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This paper introduces a constrained source/filter model for semisupervised speech separation based on non-negative matrix factorization (NMF). The objective is to inform NMF with prior knowledge about speech, providing a physically meaningful speech separation. To do so, a source/filter model (indicated as Instantaneous Mixture Model or IMM) is integrated in the NMF. Furthermore, constraints are added to the IMM-NMF, in order to control the NMF behaviour during separation, and to enforce its physical meaning. In particular, a speech specific constraint -based on the source/filter coherence of speech -and a method for the automatic adaptation of constraints' weights during separation are presented. Also, the proposed source/filter model is semi-supervised: during training, one filter basis is estimated for each phoneme of a speaker; during separation, the estimated filter bases are then used in the constrained source/filter model. An experimental evaluation for speech separation was conducted on the TIMIT speakers database mixed with various environmental background noises from the QUT-NOISE database. This evaluation showed that the use of adaptive constraints increases the performance of the source/filter model for speaker-dependent speech separation, and compares favorably to fully-supervised speech separation.

INTRODUCTION

Speech separation consists in the separation of a speech signal from a background environment, referred as noise, which is defined as everything but the speaker of interest (i.e., environmental sounds such as background non-speech sounds or background speech). Speech separation is essential for further speech processing in real speech technologies, such as speech recognition, speaker recognition, speaker localization, and audio multi-media technologies for speech extraction and remixing. Audio source separation methods have been recently introduced for speech separation, in which the audio signal is described as the sum of two sources: a speech signal and a background noise signal. In particular, the non-negative matrix factorization (NMF) of an audio signal is extremely popular for source separation, and is widely used in recent times for speech separation [1,2,3,4,5,[START_REF] Magoarou | Text-informed audio source separation. Example-based approach using nonnegative matrix partial co-factorization[END_REF]. In the original formulation, the NMF decomposition of an audio signal is strictly unsupervised [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]. In the last decade, audio and speech separation has massively converged to informed audio source separation, in order to provide prior knowledge about the audio sources to be separated [START_REF] Liutkus | An overview of informed audio source separation[END_REF]. In the context of speech separation, two main trends co-exist: semi-supervised speech separation uses prior knowledge about speech only [5,[START_REF] Magoarou | Text-informed audio source separation. Example-based approach using nonnegative matrix partial co-factorization[END_REF], and supervised speech separation adds prior knowledge about the background environment [3,[START_REF] Virtanen | Active-set newton algorithm for non-negative sparse coding of audio[END_REF]. This latter case remains extremely limited when the background environment is unknown, which is the case of most real-world applications.

In this context, semi-supervised speech separation is the most common approach. The main advantage of semi-supervised speech separations is that robust prior knowledge about speech can be exploited, while the integration of prior knowledge about the background environment is clearly not realistic, regarding the extreme variability of the background environment. For semi-supervised speech separation, the experience into speech processing and speech recognition can be exploited: a source/filter model can be used to inform NMF-based separation [1,2]. Also, a universal speech model (USM) has been proposed for speaker-independent speech separation [3], in which a speaker can be represented by a combination of the most similar speakers bases. A real-time implementation of the USM has been recently proposed for on-line background noise estimation [4]. Furthermore, hidden Markov models (HMM) has been added to NMF speech separation, in order to construct a language model [5] and to use prior text information for speech separation [START_REF] Magoarou | Text-informed audio source separation. Example-based approach using nonnegative matrix partial co-factorization[END_REF]. Finally, deep neural networks (DNN) has been successfully introduced for speech separation [START_REF] Wang | A Neural Network For Time-Domain Signal Reconstruction: Towards Improving The Perceptual Quality Of Supervised Speech Separation[END_REF], and deep-NMF [START_REF] Le Roux | Deep NMF for speech separation[END_REF] has been proposed in order to integrate the advantages of DNN within the NMF framework.

