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TCF12 is mutated in anaplastic oligodendroglioma
Karim Labreche1,2,3,4,5,*, Iva Simeonova2,3,4,5,*, Aurélie Kamoun6,*, Vincent Gleize2,3,4,5,*, Daniel Chubb1,

Eric Letouzé6, Yasser Riazalhosseini7,8, Sara E. Dobbins1, Nabila Elarouci6, Francois Ducray9,

Aurélien de Reyniès6, Diana Zelenika10, Christopher P. Wardell11, Mathew Frampton1, Olivier Saulnier2,3,4,5,

Tomi Pastinen7,8, Sabrina Hallout2,3,4, Dominique Figarella-Branger12,13, Caroline Dehais14,

Ahmed Idbaih2,3,4,5,14, Karima Mokhtari2,3,4,15, Jean-Yves Delattre2,3,4,5,14,**, Emmanuelle Huillard2,3,4,5,**,

G. Mark Lathrop7,8,**, Marc Sanson2,3,4,5,14,**, Richard S. Houlston1,** & POLA Networkw

Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally

incurable, with heterogeneous prognosis and few treatment targets identified. Most

oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we

analysed 51 AO by whole-exome sequencing, identifying previously reported frequent

somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in

an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an

oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified

were in either the bHLH domain, which is important for TCF12 function as a transcription

factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show

that these mutations compromise TCF12 transcriptional activity and are associated with a

more aggressive tumour type. Our analysis provides further insights into the unique and

shared pathways driving AO.
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A
naplastic oligodendrogliomas (AO; World Health
Organization grade III oligodendrogliomas) are rare
primary malignant brain tumours with a highly variable

overall prognosis. The emblematic molecular alteration in
oligodendrogliomas is 1p/19q co-deletion, which is associated
with a better prognosis and response to early chemotherapy
with procarbazine, lomustine and vincristine1–3. Recent high-
throughput sequencing approaches have identified IDH (IDH1
and IDH2), CIC, FUBP1 and TERT promoter mutations in
oligodendroglioma (75, 50, 10 and 75%, respectively)2,4,5,
IDH mutation status typically being associated with a better
clinical outcome6. Identifying additional driver genes and altered
pathways in oligodendroglioma offers the prospect of developing
more effective therapies and biomarkers to predict individual
patient outcome.

Here we perform whole-exome and transcriptome sequencing
of AO to search for additional tumour driver mutations
and pathways disrupted. In addition to previously reported
recurrently mutated genes, we report the identification of somatic
mutations in TCF12 in AO. These mutations compromise TCF12
transcriptional activity and confer a more aggressive AO
phenotype.

Results
In accordance with conventional clinical practice, we considered
three molecular subtypes for our analyses: (i) IDH-mutated
1p/19q co-deleted (IDHmut-codel); (ii) IDH-mutated 1p/19q
non-co-deleted (IDHmut-non-codel) and (iii) IDH-wild type
(IDHwt)7. Assignment of IDH-mutated (defined by IDH1
R132 or IDH2 R172 mutations), 1p/19q and TERT promoter
mutation (defined by C228T or C250T) status in tumours was
determined using conventional sequencing and single-nucleotide
polymorphism (SNP) array methods.

Mutational landscape. We performed whole-exome sequencing
of 51 AO tumours (Supplementary Data 1) and matched germ-
line DNA, targeting 318,362 exons from 18,901 genes. The mean
sequencing coverage across targeted bases was 57� , with 80% of
target bases above 20� coverage (Supplementary Fig. 1). We
identified a total of 4,733 mutations (with a mean of 37 non-silent
mutations per sample) equating to a mean somatic mutation rate
of 1.62 mutations per megabase (Mb) (Fig. 1). Although the
tumours of two patients (3,063 and 3,149) had high rates of
mutation (9.1 and 12.4, respectively), this was not reflective of
tumour site (both frontal lesions as were 68% of the whole series)
or treatment. Excluding these two cases the mean rate of non-
silent mutations per tumour was 33±14, which is similar to the
number found in most common adult brain tumours. The
mutation spectrum in AO tumours was characterized by a pre-
dominance of C4T transitions, as observed in most solid cancers
(Fig. 1)8,9. While few of the tumours were IDHwt, these did not
harbour a significantly higher number of mutations compared
with IDHmut-1p/19q co-deleted and IDHmut-non-1p/19q
co-deleted tumours (Fig. 1). Intriguingly, one tumour (2,688)
was co-mutated for IDH1 (R132H) and IDH2 (P162S),
but exhibited no distinguishing phenotype in terms of
clinicopathology or mutation rate.

