting naming in PPA and to disentan-

gle the core regions of word finding. We then combined the three variants and correlation

analyses for naming (semantic-to-lexical mapping) and single-word comprehension (lexi-

cal-to-semantic mapping), predicting an overlap zone corresponding to a bidirectional lexi-

cal-semantic hub.

Results and Conclusions

Our results showed that superior portions of the left temporal pole and left posterior tempo-

ral cortices impact semantic and lexical naming mechanisms in semantic and logopenic

PPA, respectively. In agrammatic PPA naming deficits were rare, and did not correlate with

any cortical region. Combined analyses revealed a cortical overlap zone in superior/middle
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mid-temporal cortices, distinct from the two former regions, impacting bidirectional binding

of lexical and semantic information. Altogether, our findings indicate that lexical/semantic

word processing depends on an anterior-posterior axis within lateral-temporal cortices,

including an anatomically intermediate hub dedicated to lexical-semantic integration. Within

this axis our data reveal the underpinnings of anomia in the PPA variants, which is of rele-

vance for both diagnosis and future therapy strategies.

Introduction
Patients with primary progressive aphasia (PPA) usually report difficulty in word finding as
the first and main complaint. Such difficulty, termed anomia, can manifest in both, spontane-
ous speech or picture naming and is thought be the “single most common sign of PPA” [1].
According to language models, word finding is a multi-step process essentially involving access
to the words’ semantics and subsequent lexical retrieval of the phonological code [2]. These
two core steps appear to depend on anterior and posterior regions of the temporal cortex [3–
5]. However, the use of various degenerative and vascular lesion models has led to divergent
findings involving various temporal, parietal and frontal regions [6], thus resulting in an
unsolved debate. In addition, several authors have suggested integrative brain regions, labeled
‘convergence zones’ [7, 8], which might bind semantic and lexical information to ultimately
form the basis for the phonological spell-out of articulated words. However, it is unclear
whether there is a unique integrative hub underpinning one core operation, i.e. ‘binding’, and
where such a hub might be localized. An important challenge is therefore to clarify the current
situation with a single lesion model encompassing the entire language cortex with the aim of
disentangling the core regions of naming and identifying a potential integrative hub. PPA rep-
resents such a model providing a unique setting where the different components of the lan-
guage network undergo progressive and selective dissolution related to neural degeneration.
Unlike vascular models with stroke patients, which are anatomically restricted due to the blood
vessel distribution [9, 10], PPA affects the whole range of language-related cortical regions
[11–13].

PPA is subdivided into three main variants (logopenic (lv-PPA), semantic (sv-PPA) and
agrammatic/nonfluent (nfv-PPA), affecting posterior temporal-parietal, anterior temporal and
inferior frontal/superior temporal cortices, respectively [11]. Such distinct atrophy patterns
suggest that the naming disorders in the three PPA variants are related to the breakdown of
distinct and anatomically separable components of the lexical/semantic processing system.
However, the substrates of naming deficits in PPA have not been directly compared between
the three main variants given that the few available studies did not explore the whole range of
PPA [6], lumped PPA variants together [14], or mixed PPA with other degenerative conditions
such as Alzheimer’s disease or frontotemporal dementia [15, 16]. In addition, the early occur-
rence of word finding difficulties in all PPA variants [1] might suggest the existence of common
damage to a unique central hub subserving the integration of semantic and lexical word infor-
mation. According to models of word production such a hub would probably correspond to
the intermediate level of ‘lexical selection’ or ‘lemmas’, mediating between ‘conceptual prepara-
tion’ and the activation of ‘word forms’ within the mental lexicon [2, 17]. These models also
claim that the intermediate level is shared for word production and comprehension given the
consistent interference effects between auditorily perceived distractors (e.g., ‘goat’) and the pro-
duction of related target words during naming (e.g., ‘sheep’) [18]. However, the localization of
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a bidirectional lexical-semantic hub has not been clarified and its alteration in PPA has not
been investigated.

With the aim of addressing these issues the present study had three interrelated goals: i) to
determine the core regions impacting naming in PPA variants, ii) to disentangle the different
components of the word finding process, and iii) to identify a potential lexical-semantic hub.
For this purpose we explored a large group of patients with sv-PPA, lv-PPA and nfv-PPA
assessing their performances in a picture naming task and identifying patterns of cortical atro-
phy by using voxel based morphometry (VBM). We then analyzed correlations between behav-
ioral scores and cortical atrophy for each PPA variant to identify the regions impacting naming
in PPA and to disentangle the core regions of the word finding process. In a second series of
correlation analyses, we combined the three PPA subgroups with the aim of identifying a
unique and anatomically distinct region impacting naming in all PPA variants and potentially
corresponding to a central hub for lexical/semantic integration. We then checked the claim
that such a hub should be bidirectional, linking both, semantic to lexical and lexical to semantic
representations [2, 7, 8, 17]. To confirm this double function we compared ‘picture naming’,
requiring semantic-to-lexical mapping, and ‘single-word comprehension’, requiring lexical-to-
semantic mapping. We expected to identify a common region for both tasks, corresponding to
the core of the integrative lexical-semantic hub which was thought to be localized in mid por-
tions of the left temporal cortex.