In this paper, we propose a constrained source/filter model for semi-supervised and physically-motivated NMF-based speech separation. To do so, a source/filter NMF model is described in Section 2. Then, constraints are added to this model in Section 3, in which a specific speech constraint and a method for the automatic adaptation of the constraints' weights during separation are proposed. An experiment is conducted in Section 4 in order to explore the use of constraints within the source/filter model, with comparison to stateof-the-art speech separation methods.

NMF AND SOURCE/FILTER MODEL

NMF principle

Let V denotes our observation matrix, with only non-negative coefficients (for audio, usually the STFT magnitude of the observed mixture signal); the NMF consists of finding the best approximation given a chosen cost C:

V W H (1) 
where W and H also contains only non-negative coefficients. W represents a dictionary matrix and H is the activation matrix (it can be seen as the gains of the projection of V onto the space defined by W ). Afterwards, source separation can be made using Wiener filters [START_REF] Benaroya | Audio source separation with a single sensor[END_REF].

ité des filtres, chaque base du dictionnaire des filtres est représenté comme une combi-linéaire de filtres élémentaires venant d'un banc de filtre. La 
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Chapitre 3

Évaluation expériment

Dans ce chapitre, nous évaluons les di érents algorithmes p de la parole dans un environnement bruité.

H H ex V ƒ (W ex H ex ) ¢ ! W U H " + ! W N H N " V ƒ W ex H ex ¢ W U H + W N H N V ƒ W U H ) W , U * ) W ex , H ex , W , U , H , W N , H N *

Bases de données

Afin d'évaluer la tâche proposé, nous avons construit un paroles bruitées. Pour cela, nous avons utilisé comme base de de bruit celle utilisé pour la construction de QUT-NOISE-TI TIMIT est une base de parole comprenant 3600 phrases teurs di érents. Chaque locuteur a enregistré 10 phrases, don 2 phrases exposent toutes les variantes de prononciations des d'apprentissage. Les autres phrases servent de base de test. QUT-NOISE-TIMIT contient des enregistrements longue dur nores (cuisine, rue, café, intérieur d'une voiture, ...). Lorsqu bruit est fait sur les 5 premières minutes du fichier.

Notre base de test est construite de la manière suivante :

• nous avons sélectionné 20 locuteurs, 10 de chaque sexe ; 16 source/filtre de la voix et de son intégration dans le modèle de la NMF ; enfin nous dressons un tableau (non succinct) des di érentes méthodes de séparation de parole, en se concentrant principalement sur les méthodes utilisant la NMF.

La factorisation en matrices non-négatives

Le principe de la NMF, introduit tout d'abord par Paatero et Tapper [1] et popularisé par Lee et Seung [2], est d'approcher une matrice V de taille F ◊ N à coe cients positifs ou nuls par

V ƒ = W H (1.1)
où W et H sont deux matrices à coe cients positifs ou nuls, de taille respective F ◊K et K ◊N .

La NMF revient donc à chercher, pour un K préalablement choisi, la meilleure matrice approchée de rang maximum K, selon une fonction de coût choisie ; chaque colonne de la matrice W est une base de la décomposition de , et H correspond à l'encodage de selon cette décomposition. L'idée principale des NMF est la contrainte de positivité des matrices, qui oblige l'estimation des données à se faire de manière additive, de sorte que l'annulation entre bases de W n'est pas possible (contrairement à l'analyse en composantes principales).

En audio, la matrice V est une représentation temps-fréquence du signal à analyser, le plus souvent la Transformée de Fourier à Court-Terme (TFCT) ou la transformée à Q-constant. Puisque l'on nécessite des coe cients positifs ou nuls, la matrice considérée est une puissance positive de l'amplitude, e.g. dans le cas de la STFT :

V fn = |TFCT{x} fn | -, -> 0 (1.2)
Dans ce cadre là, W est un dictionnaire des sources sonores, chaque colonne étant un spectre de puissance -, et H représente les activations temporelles de ces sources. 