We used MutSigCV version 1.4 (ref. 8) to identify genes
harbouring more non-synonymous mutations than expected by
chance given gene size, sequence context and mutation rate of
each tumour for the three molecular subtypes, respectively.
As expected, we observed frequent mutations of the tumour
suppressors FUBP1 (22%) located on 1p, and CIC (32%) located
on 19q, which have been reported in the context of 1p/19q
co-deletion (Fig. 1; Supplementary Fig. 2); these were not

mutually exclusive events (Fig. 1). Also within the IDHmut-codel
group, 37 of tumours tested carried TERT C228T or C250T
promoter mutations (72%), none of which also carried an ATRX
mutation, concordant with the previously reported finding that
these are mutually exclusive events2.

In addition to the mutation of IDH1 (78%), IDH2 (17%), CIC
(32%) and FUBP1 (22%), TCF12 was also significantly mutated
(Q-valueo0.1; Fig. 1; Supplementary Table 2). Heterozygous
somatic mutations in TCF12, which encodes the basic helix–
loop–helix (bHLH) transcription factor 12 (aliases HEB, HTF4
and ALF1) were identified in five (1 missense, R602M; 2 splice-
site, c.825þ 5G4T, c.1979-3_1979-delTA and 2 frameshift,
E548fs*13, S682fs*14) of the 46 IDH-mutated 1p/19q co-deleted.
Intriguingly, germline mutations of residues E548 and R602 have
been previously shown to cause coronal craniosynostosis10.

The availability of high-quality tumour material allowed us to
generate SNP array and expression data on 31 of the cases exome
sequenced. In addition to co-deletion of chromosome arms
1p/19q, we identified several other recurrent genomic
alterations—mainly loses of chromosomes 4 (29%), 9p (28%)
and 14q (19%); Supplementary Fig. 3; Supplementary Table 1).
Notably, tumours featuring mutation of Notch-pathway genes
showed significant chromosome 4 loss (P¼ 0.02, w2-test).
To identify fusion transcripts, we analysed RNA-sequencing
(RNA-seq) data, which was available for 36 of the 51 tumours.
After filtering, the only chimeric transcript identified was the
predicted driver FGFR3–TACC3 fusion, previously described in
IDH wild-type gliomas11–13, which was seen in two of the IDHwt-
non-1p/19q co-deleted tumours—patients 2463 and 2441; Of
note was that patient 2463 carried an IDH2 intron-5 mutation
(c.679-28C4T).

Incorporation of TCGA mutation data. To explore the muta-
tional spectra of AO in an independent series, we made use of
data generated by The Cancer Genome Atlas (TCGA) study of
low-grade glioma, which provides exome sequencing data on a
further 43 AO tumours. Two of these 43 tumours harboured
frameshift mutations in TCF12 (E548R and D171fs)
(Supplementary Table 2). As with our series, these TCF12
mutations were exclusive to IDH-1p/19q co-deleted tumours.
In a combined analysis, mutations in PI3KCA, NOTCH1 and
TP53 were significantly overrepresented when analysed using
MutSigCV (Q-valueo0.1; Supplementary Table 2). In addition,
mutation of ATRX and RBPJ were of borderline significance.

A bias towards variants with functional impact (FM) is a
feature of cancer drivers14. To increase our ability to identify
cancer drivers and delineate associated oncogenic pathways for
AO, we incorporated mutation data from multiple tumour types
using Oncodrive-fm14 implemented within the IntOGen-
mutations platform15 (Fig. 2). The most recurrently mutated
genes according to MutSig were also detected by Oncodrive-fm
as significantly mutated (Q-valueo0.05). Oncodrive-fm also
identified a number of other important mutated genes (that is,
displaying high FM bias) including SETD2, NOTCH2, RBPJ,
ARID1A, ARID1B, HDAC2 and SMARCA4 (Fig. 2).