Methods

Participants
Thirty PPA patients were enrolled in the study at the National Reference Center for “PPA and
rare dementias” of the Pitié-Salpêtrière Hospital, Paris. Clinical diagnosis was based on a
multi-disciplinary evaluation including neurological examination, standard neuropsychologi-
cal tests and a detailed language evaluation. Diagnosis was based on current research criteria
[19], in which progressive language impairment is required as the central core. The patients
were further classified into the three PPA main variants: 12 patients had sv-PPA, 11 patients
lv-PPA, and 7 patients nfv-PPA. According to the classification criteria [19], sv-PPA patients
had single-word comprehension deficits and anomia (without sentence repetition disorders,
agrammatism or motor speech disorders), lv-PPA patients were characterized by word finding
difficulties and sentence repetition impairment (without agrammatism, single-word compre-
hension or motor speech disorders), and patients with nfv-PPA demonstrated speech sound
errors and/or syntactic disorders in sentence production/perception (without single-word
comprehension disorders). Patients were excluded if they had: (i) medical illnesses that could
interfere with cognitive functioning; (ii) any other major systemic, psychiatric or neurological
diseases; and (iii) non degenerative lesions on routine MRI such as focal or diffuse brain dam-
age including cerebrovascular disorders.

All clinical and imaging data were generated during a routine clinical work-up and were ret-
rospectively extracted for the purpose of this study. Therefore, according to French legislation,
explicit consent was waived. However, regulations concerning electronic filing were followed,
and patients and their relatives were informed that anonymized data might be used in research
investigations and particularly for the present study. The study received approval from the Eth-
ics Committee of the Pitié Salpêtrière Hospital (Paris, France), and patient information was
anonymized and de-identified prior to analysis. Demographic data of the patients are summa-
rized in Table 1.
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Cognitive/language assessment
The core of the language assessment was composed of a picture naming test (D080 [20]) and a
single-word comprehension task requiring pointing to pictures upon auditory word presenta-
tion (Boston Diagnostic Aphasia Evaluation [21]). The DO80 contained 80 pictures depicting
nouns (mean lexical frequency 34 ± 59 per million according to the LEXIQUE 2 database [22].
Patients were asked to name aloud each of the 80 items within 6 seconds after the picture
onset. The rating of naming performance explicitly focused on lexical/semantic core mecha-
nisms of the word finding process accepting post-lexical phoneme substitutions and phonetic
distortions whenever the target word was recognizable. Answers were therefore counted as
correct when phonemic paraphasias approximated the word target as for example in
‘edephant rsquo; for ‘elephant’. In contrast, semantic paraphasias (e.g., ‘cow’ instead of ‘ele-
phant’), non responses, unrelated words and unrecognizable nonce word productions were
counted as errors. Both key tests of this study (DO80, single-word comprehension of the
BDAE) were used because they offer a wide range of stimuli (nouns, numbers, living and non
living items) and therefore provide global markers for naming and word comprehension with-
out restricting the materials to one word or semantic category.

The language assessment furthermore included an evaluation of aphasia severity taking into
account spontaneous speech and the description of the ‘cookies theft picture’ (Boston Diagnos-
tic Aphasia Evaluation [21]), a verbal fluency test comprising phonemic and category fluency
[23], and a sentence repetition task (Boston Diagnostic Aphasia Evaluation [21]. We also eval-
uated syntax applying the 4-point scale of Leyton et al. [24] scoring “severe” (3), “mild” (2),
“questionable” (1) and “no” (0) agrammatism during spontaneous speech, a ten-minute con-
versation, and during the description of the ‘cookies theft picture’. Motor speech errors (pho-
netic/speech sound distortions) were assessed during the DO80 picture naming test. Global
cognitive assessment included the Mini-Mental State Examination [25] and the Frontal Assess-
ment Battery [26].

As all standard language/cognitive tests can be biased by visuo-perceptual disorders we
also applied a subtest of the PEGV (Protocole Montréal Toulouse d’Evaluation des Gnosies
Visuelles) [27]: pointing to specific geometric shapes contained in a setting of entwined geo-
metrical shapes, with the aim to probe for accurate performance in the perceptual domain.

Imaging study
MRI acquisition and voxel-based morphometry study. Three-dimensional T1 weighted

MRIs were acquired on a 1.5 T scanner (GE Medical Systems GE Healthcare, Little Chalfont,
UK). Voxel-based morphometry (VBM) was performed using the Statistical Parametric
Mapping software (SPM8, Welcome Department of Imaging Neuroscience, London;

Table 1. Demographic patient data (means ± standard deviations).

all PPA nfv-PPA lv-PPA sv-PPA

Number of subjects 30 7 12 11

Women/men 14/16 5/2 4/8 5/6

Mean age (years) 67 ± 7.7 70.3 ± 5.8 68.9 ± 8.2 62.6 ± 6.6

Right/left handed 27/3 7/0 11/1 9/2

Education level (years) 10.4 ± 3.7 9.9 ± 4.0 10.2 ± 3.6 11 ± 3.9

Symptom duration 3.2 ± 1.2 3.1 ± 1.3 3.2 ± 0.58 3.4 ± 1.6

nfv = non fluent variant; lv = logopenic variant; sv = semantic variant

doi:10.1371/journal.pone.0148707.t001
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http://www.fil.ion.ucl.ac.uk/spm) running on Matlab 7.13.0 (Math-Works, Natick, MA), and
the Diffeomorphic Anatomical Registration Exponentiated Lie Algebra (DARTEL) registra-
tion method [28]. Images were spatially normalised into the Montreal Neurological Institute
(MNI) space and then segmented into grey matter GM, white matter and CSF. The images
were also modulated, and we chose the option “non-linear only”, in which voxel values are
multiplied by non-linear components, which allows the absolute amount of tissue corrected
for individual brain sizes to be considered, without entering the total intracranial volume as a
covariate in the statistical model. Gray matter was further normalized with DARTEL (http://
www.fil.ion.ucl.ac.uk/spm/software/spm8). Normalized segments were smoothed with an
8-mm full-width at half-maximum Gaussian kernel.