Fonctions de coût
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semi-supervised one where we can inject knowledge about speech (physical model, speaker information, textual information, ...) but use no priors on the noise type.

In this paper, our goal is to give a physical meaning (interpretation?) to the NMF for speech separation. We used an informed semi-supervized NMF in order to perform a speaker-dependent speech separation task. The main contribution of this article is the formalization of a speech-specific constraint in pre-existing source/filter model for NMF-based speech separation.

The paper is organized as follows: first, we will describe the inclusion of the source/filter model in the NMF framework; then we will explain the structure of our algorithm and particularly the developed constraint; afterwards, we will describe our experimental setup, and finally we will discuss the results.

NMF AND SOURCE/FILTER MODEL

NMF principle

Let V denotes our observation matrix, with only non-negative coefficients (for audio, usually the STFT magnitude of the observed mixture); the NMF consists of finding the best approximation:

V ' W H (1)
given a cost C, where W and H also contains non-negative coefficients. W represent a dictionary matrix and H is the activation where ⇥ represents either W and H, ⌦ denotes the Hadamard product and the division is pointwise.

A source/filter-NMF for speech

In order to refine the representation of the speech, we used the source/filter model for NMF proposed in [START_REF] Benaroya | Audio source separation with a single sensor[END_REF], and we integrated a learning step for the vocal filters. If V is a STFT magnitude of a speech signal, we can modeled it as follows:

V = V ex ⌦ V ' (W ex H ex ) | {z } excitation ⌦ ⇣ c W H ⌘ | {z } excitation (4)
where V ex and V are respectively the amplitude spectrogram of the excitation part and source filter part, W ex and H ex the basic NMF decomposition (approximation?) for V ex , and c W and H the basic NMF decomposition (approximation?) for V . In order to impose smoothness on the filter spectrum, we decompose c W as the product W U , where W is a dictionary of smooth "atomic" filters and U is the coefficient matrix combining those elementary filters to form a vocal filter. Fig. 1 shows an example of the overall source/filter model for NMF.

V ' (W ex H ex ) ⌦ ⇣ W U H ⌘ + W N H N (5)
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Damien Bouvier 8 M2 ATIAM -Rapport de Stage tation?) to the NMF for speech separation. We used an informed semi-supervized NMF in order to perform a speaker-dependent speech separation task. The main contribution of this article is the formalization of a speech-specific constraint in pre-existing source/filter model for NMF-based speech separation.

The paper is organized as follows: first, we will describe the inclusion of the source/filter model in the NMF framework; then we will explain the structure of our algorithm and particularly the developed constraint; afterwards, we will describe our experimental setup, and finally we will discuss the results.

NMF AND SOURCE/FILTER MODEL

NMF principle

Let V denotes our observation matrix, with only non-negative coefficients (for audio, usually the STFT magnitude of the observed mixture); the NMF consists of finding the best approximation:

V ' W H (1) 
where W and H also contains non-negative coefficients, given a cost D(V |W H). W represent a dictionary matrix and H is the activation matrix containing the gains of the basis in W .

A source/filter-NMF for speech

Speech can be modelized using a source/filter model, with a glottal excitation convoluted by the vocal tract. So it is easy to see that in order to fully represent all potential speech signals, we will need very large dictionaries, and so loose the rank-reduction advantage of the NMF. In order to get around this problem, we used the Instant Mixture Model (IMM) proposed for the NMF in [5] :

V = V ex ⌦ V ' (W ex H ex ) | {z } excitation ⌦ ⇣ c W H ⌘ | {z } excitation ' (W ex H ex ) ⌦ W U H (5) 
where V ex and V are respectively the amplitude spectrogram of the excitation part and source filter part, W ex and H ex the basic NMF decomposition (approximation?) for V ex , and V decomposition is as follows: H is the activation matrix of the filter basis, W is a dictionary of smooth "atomic" filters and U is the coefficient matrix combining those elementary filters into the filter basis.