Using all mutation results, we performed an analysis to identify
pathways or gene ontologies that were significantly enriched in
mutated genes. As expected, the most significantly altered
pathways were linked to the tricarboxylic acid cycle and isocitrate
metabolic process as a consequence of IDH mutation. Consistent
with the other genes that were found significantly mutated by
MutSigCV and Oncodrive-fm analysis, the Notch signalling
pathway (P¼ 1.0� 10� 5, binomial test), genes involved in
neuron differentiation (P¼ 2.0� 10� 5, binomial test) and genes
involved in chromatin organization (P¼ 0.02, binomial test) were
also significantly enriched for mutations (Supplementary Data 3).
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Validation of TCF12 in an additional series of AO. To identify
additional TCF12-mutated AO tumours, we conducted targeted
sequencing of a further 83 AO. Five tumours harboured TCF12
mutations—G48fs*38, M260fs*5, R326S, D455fs*59 and delN606
(Supplementary Data 1). On the basis of our combined sample of
134 tumours, the mutation frequency of TCF12 in AO is 7.5%
(95% confidence interval 3.6–13.2%). No significant difference in
patient survival in 1p/19q co-deleted AO was associated with
TCF12 mutation in 69 patients (Supplementary Fig. 4). While our
power to demonstrate a statistically significant relationship was
limited (that is, B40% for a hazard ratio of 2.0, stipulating
P¼ 0.05), we noted that patients having either TCF12 mutated or
TCF12 loss of heterozygosity (LOH) tended to be associated with
shorter survival (Supplementary Fig. 4). To gain further insight
into the role of TCF12 mutation in oligodendroglioma, we
sequenced 75 grade II tumours identifying one mutation carrier
(P212fs*31; Supplementary Data 1). The observation that the
frequency of TCF12 mutations is higher in AO as compared with
grade II tumours (P¼ 0.049, w2-test) is compatible with TCF12
participating in the generation of a more aggressive phenotype.

TCF12 bHLH mutants compromised transactivation. To
explore the functional consequences of TCF12 mutation, we
tested the transcriptional activity of several mutants (Fig. 3). We
tested the frameshift mutations M260fs*5 and E548fs*13, which
in the germline cause coronal craniosynostosis10 and S682fs*14,
since introduction of a C-terminal premature stop codon may
result in escape from non-sense-mediated decay. We also tested
the missense mutation R602M, which is predicted to destabilize

the bHLH domain required for DNA binding and dimerization
(Fig. 3) and whose adjacent residue (R603) has been found
recurrently mutated in colon cancer16. Finally, we tested the
missense mutation R326S, since mutations of adjacent G327
have been reported in lung adenocarcinoma17. The frameshift
mutants M260fs*5 and E548fs*13 completely abolished TCF12
transactivation, consistent with the lack of bHLH DNA-binding
domain (Fig. 3). R602M retained only 34% of WT transcriptional
activity (P¼ 0.0018, Student’s t-test; Fig. 3). We did not observe
significant modulation of transactivation for the R326S and
S682fs*14 mutants, although the latter consistently showed
decreased activity (Fig. 3).

Downregulation of pathways in TCF12 bHLH mutants. We
profiled gene expression in 8 TCF12-mutated and 45 wild-type
tumours within 1p/19q co-deleted samples (Supplementary
Table 1). TCF12 mutation was associated with significant
enrichment of immune response pathways (Supplementary Data
4). Restricting the analysis to tumours with the TCF12-altered
bHLH domain (n¼ 6), we found downregulation of pathways
featuring known partners of TCF12, such as TCF21, EZH2 and
BMI1 (ref. 18) (Supplementary Table 2). Interestingly, we found
decreased activity of genes sets related to E-cadherin (CDH1),
which is a TCF12 target gene associated with tumour pheno-
type18. Since the promotor sequences of CDH1 and BMI1 feature
E-box motifs and are modulated by the bHLH binding19,20, this
provides a mechanistic basis for change in gene expression
associated with mutant TCF12.
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Figure 1 | Significantly mutated genes in anaplastic oligodendroglioma by molecular subtype. Significantly mutated genes (Q-valueo0.1) identified by
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Mutant TCF12 proteins show subcellular localization changes.
We evaluated TCF12 expression and subcellular localization for
all of our 11 TCF12-mutated tumours (10 AO and 1 oligoden-
droglioma grade II) and 11 TCF12 wild-type tumours by
immunohistochemistry. All TCF12 wild-type tumours showed
nuclear expression in a heterogeneous cell population (Fig. 4;
Supplementary Fig. 5), whereas several TCF12-mutated tumours
showed nuclear and cytoplasmic staining (Fig. 4; Supplementary
Fig. 5). Interestingly, mutations abolishing transcriptional activity
were associated with increased staining, suggesting inactive
mutant protein accumulation.