In order to define the pattern of gray matter atrophy specific to each PPA variant, we per-
formed contrasts comparing each PPA variant vs. the other two PPA subgroups (e.g., sv-PPA
vs. lv-PPA and nfv-PPA). A significance threshold of p< 0.001 uncorrected for multiple com-
parisons was accepted given the relatively small sample size of the subgroups, and because con-
trasts were performed between patients.

The relationship between performances on language tests and gray matter volume was ana-
lyzed both, by exploring each group separately and by collapsing across subject groups. We
investigated the effect of each variable (‘picture naming’, ‘single-word comprehension’) sepa-
rately, by using a multiple regression design, with age and disease duration as nuisance vari-
ables and separate design matrices for each test. Analyses were focused on the left hemisphere.
A significance threshold of p< 0.05 corrected for multiple comparisons (Family Wise Error
[FWE]) was accepted for all PPA patients. Results were also tested at p< 0.001 uncorrected
for multiple comparisons when exploring each patient group separately. This threshold was
accepted given the relatively small sample size of the subgroups and because the literature indi-
cates that lexical-semantic processing is primarily linked to a particular brain region: the tem-
poral cortex [3–5].

Results

Cognitive/language assessment
We applied ANOVAs to compare the three PPA subgroups. These subgroups were similar
with respect to age, gender distribution, handedness, number of years of education and symp-
tom duration (all Fs< 1). Performance with the MMSE and the FAB was poorer in lv-PPA
than in sv-PPA and nfv-PPA (MMSE: lv-PPA vs. nfv-PPA F(1,17) = 12.10, p = 0.003; lv-PPA
vs. sv-PPA F(1,21) = 11.05, p = 0.003; FAB: lv-PPA vs. nfv-PPA, F(1,17) = 5.86, p = 0.027; lv-
PPA vs. sv-PPA F(1,21) = 4.66, p = 0.043). Aphasia severity was similar in the three PPA sub-
groups (F(2,27) = 1.63, p = 0.22). Table 2 summarizes the scores from the cognitive/language
assessments. Detailed results of pair-wise comparisons between subgroups for the different lan-
guage tests are shown in Table 3.

Picture naming scores were abnormal in 83.3% of the patients (sv-PPA and lv-PPA 100%
impaired, nfv-PPA 28.6% impaired). At a group level, naming performance was poorer in sv-
PPA than in lv-PPA, and poorer in lv-PPA than in nfv-PPA. Phonemic paraphasias were more
frequent in nfv-PPA than in sv-PPA and lv-PPA, whereas semantic paraphasias were more fre-
quent in sv-PPA than in lv-PPA and more frequent in lv-PPA than in nfv-PPA. Non responses
were more frequent in sv-PPA and lv-PPA than in nfv-PPA. In the single-word comprehension
task performance was poorer in sv-PPA than in lv-PPA and nfv-PPA. Mean scores of word
comprehension in the lv-PPA group were slightly under the cut-off because two lv-PPA
patients had mild word comprehension difficulties. Such difficulties are, however, not at odds
with an lv-PPA diagnosis given that semantic disorders in lv-PPA have been detected in several
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studies [29, 30], and given that both patients met the lv-PPA core features of word-finding dif-
ficulties and sentence repetition impairment. Finally, category fluency was poorer in sv-PPA
and lv-PPA than in nfv-PPA, phonemic fluency was similar in the three subgroups, and sen-
tence repetition scores were poorer in lv-PPA and nfv-PPA than in sv-PPA.

Importantly, the results of the visuoperceptual subtest of the PEGV [27] showed normal
performances in all PPA patients ensuring that language/cognitive data were not biased by ‘low
level’ visuoperceptual dysfunction.

We also conducted correlation analyses between language scores in the whole PPA group
using tasks tapping both lexical and semantic capacities, in word production and perception
(‘picture naming’, ‘single-word comprehension’, ‘category fluency’). Results showed that pic-
ture naming correlated with single-word comprehension (R = 0.79, p< 0.001) and with

Table 2. Cognitive/language data of the patients (means ± standard deviations).

all PPA nfv-PPA lv-PPA sv-PPA Normal threshold

MMSE 22.7 ± 4.8 26.1 ± 2.0 19.0 ± 5.2 24.6 ± 2.3 � 27

FAB 12.0 ± 3.1 13.6 ± 2.6 10.3 ± 2.9 12.9 ± 2.8 � 16

Aphasia severity scale 3.5 ± 0.9 3.1 ± 0.9 3.3 ± 0.8 3.8 ± 0.9 > 4

Picture naming 56.0 ± 21.2 75.9 ± 5.0 60.8 ± 14.4 38.1 ± 20.1 > 75

Non responses 12.3 ± 15.0 0.9 ± 1.5 10.6 ± 10.7 21.5 ± 18.4 NA

Phonemic paraphasias 1.4 ± 1.9 3.6 ± 2.5 0.8 ± 1.2 0.5 ± 0.8 NA

Semantic paraphasias 7.3 ± 7.9 0.3 ± 0.5 3.9 ± 2.0 15.5 ± 7.2 NA

Phonetic distortions 2.2 ± 4.3 9.3 ± 3.3 0 ± 0 0 ± 0 NA

Single-word comprehension 64.8 ± 9.5 71.3 ± 0.8 67.8 ± 6.7 57.4 ± 10.8 � 68

Category fluency (‘fruits’ per 2 minutes) 9.6 ± 5.1 15.6 ± 4.8 8.3 ± 3.7 7.5 ± 3.7 � 15