In [5], the authors imposed and fixed W ex and W , letting all others matrices free; we kept the same construction methods, with the addition of a learning step for U . For W ex , the excitation dictionary, we incorporated voiced and unvoiced basis.
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A source/filter-NMF for speech

Speech can be modelized using a source/filter model, with a glottal excitation convoluted by the vocal tract. So it is easy to see that in order to fully represent all potential speech signals, we will need very large dictionaries, and so loose the rank-reduction advantage of the NMF. In order to get around this problem, we used the Instant Mixture Model (IMM) proposed for the NMF in [5] :

V = V ex ⌦ V ' (W ex H ex ) | {z } excitation ⌦ ⇣ c W H ⌘ | {z } excitation ' (W ex H ex ) ⌦ W U H (5) 
where V ex and V are respectively the amplitude spectrogram of the excitation part and source filter part, W ex and H ex the basic NMF decomposition (approximation?) for V ex , and V decomposition is as follows: H is the activation matrix of the filter basis, W is a dictionary of smooth "atomic" filters and U is the coefficient matrix combining those elementary filters into the filter basis.

In [5], the authors imposed and fixed W ex and W , letting all others matrices free; we kept the same construction methods, with the addition of a learning step for U . For W ex , the excitation dictionary, we incorporated voiced and unvoiced basis. In audio, usual costs are Kullback-Leiber (KL) and Itakura-Saito (IS) divergence [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF], which are both limit cases of the β-divergence (respectively for β = 1 and β = 0). In this paper, we use the IS divergence for its scale-invariance, which is an interesting property for audio signals:

C = DIS (V |W H) = F f N n dIS V f n | (W H) f n (2) 
with dIS(x|y) = x ylog x y -1. Moreover, we use the artificial noise floor introduced in [START_REF] Roebel | On automatic drum transcription using non-negative matrix deconvolution and Itakura-Saito divergence[END_REF] in order to control the noise robustness of the IS-NMF.

The solution of the NMF problem, using β-divergence, can be efficiently obtained by applying an iterative algorithm, derived from a gradient step descent technique [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF]. The i-th iteration is based on the application, on both W and H, of the following multiplicative rule:

Θ (i+1) ←-Θ (i) ⊗ ∇ - Θ (i) C ∇ + Θ (i) C (3) 
where Θ represents either W or H, ∇ + Θ (i) and∇ - Θ (i) are the positive and negative parts of the gradient of the cost C with respect to Θ (i) , ⊗ denotes the Hadamard product, and the division is pointwise.

A source/filter-NMF for speech

In order to provide an explicit representation of speech, we use the source/filter model for NMF proposed in [2], in which a training step is added to estimate the vocal filters. The NMF source/filter decomposition of the STFT magnitude V S of a speech signal can be expressed as:

V S = V ex ⊗ V Φ (W ex H ex ) excitation ⊗ W Φ H Φ filter ( 4 
)
where V ex and V Φ are respectively the magnitude STFT of the excitation part and the filter part, W ex and H ex are the standard NMF decomposition for the speech excitations V ex (where W ex is a fixed dictionary, including periodic and noisy basis), and W Φ and H Φ are the standard NMF decomposition for the speech filters V Φ . In order to ensure the smoothness of the speech filters W Φ , we further decompose W Φ as the product W Φ U Φ , where W Φ is a fixed dictionary of smooth "atomic" filters (here, Hann windows) and U Φ is the coefficient matrix linearly combining those elementary filters to form a speech filter. Figure 1 illustrates the architecture of the source/filter model for NMF.

For speech separation, the observed signal V is assumed to be a mixture of a speech signal V S and a background noise signal V N . V can be approximated by V as follows:

V V = W ex H ex ⊗ W Φ U Φ H Φ + W N H N (5)
in which the background noise signal V N is expressed using a standard NMF decomposition. Following the denomination used in [2], we will refer to this mixture decomposition as the "Instantaneous Mixture Model for NMF" (IMM-NMF).