TCF12 mutations associate with aggressive tumour phenotype.
We profiled the extent of necrosis, microvascular proliferation
and the mitotic index available for TCF12 wild-type or mutated
tumours. A significant increase in palisading necrosis (Fig. 5) as
well as a trend towards a higher mitotic index was associated with
TCF12 mutation, consistent with a more aggressive phenotype
(Fig. 5). Intriguingly, tumours harbouring disruptive bHLH
domain mutations exhibited the highest proportion of palisading
necrosis and mitotic figures.

Discussion
Our genome sequencing of AO has confirmed the mutually
exclusive mutational profile in IDHmut-1p/19q co-deleted and
IDHmut non-1p/19q co-deleted tumour subtypes, which reflect
distinct molecular mechanisms of oncogenesis—consistent with
the requirement for either 1p/19q co-deletion or TP53 mutation
post IDH mutation. Moreover, as previously proposed, the
genomic abnormalities in IDHmut-1p/19p co-deleted tumours
are consistent with one common mechanism of tumour initiation
being through 1p/19q loss, mutation of IDH1 or IDH2 and TERT
activation through promoter mutation2, which in turn

predisposes to deactivation of CIC, FUBP1, NOTCH and
activating mutations/amplifications in the PI3K pathway.

We identified and replicated mutations in TCF12, a bHLH
transcription factor that mediates transcription by forming
homo- or heterodimers with other bHLH transcription factors.
Tcf12 is highly expressed in neural progenitor cells during
neural development21 and in cells of the oligodendrocyte
lineage22.

We found that mutations generating truncated TCF12 lacking
the bHLH DNA-binding domain abrogate the transcriptional
activity of TCF12. In addition, single residue substitutions such as
R602M within the bHLH domain also dramatically reduce TCF12
transcriptional ability. Finally, we found that the loss of TCF12
transcriptional activity was associated with a more aggressive
tumour phenotype. Although speculative, our expression data
provides evidence that the effects of TCF12 mutation on AO
development may be mediated in part through E-cadherin related
pathway. Indeed, this was one of the pathways down-regulated in
mutated tumours and intriguingly CDH1 has been implicated in
metastatic behaviour in a number of cancers18,23. It is likely that
some TCF12 mutations may have subtle effects on bHLH
function or act through independent pathways. Irrespective of
the downstream effects of TCF12 mutation on glioma, our data
are compatible with TCF12 having haploinsufficient tumour
suppressor function. TCF12 haploinsufficiency has previously
been reported in patients with coronal craniosynostosis and in
their unaffected relatives10. Strikingly, 3 of the 11 mutations we
identified in AO, which concern residues M260, E548 and R602,
cause coronal craniosynostosis10,24. Although speculative,
collectively these data raise the possibility that carriers of
germline TCF12 mutations may be at an increased risk of
developing AO.