Phonemic fluency (‘P’ per 2 minutes) 9.4 ± 5.6 10.7 ± 7.8 7.8 ± 4.5 10.2 ± 5.3 � 15

Sentence repetition 9.8 ± 4.0 6.9 ± 3.1 8.6 ± 3.3 13.1 ± 3.0 � 13

Syntax scores 0.6 ± 1.1 2.4 ± 0.5 0.1 ± 0.3 0 ± 0 < 1

nfv = non fluent variant; lv = logopenic variant; sv = semantic variant; MMSE = mini mental state examination; FAB = frontal assessment battery; NA = not

applicable. Syntax scores: based on the 4-point scale of Leyton et al. [24]: 3 = severe, 2 = mild, 1 = questionable, 0 = no agrammatism. Phonetic

distortions: number of phonetic distortions during the picture naming test.

doi:10.1371/journal.pone.0148707.t002

Table 3. Results of the language assessment: pair-wise ANOVA comparisons between PPA subgroups.

lv-PPA vs. nfv-PPA nfv-PPA vs. sv-PPA lv-PPA vs. sv-PPA Inter-variant comparison

Picture naming (total score) F(1,17) = 6.93, p = 0.017* F(1,16) = 23.37, p < 0.001* F(1,21) = 9.86, p = 0.005* sv < lv < nfv

Non responses F(1,17) = 5.64, p = 0.03* F(1,16) = 8.53, p = 0.01* F(1,21) = 3.07, p = 0.09 nfv < lv = sv

Phon paraphasias F(1,17) = 10.56, p = 0.005* F(1,16) = 14.10, p = 0.002* F < 1 sv = lv < nfv

Sem paraphasias F(1,17) = 21.38, p < 0.001* F(1,16) = 30.99, p < 0.001* F(1,21) = 29,23, p < 0.001* nfv < lv < sv

Phonetic distor F(1,17) = 59.60, p < 0.001* F(1,16) = 93.04, p < 0.001* F < 1 nfv < lv = sv

Single-word comprehension F(1,17) = 3.07, p = 0.09 F(1,16) = 11.19, p = 0.004* F(1,21) = 6.37, p = 0.02* sv < lv = nfv

Category fluency F(1,17) = 14.09, p = 0.002* F(1,16) = 16.43, p = 0.001* F < 1 sv = lv < nfv

Phonemic fluency F(1,17) = 1.06, p = 0.32 F < 1 F(1,21) = 1.32, p = 0.26 sv = lv = nfv

Sentence repetition F(1,17) = 1.27, p = 0.28 F(1,16) = 18,25, p = 0.001* F(1,21) = 11.78, p = 0.002* nfv = lv < sv

Syntax scores F(1,17) = 157.12, p < 0.001* F(1,16) = 235.48, p < 0.001* F < 1 nfv < lv = sv

nfv = non fluent variant; lv = logopenic variant; sv = semantic variant; Phon: Phonemic; Sem: semantic; Phonetic distor = phonetic distortions. ‘<‘ means

poorer scores or frequency; ‘ = ‘ means similar scores or frequency.

doi:10.1371/journal.pone.0148707.t003
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category fluency (R = 0.66, p< 0.001), and that category fluency correlated with single word
comprehension (R = 0.51, p = 0.004). These significant correlations between the three tasks
suggested a common substrate for the concomitant processing of semantic and lexical word
aspects in both, word production and perception. In contrast, phonemic fluency, which was
used as a control test involving lexical but not semantic capacities, didn’t correlate neither with
naming, single-word comprehension or category fluency.

Imaging study
Atrophy patterns specific to each PPA variant. Gray matter atrophy specific to sv-PPA

involved the whole left anterior temporal cortex. Smaller areas of atrophy were also found in
the right anterior temporal cortex. Lv-PPA had variant-specific atrophy in the left temporal-
parietal junction. Smaller areas of atrophy were also found in the right posterior superior and
middle temporal gyrus. The atrophy pattern specific to nfv-PPA included the left inferior fron-
tal gyrus as well as right superior and middle frontal gyri. Fig 1 illustrates the results of variant-
specific atrophy patterns.

Correlations between language scores and gray matter volume. In the first series of anal-
yses, we explored cortical correlations of naming scores for each PPA subgroup to identify
areas impacting the naming process in the different PPA variants and to disentangle the core
regions of the lexical/semantic word finding network. In sv-PPA, picture-naming scores posi-
tively correlated with superior portions of left superior temporal pole. In lv-PPA naming per-
formance positively correlated with the left posterior superior/middle temporal cortex and the
inferior temporal cortex. Smaller clusters were found in the inferior frontal and the lingual gyri
(p< 0.001, uncorrected). No correlation with naming scores was found for nfv-PPA. Further-
more, no correlation was found for scores of ‘single-word-comprehension’ in these segregated
analyses. The results are summarized in Table 4 and illustrated in Fig 2.