Semi-supervision of the IMM-NMF

In the IMM-NMF, the speech filters W Φ of a speaker are explicitly represented by the coefficients matrix U Φ . In [2], this matrix was directly estimated from the observed signal V , thus fully unsupervised. Here, we propose to estimate the speech filters from clean speech signals of a speaker. To do so, the speech filter matrice V Φ is first estimated by a spectral envelope estimation algorithm [START_REF] Villavicencio | Improving LPC spectral envelope extraction of voiced speech by true-envelope estimation[END_REF], which is then approximated by the NMF filter decomposition:

V Φ W Φ U Φ H Φ (6) 
Furthermore, we used phonetic information in order to train phonemes separately and to have one basis for each speech filter (i.e. each phoneme).

SOURCE/FILTER MODEL UNDER CONSTRAINTS

Constrained-NMF

The main objective of this work is to inform NMF speech separation with a physical model of speech. For this purpose, we use constraints into the NMF to penalize solutions not respecting the speech model. Accordingly, the cost C is modified with the addition of the constraint penalty cost P:

C = DIS V | V + µP (7) 
with µ a positive value determining the weight of the constraint. The new multiplicative update for the i-th iteration will be of the form :

Θ (i+1) ←-Θ (i) ⊗ ∇ - Θ (i) DIS + µ∇ - Θ (i) P ∇ + Θ (i) DIS + µ∇ + Θ (i) P (8) 
for any non-fixed matrix Θ in the model. In our method, we use several constraints ans sum their values in order to obtain the total penalty cost P.

State-of-the-art constraints

We used three constraints from the literature :

• the sparsity constraint described in [START_REF] Joder | A comparative study on sparsity penalties for NMF-based speech separation: Beyond Lp-norms[END_REF] as the Column-Normalized 1-norm, in order to promote the activation, at any given time, of a single filter basis and a single excitation basis. • the normalized decorrelation constraint, based on the correlation measure proposed in [START_REF] Li | Learning spatially localized, parts-based representation[END_REF], in order to penalize simultaneous activation between bases. • a smoothness constraint proposed in [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF] to prevent filter activation to jump from one phoneme to another between frames.

Source/filter coherence constraint

The first contribution of this paper consists in the elaboration of a speech-specific source/filter coherence constraint for the IMM-NMF. This constraint is based on the fact that all phonemes corresponds to a match between one excitation one corresponding filter:

• vocal filters corresponding to voiced phoneme will always be used simultaneously with a periodic excitation; • vocal filters corresponding to unvoiced phoneme will always be used with a noisy excitation; Because the IMM-NMF allows unreal combination leading to audible artefacts, we propose a source/filter coherence constraint which aims to avoid unrealistic combinations between excitation and filter (see Figure 2). This constraint is inspired by the normalized decorrelation constraint, and is expressed as follow:

P φ = k∈periodic l∈unvoiced H ex H Φ T kl H ex k 2 H Φ l 2 + k∈noise l∈voiced H ex H Φ T kl H ex k 2 H Φ l 2 (9)
The left term of the sum is a measure of the correlation between periodic excitation basis and filter basis corresponding to unvoiced phoneme, normalized by their power; the right term is the same measure, but between noisy excitation basis and filter basis corresponding to voiced phoneme. the algorithms using the SDR criteria for BSS defined in [START_REF] Li | Learning spatially localized, parts-based representation[END_REF] and the PESQ, which is a MOS measure defined in [START_REF] Virtanen | Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[END_REF].

The proposed algorithms were used on the STFT magnitude of the observed signals, using a Hamming window of 64 ms and a hop size of 32 ms. The maximum number of iteration of the NMF was fixed to 100, and we used the IS divergence with a noise floor of 60dB (see [START_REF] Liutkus | An overview of informed audio source separation[END_REF]). The filterbank W was created with 50 Hann window spaced linearly from 0 to 8000 Hz and the excitation dictionary W ex was made up with 250 periodic basis (spanning every twentieth of tone between 80 and 350 Hz) and 100 white noise basis.