To our knowledge, this study represents the largest sequencing
study of AO conducted to date. However, given the number of
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Figure 2 | FM-biased genes and gene modules in AO identified by Oncodrive-fm using data from this study and tumours profiled by TCGA. Heatmap

shows tumours in columns and genes in rows, the colour reflecting the MutationAssessor (MA) scores of somatic mutations. FM ext. qv, corrected

P values of the FM bias analysis using the external null distribution.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8207

4 NATURE COMMUNICATIONS | 6:7207 | DOI: 10.1038/ncomms8207 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


tumour-normal pairs we have analysed and the mutational
frequency in AO, we were only well powered to identify genes
that have a high-frequency mutations (that is, 410%). Hence

further insights into the biology of AO should be forthcoming
through additional sequencing initiatives and meta-analyses of
these data.
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Figure 3 | TCF12 mutations altering the bHLH domain result in impaired transactivation. (a) Schematic view of the wild-type and mutant TCF12 proteins

for which the transactivation capacity has been assessed. Upper panel: wild-type human TCF12, functional domains in grey—activation domain 1 (AD1),

activation domain 2 (AD2), repressor domain (Rep) and bHLH domain (bHLH). Lower panel: resulting truncated proteins. Black boxes indicate non-related
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TCF12 (blue) bound to DNA (grey). WT R602 (yellow) and mutant M602 (purple) residues are indicated. (c) E-box-luciferase reporter plasmid (Eb) was

transfected alone or in combination with TCF12 wild-type or mutant expression plasmids. Both frameshift mutants that lack the bHLH DNA binding domain

completely abolish TCF12 transcriptional activity. All samples were run in triplicate in four independent experiments. Data were normalized to control renilla

luciferase. Values are mean±s.d. ***P¼0.0002, **P¼0.0018 (Student’s t-test).
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Figure 4 | TCF12 is highly expressed in a subset of anaplastic oligodendroglioma. Representative TCF12 immunostainings are shown: (a) wild-type

TCF12 tumours show nuclear staining in a heterogeneous cell population. (b–e) Mutant TCF12 tumours show strong nuclear and cytoplasmic staining.

(f) Mutant M260fs (resulting in a truncated protein) is associated with 15q21.3 LOH and shows no staining. Scale bar, 50mm.
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Methods
Patient samples and consent. Samples were obtained with informed and written
consent and the study was approved by Comité de Protection des Personnes Ile de
France-VI (October 2008) of respective hospitals participating in the Prise en
charge des oligodendrogliomes anaplasiques (POLA) network. All patients were
aged 18 years or older at diagnosis, and tumour histology was centrally reviewed
and validated according to World Health Organization (WHO) guidelines25.
Exome sequencing was conducted on samples from 51 AO patients (33 male;
median age 49 years at diagnosis, range 27–81). For targeted follow-up analyses, we
studied the tumours from an additional 83 AO patients and 75 patients with grade
II tumours. A summary of each of the tumour cohorts and respective pathological
information on the patients is provided in Supplementary Table 1.

DNA and RNA extraction. Germline DNA was extracted from EDTA-venous
blood samples using QIAquick PCR Purification Kits (Qiagen Ltd). Tumour DNA
was extracted from snap-frozen tumour samples using the iPrep ChargeSwitchH
Forensic Kit, according to manufacturer’s recommendations. DNAs were quanti-
fied and qualified using a NanoVue Plus spectrophotometer (GE Healthcare Life
Sciences) and gel electrophoresis. RNA was extracted from tumours lysed by Lysing
Matrix D tube and FastPrep instrument (MP Biomedicals) using the iPrep Trizol
Plus RNA Kit (Life Technologies). Stringent criteria for RNA quality were applied
to rule out degradation, specifically a 28S/18S ratio 41.8.

SNP array analysis. In total, 115 samples from tumours were genotyped using
Illumina SNP microarrays: 32 samples with Illumina 370-Duo 1.0 BeadChips,
31 with Human610-Quad, 46 with HumanOmniexpress-12V1 and 6 with
HumanCore-12v1. Raw fluorescent signals were imported into BeadStudio
software (Illumina) and normalized to obtain log R ratio and B-allele frequency
(BAF) values. The tQN normalization procedure was then applied to correct for
asymmetry in BAF signals due to bias between the two dyes used in Illumina
assays. Genomic profiles were divided into homogeneous segments by applying the
circular binary segmentation algorithm to both log R ratio and BAF values. We
then used the Genome Alteration Print method to determine the ploidy of each
sample, the level of contamination with normal cells and the allele-specific copy
number of each segment. Chromosome aberrations were defined using empirically
determined thresholds as follows: gain, copy number Zploidyþ 1; loss, copy
number rploidy � 1; high-level amplification, copy number 4ploidyþ 2;
homozygous deletion, copy number¼ 0. Finally, we considered a segment to have
undergone LOH when the copy number of the minor allele was equal to 0. Lists of
homozygous deletions and focal amplifications, defined by at least five consecutive
probes, were generated and verified manually to remove doubtful events. Sig-
nificantly recurrent copy number changes were identified using the GISTIC2.0
algorithm26.