In the second series of correlation analyses, we combined the three PPA subgroups with the
aim of identifying a distinct region impacting naming in all PPA variants and corresponding to
a semantic-to-lexical integration hub. Correlation analyses showed that picture naming scores
were correlated with gray matter volume in the left superior-middle temporal gyrus (p< 0.05,
FWE). Smaller regions of correlation were also found in the left posterior-ventral part of infe-
rior temporal cortex (p< 0.05, FWE). We then performed a correlation analysis with ‘single-
word comprehension’ to identify a common region impacting lexical-to-semantic integration,
predicting overlap with the latter correlation result. This analysis showed that scores of single-
word comprehension correlated with the left superior/middle temporal gyrus (p< 0.001,
uncorrected). Smaller regions of correlation were also found in left inferior temporal gyrus
(p< 0.001, uncorrected). Usingmricron software [31], we compared the correlation regions
linked to ‘picture naming’ and ‘single-word comprehension’ and found a unique area of sub-
stantial overlap situated in the left superior/middle mid-temporal cortex (MNI boundary coor-
dinates: anterior -54, 16, -18; posterior -54, -6, -18; superior -53, 7, -10; inferior -51, 7, 24;
Brodmann areas 38 and 21). The results are summarized in Table 4 and illustrated in Fig 3.

Discussion
We explored the lexical/semantic network of naming in PPA to individualize the cortical
regions impacting the naming process in PPA variants, to disentangle the core regions of word
finding operations, and to identify a potential hub linking semantic to lexical information. Our
findings show that distinct anterior and posterior temporal cortices impact naming in sv-PPA
and lv-PPA, respectively, suggesting anatomically dissociated substrates for semantic and lexi-
cal processing during word finding. In contrast, naming impairments in nfv-PPA were rare
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and not linked to any specific cortical correlate. Subsequent analyses combining the three vari-
ants unveiled the existence of a third key area, central to word finding in PPA, which might
correspond to a bidirectional ‘hub’ linking semantic and lexical word information located in
the middle and superior mid-temporal cortex.

More specifically, our behavioral results showed that aphasia severity was similar in the
three PPA variants but that naming scores were distinct, with lowest performance in sv-PPA
followed by lv-PPA and nfv-PPA. The correlation analyses indicated that naming difficulties in

Fig 1. Regions of gray matter atrophy specific to each PPA variant as compared with other two
variants. Regions of gray matter atrophy are shown on the 3-dimensional rendering of the Montreal
Neurological Institute standard brain. A) nfv-PPA, B) sv-PPA, C) lv-PPA.

doi:10.1371/journal.pone.0148707.g001

Table 4. Correlation between graymatter regions and performance with picture naming and single-word comprehension.

Cortical region (Brodmann area) Coordinates (x, y, z) T value Z score Cluster
size

Picture Naming ////////////////////// ///////// //////// /////////

Sv-PPA ////////////////////// ///////// //////// /////////

Left superior temporal pole (38) -44, 21, -12 14.51 4.50 149

Lv-PPA ////////////////////// ///////// ////////

Left superior/middle posterior temporal gyrus (42, 21) -50, -43, -6. -52, -37, 18 6.90.
5.67

3.68.
3.37

112. 99

Left inferior temporal gyrus (20) -46, -24, -24 11.18 4.41 171

Left inferior frontal gyrus (45) -34, 32, 16 6.43 3.57 108

Left lingual (18) -15, -81, -2 11.18 4.41 112

All PPA ////////////////////// ///////// //////// /////////

Left superior-middle temporal gyrus (38, 21) -34, 8, -28. -42, 15, -17 7.38.
7.32

5.33.
5.25

6271

Left inferior temporal/fusiform gyrus (20) -40, -28, -20 7.19 5.25 300

Single-word comprehension ////////////////////// ///////// //////// /////////

All PPA ////////////////////// ///////// //////// /////////

Left superior/middle temporal gyrus (21) -56, 2, -17 3.76 3.21 1057

Left posterior inferior temporal/fusiform gyrus (37) -38, -33, -14 4.12 3.57 360

Naming/comprehension overlap (21, 22).
Anatomical Boundaries:

Anterior: -54, 16, -18. Posterior: -54, -6, -18 Superior: -53, 7,
-10 Inferior: -51, 7, 24

/////// /////// ///////

doi:10.1371/journal.pone.0148707.t004
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Fig 2. Correlation of gray matter volumes with performance on naming for each PPA variant: lv-PPA
(green), sv-PPA (red), nfv-PPA (no regions).Results are superimposed on the 3-dimensional rendering of
the Montreal Neurological Institute standard brain.

doi:10.1371/journal.pone.0148707.g002

Fig 3. Correlation of gray matter volumes with performance on naming (red) and single-word
comprehension (blue) for the whole PPA group. The overlap region representing the lexical-semantic hub
is shown in pink. Results are superimposed on the 3-dimensional rendering of the Montreal Neurological
Institute standard brain.

doi:10.1371/journal.pone.0148707.g003
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sv-PPA were related to superior regions of the left temporal pole whereas, in lv-PPA, they were
linked to three contiguous regions including the left posterior superior, posterior middle and
middle inferior temporal cortex. VBM analyses of the anatomical patterns differentiating PPA
variants demonstrated that the identified anterior and posterior cortices for naming corre-
sponded to regions specifically damaged in sv-PPA and lv-PPA respectively, confirming the
anatomo-functional separation of word finding operations. However, our results also highlight
that critical zones for naming involve zones beyond the most atrophied regions such as the
middle inferior temporal cortex in the lv-PPA variant. They also specify the precise naming
correlates within the most atrophied regions thus providing information about the exact locus
primarily involved in naming capacities in the lv-PPA and the sv-PPA variants.