RESULTS AND DISCUSSION

The results that we show here are the one obtained for optimized values of constraint weight and number of noise basis; those values were found by testing on a separate and smaller database.

Table 1 shows our experimental results for all the tested algorithms. Firstly, we can see that our baseline algorithm (# 1) has better results than the algorithm V-IMM, as expected by the inclusion of a learning step in the IMM-NMF.

Secondly, if we compare algorithms with similar constraints, we observe that our adaptive weight method improve the separation results for all SNR, especially when the coherence constraint is used. We can also see that the best algorithm we proposed is the one using all constraints and the adaptive method (# 7); the constraints from the literature (decorrelation, sparsity and smoothness) have small effect (see # 1 and # 5), and the developed constraint is more effective in noisier environment.

Finally, we can see that our best algorithm (# 7) offers results far better than the unsupervised algorithm V-IMM which it is based on, and that those results are close from the ones obtained by ASNA. Indeed, it could have been interesting to compare our algorithms with other unsupervised method, but the only others authors could find were the algorithm proposed in [3], which uses the USM (and so the comparison with our speaker-dependent method would be flawed), and in [4], which is also based on the USM and is an online method. 

CONCLUSION

In this paper, we presented a new semi-supervised method for speech separation, using a constrained NMF with a source/filter decomposition from the literature. The main contribution are a new speechspecific constraint, ensuring phonetic coherence, and an adaptive weight method for constraints.
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Adaptation of constraints weights

One of the main limitations of constrained-NMF is the difficulty for finding a good constraint weight for speech separation. A small weight would conduct to a small or null effect of the constraint, while a strong weight will over-consider the constraint over the reconstruction cost, thus lead to a wrong solution depending on the initialization (generally random). The second contribution of this paper consists in adapting the constraint's weight at each iteration during speech separation: from small to strong depending on the evolution of the reconstruction (i.e. the evolution rate of the β-divergence value). At the i-th iteration, the constraint's weight is updated as:

µ (i) = µmax DIS V | V (i-2) -DIS V | V (i-1) DIS V | V (i-2) ( 10 
)
where µ is initialized at 0 for the first two iterations, and after varies in the interval [0 µmax], where µmax is a chosen value. The stronger the β-divergence diminishes, the smaller the constraint; the smaller it diminishes, the higher the constraint. Figure 3 shows an example of the effect of this adaptive method on costs evolution. 1. Results from the experimental evaluation. SoA refers to the state-of-the-art constraints (decorrelation, sparsity and smoothness), coherence to the proposed source/filter coherence constraint and adaptation to the adaptive weight method.

4. EXPERIMENT

Experimental setups

An experiment was conducted to evaluate the performance of the semi-supervised and constrained source/filter model for speech separation. The benchmark includes: the semi-supervised source/filter model, with variants on the use of the constraints (with/without constraints, state-of-the-art constraints vs. source/filter coherence constraint, and with/without the constraint adaptation), with comparison to state-of-the-art unsupervised V-IMM source/filter model [2] (originally developed for singing voice / music separation), and the supervised ASNA algorithm [START_REF] Virtanen | Active-set Newton algorithm for overcomplete non-negative representations of audio[END_REF] (see Table 1 for details).

The database used for the experiment is a mix of the TIMIT speech database for clean speech [START_REF] Zue | Speech database development at MIT: TIMIT and beyond[END_REF] and the QUT-NOISE database for environmental background noises [START_REF] Dean | The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms[END_REF]. We used 20 TIMIT speakers (10 women and 10 men), with each 10 sentences: 2 sentences, shared among all the speakers, were used for training, and the 8 remaining sentences, different for all speakers, were used as the test set for speech separation. We mixed those 160 test sentences with 4 different background noises from the QUT-NOISE database (city street, home kitchen, car window, cafe) and white noise, using 3 signal-to-noise-ratio (SNR) (-6 dB, 0 dB, +6 dB), resulting in 2, 400 mixture signals. For the training, the 2 shared sentences were used for each speaker for the semi-supervised and the supervised algorithms, and one 5 s. extract of the background noise (different of the one used for mixing) was used for the supervised algorithm. The performance of the speech separation was measured based on the signal-to-distortion ratio (SDR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF] (in dB), and the perceptive evaluation of speech quality (PESQ) [START_REF] Rix | Perceptual evaluation of speech quality (PESQ) -a new method for speech quality assessment of telephone networks and codecs[END_REF].