TERT promoter mutation sequencing. Characterized mutations in the TERT
promoter, C228T and C250T variants with G4A nucleotide substitutions at
genomic positions 1,295,228 bp and 1,295,250 bp (hg19), respectively, were
obtained by Sanger sequencing. Primer sequences were: TERT-F—50-GGCCGA
TTCGACCTCTCT-30 and TERT-R 50-AGCACCTCGCGGTAGTGG-30 .

Whole-exome sequencing. DNA was quantified using the Quant-iT PicoGreen
dsDNA Assay Kit (Life Technologies). Libraries were generated robotically using
the SureSelectXT Automated Human All Exon Target Enrichment for Illumina

Paired-End Multiplexed Sequencing (Agilent) as per the manufacturer’s recom-
mendations. Libraries were quantified using the Quant-iT PicoGreen dsDNA Assay
Kit (Life Technologies) and the Kapa Illumina GA with Revised Primers-SYBR Fast
Universal kit (D-Mark). Average size of the fragment was determined using a
LaChip GX (PerkinElmer) instrument. Sequencing was performed by pooling four
libraries per lane at a 9-pM dilution on an Illumina HiSeq 2,000 instrument for
2� 100 cycles using the recommended manufacturer’s conditions. PhiX control
was added at 1% on each lane. BCL2FASTQ (Illumina) was used to convert bcl files
to fastqs (v 1.8.4). Coverage statistics are summarized in Supplementary Fig. 1.
Paired-end fastq files were extracted using Illumina CASAVA software (v.1.8.1,
Illumina) and aligned to build 37 (hg19) of the human reference genome using
Stampy and Burrows–Wheeler Aligner27, and PCR duplicates were removed with
PicardTools 1.5. We assessed coverage of consensus coding sequence bases using
Genome Analysis Toolkit28 v2.4-9. Somatic single-nucleotide variants were called
using MuTect29 and the Genome Analysis Toolkit v2.4-9, and indels using
IndelGenotyper. We excluded potential Covaris-induced mutations as per Costello
et al.30 using in-house scripts. Confirmation of selected single-nucleotide variants
including TCF12, CIC, FUBP1, SYNE1, FAT1, SETD2, RBPJ, NOTCH1, IDH1 and
IDH2 was performed by Sanger sequencing implemented on ABI 3,300� l
platforms (Applied Biosystems, Foster City, USA). Primer sequences are detailed in
Supplementary Data 5. In all cases, Sanger sequencing was 100% concordant with
next-generation sequencing.

We used MutSigCV8 version 1.4 to identify genes harbouring more non-
synonymous mutations than expected by chance, given gene size, sequence context
and the mutation rate. We used as genomic covariates the mean expression level of
each gene in our AO expression data set, the DNA replication time and the HiC
statistic of chromatin state available in MutSig reference files. To increase our
ability to identify cancer drivers and delineate associated oncogenic pathways
for AO, we incorporated mutation data from multiple tumour types using
Oncodrive-fm14 implemented within the IntOGen-mutations platform15.