As discussed below posterior temporal regions might play a causative role in generating lexi-
cal information whereas the integrity of anterior temporal regions would be necessary for the
processing of semantic information. Subsequent analyses combining the three PPA variants
showed that naming correlated with an anatomically distinct area in middle/superior mid-tem-
poral cortices which plays an additional core role for word finding. A second analysis with sin-
gle-word comprehension revealed a similar left temporal region with considerable anatomical
overlap, suggesting its role in the bidirectional integration of lexical/semantic information dur-
ing word production and word comprehension. Anatomical analysis of this integrative and
bidirectional ‘overlap zone’ confirmed its central localization in superior/middle mid-temporal
cortices. These findings combining the three variants also highlight that central correlates of
naming in PPA as such, and the integrative overlap region, are outside of the most atrophied
regions but that they critically impact naming capacities and integrative word processing.
These temporal-cortical regions are slightly more caudally and rostrally located as compared to
the most atrophied regions and naming correlates in sv-PPA and lv-PPA, respectively. Further-
more, it should be noted that, in the entire PPA group, the correlate of single-word comprehen-
sion did not completely overlap with the correlate of naming. Functionally, naming accuracy
depends on previous access to semantic information of a given word as evidenced in sv-PPA
and a computational model by Lambon Ralph et al. [32]. However, our anatomical results indi-
cate that the serially different steps of word processing are implemented by distinct but tightly
interrelated neural populations. The entire region (encompassing the blue and red marked
areas in Fig 3) is involved in single-word processing, yet with differential contributions. The
blue area (Fig 3) appears to be more dedicated to single-word comprehension and semantics
while the red area interacts at the stage of lexical access for naming. These differential roles are
reflected by slightly distinct correlation areas which share, however, a great overlap zone. This
overlap zone appears to integrate the distinct contributions of word processing while binding
semantic comprehension and lexical word-production information required for subsequent
naming.

Naming in PPA and brain implementation of word finding
Word finding and naming difficulties have been reported to be the single most common lan-
guage difficulty in PPA [1]. Our data indicate that this claim must be put into perspective given
that naming disorders show a highly unequal distribution across PPA variants. Naming
impairment is more important in sv-PPA than in lv-PPA (but affecting in both 100% of the
patients), and is rare and slight in nfv-PPA (19% of the patients), which at the group level had
normal scores with the naming task. This differential pattern within the PPA spectrum is con-
sistent with previous studies for which a detailed inspection of naming scores reveals a similar
inter-variant naming gradient [11, 14, 24]. Although naming scores are not considered to be a
good discriminator between PPA variants [24] normal performance with sensitive naming
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tests for a given patient appears to rule out sv-PPA and lv-PPA, but not nfv-PPA diagnosis.
Such normal or only mildly hampered performance in nfv-PPA can be explained by damage to
post-lexical stages of word production impacting phoneme concatenation during phonological
encoding [33] but leaving unaffected the lexical/semantic core processes. This damage pattern
is also consistent with our findings of predominant phonemic paraphasias in nfv-PPA as com-
pared to lv-PPA or sv-PPA.

The cortical regions impacting naming in PPA variants have been investigated only by few
studies suggesting a major role for anterior/middle/posterior regions of the lateral temporal
cortex. However, these studies intermingled PPA with other neurodegenerative conditions [15,
16], combined PPA variants into a unique PPA group [14] or did not explore the whole range
of PPA variants [6]. The question of cortical naming correlates in the three PPA variants there-
fore remained an open issue. The present study fills this gap specifying that damage to poste-
rior temporal regions modulates naming in lv-PPA whereas damage to superior portions of the
temporal pole impacts performance in sv-PPA. These findings are consistent with reported
atrophy patterns in lv-PPA and sv-PPA [11] and they reveal, within these atrophic regions, the
specific brain areas impeding the naming process in both variants. By contrast, no region was
identified for nfv-PPA presumably due to the rare, slight and poorly varying naming deficits
in this subgroup. This finding is also related to our performance rating procedure focalising
explicitly on the lexical/semantic core of word finding and counting as correct post-lexical
errors of phonological encoding when target words were recognizable (e.g., ‘edephant’ or ‘ede-
pant’ for ‘elephant’). Relatively preserved naming might also result from the fact that we specif-
ically assessed nouns but not verb naming which has been shown to be altered in nfv-PPA [34].
It should however be noted that verb naming is a more demanding task which might not only
depend on lexical-semantic core functions but crucially involve executive capacities enabling
the identification and extraction of the actions performed on the test pictures.

Regarding the linguistic function of the temporal regions evidenced here, the literature on
PPA suggests that anterior regions of the temporal cortex are involved in semantic processing
whereas the posterior regions might impact lexical processing. This view is consistent with the
fact that lv-PPA patients have impaired naming but relatively spared semantic abilities [11, 35]
whereas sv-PPA patients have both verbal and nonverbal semantic deficits [36, 37]. However,
several authors have proposed that sv-PPA patients also have lexical impairments [38] and that
lv-PPA patients also demonstrate semantic deficits [13, 29], making anatomical lexical/seman-
tic distinctions difficult. A second line of evidence for word-finding correlates derives from
studies with vascular patients showing that lexical processing involves various mainly left sided
cortical regions comprising primarily posterior temporal cortices [39–41]. Such studies are
consistent with our naming correlates in lv-PPA but they are blind with respect to the temporal
pole given that stroke rarely causes damage to anterior regions of the temporal lobe [9, 10, 39].