All benchmark speech separation algorithms were based on the STFT magnitude of the audio signal, using a Hamming window of 64 ms and a hop size of 32 ms. For training, the filterbank dictionary W Φ was created with 50 Hann windows linearly spaced from 0 to 8000 Hz, and the excitation dictionary W ex was created with 250 periodic bases (spanning every twentieth of tone between 80 and 350 Hz) and 100 white noise bases. For testing, the maximum number of iteration of the NMF was set to 100, and we used the IS divergence with a noise floor of -60dB (see [START_REF] Roebel | On automatic drum transcription using non-negative matrix deconvolution and Itakura-Saito divergence[END_REF] for details). Various constraint weights (from 10 -2 to 10 3 ) and number of background noise bases (from 5 to 100, used for all algorithms) were tested.

Results and Discussion

Table 1 summarizes the scores obtained for the benchmark algorithms, optimized for the state-of-the-art algorithms, and sharing the same optimal setup for all of the proposed algorithms. Firstly, the semi-supervised source/filter algorithm (# 1) improves the performance over a standard unsupervised source/filter, which naturally confirms the importance of training the filter dictionary for speech separation. Secondly, the use of constraints in the source/filter model without adaptation does not improves speech separation (# 1 vs. # 2, # 3, and # 4) on the one side. On the other side, the use of constraints with adaptation (# 5, # 6, and # 7) substantially improves speech separation. This shows the importance of the adaptation during speech separation, by gradually increasing the importance of the constraints depending on the convergence of the speech separation. This is especially true when using all constraints together (# 7). A comparison of the constraints reveals that the state-of-the-art constraints (decorrelation, sparsity and smoothness) have a small effect (# 5) whereas the source/filter coherence constraint provides a strong effect, and is more efficient for a high SNR (# 6). Finally, the semi-supervised constrained source/filter algorithm shows encouraging performance, compared to state-of-the-art algorithms. The semi-supervised algorithm stands in between unsupervised algorithm (V-IMM) and the supervised algorithm (ASNA). In particular, the semi-supervised algorithm is close to the supervised algorithm, without any prior knowledge about the nature the noise environment. This proves the importance of using prior knowledge on speech for informed speech separation.

CONCLUSION

In this paper, we presented a semi-supervised method for speech separation, based on a constrained source/filter model for NMF-based speech separation, with the add of a speech specific constraint, and the adaptive weighting of constraints during separation. An experimental validation proved the efficiency of the constrains for speech separation, and beyond indicates the importance of prior knowledge about speech and physically-motivated speech separation. Further research will focus on the integration of a source/filter model for text-informed speech separation [5,[START_REF] Magoarou | Text-informed audio source separation. Example-based approach using nonnegative matrix partial co-factorization[END_REF], and speaker-independent speech separation (Universal Speech Model [3]), and on the unsupervised estimation of the background noise [4,[START_REF] Roebel | On automatic drum transcription using non-negative matrix deconvolution and Itakura-Saito divergence[END_REF].
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 1 Fig. 1. Illustration of the source/filter decomposition for the IMM-NMF described in (4).
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 3 Fig.3. Evolution of the reconstruction cost (in green), constraints cost (in red) and total cost (in blue) with (right graphic) and without (left graphic) the weight adaptation method, in function of the iteration number.
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2.2.3 Contrainte de cohérence source/filtre
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