Transcriptome sequencing. Extracted RNA was cleaned using the RNeasy
MinElute Cleanup Kit (Qiagen) and the RNA integrity assessed using an Agilent
2,100 Bioanalyzer and quantified using a Nanodrop 1,000. Libraries for stranded
total RNA-seq were prepared using the Illumina Stranded Total RNA protocol
(RS-122-2301). Libraries were assessed by the Agilent 2,100 Bioanalyzer.
Sequencing was performed by pooling four libraries per lane at a 9-pM dilution on
an Illumina HiSeq 2,000 instrument for 2� 100 cycles using the recommended
manufacturer’s conditions. PhiX control was added at 1% on each lane.
BCL2FASTQ was used to convert bcl files to fastqs (v 1.8.4). Paired-end reads from
RNA-seq were aligned to the following database files using Burrows–Wheeler
Aligner 0.5.5: (i) the human GRCh37-lite reference sequence, (ii) RefSeq, (iii) a
sequence file representing all possible combinations of non-sequential pairs in
RefSeq exons and (iv) the AceView database flat file downloaded from UCSC,
representing transcripts constructed from human expressed sequence tag (ESTs).
The mapping results from databases (ii)-(iv) were aligned to human reference
genome coordinates. The final BAM file was constructed by selecting the best
alignment. To identify fusion transcripts, we analysed RNA-seq data using Chi-
merascan software31 (version 0.4.5). As advocated, algorithmic output was analysed
for high-confidence fusion transcripts imposing filters: (i) spanning reads 42 (ii)
total supported reads Z10 (ref. 32). In absence of corresponding paired normal
tissue samples, we made use of data from the human body map project data to
identify fusions seen in normal tissue.

TCF12 sequencing in the validation series. PCR amplification of 21 amplicons
covering each exon of TCF12 on DNA extracted from fresh-frozen tumours were
performed using Fluidigm technology according to the manufacturer’s recom-
mendations. The 21 PCR products from one tumour sample were then equimolarly
pooled and submitted to the MiSeq (Illumina) sequencing as per the manu-
facturer’s protocol. All mutations were validated by Sanger sequencing. Somatic
mutations were confirmed using paired constitutional DNA.

mRNA expression profiling. Gene expression profiles of 71 samples were
analysed using Affymetrix Human Genome U133 Plus 2.0 arrays. All samples were
normalized in batches using the RMA algorithm (Bioconductor affy package), and
probe set intensities were then averaged per gene symbol.

Identification of significantly mutated pathways. Gene set member lists were
retrieved online from MSigDB33, GO34 and SMD35 databases. We searched for
gene sets harbouring more damaging mutations than expected by chance. Given
the set G of all the genes sequenced with sufficient coverage, the set S of tumour
samples (of size n) and any gene set P, we calculated the probability of observing a
number of mutations equal or greater to that observed in P across the n samples
according to a binomial law B(k, p), with k¼ n� L(P) and the mutation rate
p¼A(G, S)/(n� L(G)), where L(X) is the sum of the lengths (in bp) of all genes/
exons from a gene set X, and A(G, S) is the total number of mutations observed in
all the targeted sequences across all the samples from S.

0

20

40

60

80

0

5

10

15

20

25
*

** *
Palisading necrosis Mitotic index

%
 O

f t
um

or
s

TCF12
 W

T (6
5)

TCF12
m

 (8
)

alt
bH

LH
 T

CF12
m

 (6
)

TCF12
 W

T (6
2)

TCF12
m

 (7
)

alt
bH

LH
 T

CF12
m

 (6
)

N
b 

of
 m

ito
tic

 fi
gu

re
s/

H
P

F
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Deregulated gene sets in TCF12 mutant samples. We performed a moderate t-
test using LIMMA R package to identify significantly differentially expressed genes
between TCF12 mutant samples and TCF12 wild-type samples (Po0.05 and
absolute log fold change 40.6). Biological pathways and gene set member lists
were retrieved online from MSigDB33, GO34 and SMD35 databases. Enrichment
P values were computed from a hypergeometric test between those gene sets and
the initial list of differentially expressed genes. To visualize gene set activity, for
each gene set defined as target genes of either CDH1, TCF21, BMI1, EZH2 and
found to be significantly deregulated in TCF12 bHLH-altered samples compared
with TCF12 wild-type samples in O3 samples with co-deletion, we retrieved the
complete member list from MSigDB33 and computed a global mean gene
expression value in each sample. We then ranked the samples according to the
later global mean expression value for each of these gene sets.

Structure modelling. The Swiss Model36 server was used to model mutated
TCF12 and VMD software37 used to align the structures of wild-type and mutated
TCF12 proteins with STAMP (STructural Alignment of Multiple Proteins)38.
Prediction of the functional effect of the R602M mutation on TCF12 was made
using Project HOPE39.