The perhaps most important evidence for lexical/semantic substrates derives from func-
tional imaging studies with experimental paradigms specifically tapping either the lexical or
semantic level through the use of implicit processing tasks which minimize conscious control
processes and inter-level interference. Graves et al. [42] used priming with nonce word stimuli
that by definition have no semantic representation but that were progressively lexicalised
through repeated stimulus exposure. Functional MRI with healthy adults pronouncing the tar-
get stimuli showed specific implication of left superior-posterior temporal cortex, which is
concordant with our naming correlates for the lv-PPA group. Likewise, the orthogonal manip-
ulation of lexical frequency and concept familiarity of target words in a picture naming task
showed that frequency effects were specifically related to posterior temporal cortices [43].
These results were replicated via a similar paradigm confirming that lexical frequency, but not
semantic familiarity, correlated with the MRI signal in superior and inferior posterior cortices
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[44], encompassing the major regions identified by our data in lv-PPA. Implicit processing
tasks were also used to explore correlates for semantic processing including masked semantic
priming. Such unconscious priming experiments are a particularly strong test to assess whether
automatic semantic processing is genuinely related to anterior temporal regions as initially sug-
gested by studies with sv-PPA [11, 45]. In a functional MRI study with healthy adults Lau et al.
[46] reported effects of masked semantic priming related to exactly the same cortical region as
evidenced in our sv-PPA group: the superior portion of the temporal pole. These latter finding
is consistent with various accounts stipulating that the temporal pole represents a central
region for semantic processing [5], and it specifies that only its superior portion is relevant for
the funnelling of semantic information into word finding processes.

The anterior/posterior distinction of semantic/lexical processing reflected by these studies
and reinforced by our data has received additional support from a functional MRI study with
healthy adults assessing semantic matching of famous faces, and comparing trials with proper
name retrieval and trials without name retrieval [3]. Lexical retrieval of names was linked to
superior-posterior and mid-posterior temporal cortices as in our lv-PPA group whereas
semantic processing was related to bilateral temporal poles. Altogether, the combination of
previous findings with our data shows that the word finding process involves a neural network
comprising two critical core regions within the temporal cortex: the superior temporal pole for
the processing of word-related semantic information and posterior temporal cortices for the
activation of the lexical word form. This anterior/posterior polarity is highlighted in the present
study on a large PPA population which also provides causative evidence that damage to these
temporal regions necessarily leads to naming disorders: lexical anomia in lv-PPA and semanti-
cally induced anomia in sv-PPA.

The lexical-semantic hub
Our findings combining the three PPA variants have shown that the anterior/posterior polarity
is bridged by an intermediate region in middle and superior mid-temporal cortices. This region
seems central to naming in all variants and it presumably implements a key step in the word
finding process. Most models of word production assign a key role to a processing step under-
pinning the linkage of semantic and lexical information, but the terminology designating this
intermediate stage and the related representations is confusingly variable, including ‘lexical
selection’ and ‘lemma representations’ [2, 17], ‘modality-independent lexical access’ and ‘lexi-
cal-semantic features’ [39] or ‘dispositions of convergence zones’ [7, 8]. Given that this inter-
mediate step is distinct from lexical and semantic processing several authors have suggested
that the underlying substrate would be situated between posterior lexical and anterior semantic
regions of the temporal lobe [39, 44]. Our correlations with the combined PPA group evi-
denced such an anatomically intermediate and distinct region which specifically involves mid-
temporal cortices. This finding is also consistent with results of Damasio et al. [7] showing that
picture naming involves category-specific regions (e.g., ‘persons’, ‘tools’, ‘animals’) but that
combining all categories yielded activation in a unique circumscribed region posterior to the
temporal pole. Similar anatomical results were also obtained by Hurley el al. [47] who showed
that the access to precise and detailed lexical semantics, as opposed to general concepts,
depends on a cortical region involving primarily the superior temporal gyrus in its middle and
anterior portions, thus providing supplementary support for our findings.

In addition to the central localization, an integrative ‘lexical-semantic hub’ is also expected
to implement a particular functional property, namely the computational capacity to link lexi-
cal and semantic information independently from the processing modality, i.e. word produc-
tion or perception. Such a bidirectional function, mapping semantic-to-lexical and lexical-to-
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semantic information, was explicitly claimed by several authors who stipulated the existence of
such an intermediate processing level [2, 7, 17]. We checked this bidirectional binding function
through comparing anatomical correlates related to naming and to single-word comprehen-
sion. The comparison revealed a region of considerable anatomical overlap for both tasks iden-
tifying the lexical-semantic hub in superior and middle mid-temporal regions of the left
temporal cortex. Our correlation analyses with behavioral data from three tasks involving lexi-
cal and semantic processing in both, word production and perception, addressed a directly
related issue. They showed a triple correlation between ‘naming’, ‘single-word comprehension’
and ‘category fluency’ indicating a unique functional substrate that presumably corresponds to
the anatomical mid-temporal hub.

We finally compared the coordinates of the identified hub region with two influent models
of word processing [2, 48]. The first model [2] derived from a meta-analysis on word produc-
tion claims that the lemma level mediating between semantic and lexical representations is
localized in the middle mid-temporal cortex. The coordinates of our lexical-semantic hub over-
lap this cortical region. Similarly, the anatomical model for single word processing of Hickok
and Poeppel [48] claimed that the ‘sound-meaning interface’ linking phonological codes to
semantics essentially involves the ‘middle temporal gyrus’ in its posterior and mid-temporal
portions. The lexical-semantic hub proposed here is consistent with this claim and further
specifies the crucial role for the mid-temporal portion.