Statistical analysis. Statistical analysis was carried out using R3.0.1 software.
A P value r0.05 was considered to be significant. Continuous variables were
analysed using the Student’s t-test or Mann–Whitney test. Categorical data were
compared using Fisher’s exact test or the w2-test. Overall survival of patients was
the end point of the analysis. Survival time was calculated from the date of tumour
diagnosis to the date of death. Patients who were not deceased were censored at
the date of last contact. Mean follow-up time was computed among censored
observations only. Kaplan–Meier survival curves according to genotype were
generated and the homogeneity of the survival curves between genotypes was
evaluated using the log-rank test. Power to demonstrate a relationship between
mutation status and overall survival was estimated using sample size formulae for
comparative binomial trials40.

Cell culture. Human embryonic kidney HEK293T cell line (American Type
Culture Collection) was maintained in a 5% CO2-regulated incubator in DMEM
Glutamax (Life Technologies), completed with 10% fetal bovine serum and peni-
cillin/streptomycin (Life Technologies).

Plasmid construction. To construct the TCF12 wild-type plasmid, we cloned, by
Gateway recombination (Life Technologies), a pENTR221 TCF12 Ultimate ORF
Clone (Life Technologies) into a pDEST12 lentiviral vector (kind gift from
P. Ravassard), under the control of hCMV promoter. The M260fs*5 and R326S
mutations were generated by PCR mutagenesis using the Q5 Site-directed
Mutagenesis kit (New England Biolabs) on pENTR221 TCF12 plasmid (primer
sequences are detailed in Supplementary Data 5) and then cloned into the
pDEST12 vector by LR Gateway cloning. Synthetic NdeI/MfeI fragments
(encompassing sequences from exon 16 to the TAG stop codon of the
ENST00000438423 isoform), containing the mutations E548fs*13, R602M and
S683fs*14, were obtained from GeneCust, then substituted into pENTR221
and finally cloned by Gateway recombination into the pDEST12 plasmid. All
expression plasmids were sequenced before use.

Luciferase expression assays. For each experiment, 105 exponentially growing
HEK293T cells were seeded in 12-well plates and transfected 24 h later using
Fugene6 (Promega), according to manufacturer’s instructions, with 0.3 mg of a
reporter plasmid encoding firefly luciferase under the control of an E-box-
responsive element (Eb, kind gift from A. Lasorella), or 0.3 mg of Eb plasmid and
0.7 mg of a TCF12 wild-type expression plasmid, or 0.3 mg of Eb plasmid and 0.7 mg
of either TCF12 mutant (M260fs*5, R326S, E548fs*13, R602M or S628fs*14)
expression plasmid. For all points, data were normalized by adding 30 ng of renilla
luciferase expression plasmid (pGL4.73, Promega, gift from F. Toledo). Cells were
harvested 24 h after transfection, and luminescence was monitored using the
Dual-Glo Luciferase assay system (Promega), according to the manufacturer’s
instructions, on a Spectramax M4 instrument and SoftMax Pro 6.2.2 software.
All samples were run in triplicate, in four independent experiments.

Immunohistochemistry. Paraffin-embedded tumour sections were deparaffinized
using standard protocols. Heat-mediated antigen retrieval was achieved by boiling
sections in a pressure cooker with Citrate buffer at pH 6. Sections were blocked in
10% goat serum in PBSþ 0.5% Triton X-100 for 30 min prior to incubation with
an anti-TCF12 antibody (Proteintech Cat no.: 14419-1-AP) and then revealed
using the Polink-2 HRP Plus Rabbit DAB Detection System (GBI Labs:D39-6).
Photographs were taken at � 400 magnification and processed using AxioVision
software (Zeiss). The mitotic index in tumours was recorded as the number of
mitotic figures in 10 high-power fields.

TCGA data. To complement our analysis, we made use of exome sequencing data
on AO tumours generated by the TCGA (Supplementary Data 2).
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le Ministère de l’Enseignement supérieur, de la Recherche, de la Science et de la
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Department, 51100 Reims, France. 31Hôpital de la cavale blanche, CHU Brest, Neurosurgery Department, 29609 Brest, France. 32Hôpital Nord, CHU Amiens,
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