In addition to such evidence for a mid-temporal hub one might ask whether its brain corre-
lates correspond to available reports of anatomical regions underpinning naming performance.
Most authors have shown that the multiple-step process of naming depends on a large-scale
network including temporal, occipital, parietal and frontal regions [6], which impact processes
of visual picture identification up to late operations of phonological encoding and word articu-
lation. However, studies focusing on the semantic-lexical core of the word finding process have
delineated lateral temporal cortices as the essential contributors. An important number of
these studies have reported data reflecting the involvement of superior and middle mid-tempo-
ral regions corresponding to the coordinates of the hub identified by our results [7, 38, 49–52].

Conclusion and Limitations
Our findings indicate that several core regions impact naming in PPA variants: the superior
temporal pole in sv-PPA and posterior temporal cortices in lv-PPA, dedicated to semantic and
lexical processing aspects, respectively. In addition, a central hub anatomically distinct from
the two previous regions and located in the mid-temporal region appears to play an essential
role in naming and word processing, in that it enables the integrative and bidirectional binding
of semantic and lexical information. These results are important for both anatomical models of
language processing and clinical issues in PPA. Firstly, they indicate an anterior-posterior tem-
poral axis for word finding operations and suggest the cortical coordinates of the lexical-
semantic integration hub in the mid-regions of this axis. Further studies are however required
for exploring the existence of white matter connections between these temporal core regions
and investigating their functional cross-talk. Although several authors have shown the role of
long-distance connections in PPA language dysfunction [53–57] anatomo-functional studies
on local connectivity within the temporal lobe are lacking. Likewise, further studies are needed
to confirm the coordinates of the proposed hub by using linguistic tasks specifically tapping
lexical processes, semantic representations and intermediate lemma formation. Secondly, our
findings provide information relevant to clinical practice by indicating the underlying mecha-
nisms and the anatomical characterization of anomia in PPA. With the prospect of future ther-
apy, they might be of considerable interest for linguistically-driven anomia rehabilitation and
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for transcranial stimulation trials focusing on word-related target regions in aphasic patients.
Furthermore, identification of atrophy in the lexical-semantic hub region might be of interest
for differentiating nfv-PPA from lv-PPA or sv-PPA. In particular, distinguishing cases of lv-
PPA and nfv-PPA can be linguistically challenging and MRI findings in single subjects are
often difficult to evaluate by eye, especially for lv-PPA and nfv-PPA. The presence of early
damage in the lexical-semantic hub in lv-PPA and its absence in nfv-PPA could eventually be a
useful MRI biomarker for differential diagnosis. This perspective requires and encourages the
development of reliable volumetry/morphometry techniques targeting the superior-middle
mid-temporal hub region at the individual level.

The present study has several limitations that encourage the replication of our findings in
larger PPA cohorts with additional well-controlled experimental materials. A first limitation is
that the stimuli for the naming and the single-word comprehension task were not perfectly
matched for frequency, number of letters, conceptual familiarity and visual picture complexity.
Although we deliberately used standard tests to provide global and representative markers of
patient performance in both domains it would be important to prospectively replicate our
results with matched stimuli for both tasks to provide directly comparable conditions for nam-
ing and word comprehension. A second limitation might be the inclusion of some left-handed
patients (one out of twelve lv-PPA patients and two out of eleven sv-PPA patients), which
could have induced induce slight biases with respect to the anatomical lateralization of our cor-
relation data. However, such potential biases appear to be not substantial given a recent study
of Miller et al. [58] who have investigated the contribution of left-handedness in PPA. The
authors concluded that even if this condition is relatively frequent the right-handed and left-
handed cohorts were homogeneous on imaging, cognitive profiles, and structural analysis of
brain symmetry. It should also be noted that the cortical thickness comparisons between our
three PPA groups showed that lv-PPA and sv-PPA (containing a very weak proportion of left-
handers) demonstrated the ‘classical’ strongly left-sided atrophy pattern. Third, the right-pre-
dominant pattern of atrophy in our nfv-PPA group could be misleading although several
studies have shown right frontal atrophy in nfv-PPA [59, 60]. An explication of this right-later-
alization is linked to the fact we analyzed atrophy patterns by direct comparisons between the
three PPA groups with the aim to evidence group-specific atrophy patterns. Overlap of atrophy
patterns in these groups (e.g., between nfv-PPA and sv-PPA/lv-PPA), with possibly extensive
atrophy patterns in lv-PPA and sv-PPA, implies that left frontal regions become less repre-
sented in nfv-PPA. For the same reason, the direct comparisons have disclosed areas in the
right hemisphere, which are usually less evident. However, a limitation of the present study is
that we did not compare each PPA group with healthy controls which might have revealed the
‘classical’more extensive left frontal atrophy in nfv-PPA. Finally, another potential limitation
requiring replication of our results is that we included two lv-PPA patients with slight single-
word comprehension difficulties, which is not at odds with a lv-PPA diagnosis [29, 30], but
which might have favored an slight over-representation of semantic dysfunction in our entire
PPA group. As a consequence our results might have slightly overestimated the size of the
word-comprehension correlate and the area of the ‘lexical-semantic hub’. We however are con-
fident that we provided a valuable delineation of the hub region which opens new perspectives
for replicating and extending our results with large, homogenous cohorts of aphasia patients.
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