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Abstract

This paper focuses on the application of a beam-particle model to study the

failure of concrete under complex loading. The formulation of the model is based

both on lattice models and discrete elements models in order to capture cohesion,

failure and frictional contact of the crack surfaces. To correctly describe the

elastic phase, the peak load and the post-peak phase, the failure criteria is

discussed and heterogeneities are introduced. The calibration of this model is

detailed and illustrated. Finally, several test cases are analysed in order to

validate the model.
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1. Introduction

In the context of sustainable development, the study of the cracking of con-

crete has become of primary importance. Continuum mechanics allow a global

study of the rupture of such a material but cannot fully and finely describe the

cracking process. Complex civil engineering structures may deal with numerous

cracks prapagation under 3D state of stresses. Only macroscopic continuous

models are available at the engineering scale, implying major drawback such as
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a physical representation of the discrete feature of cracking and the difficulty

of identification for complex loading history. On the contrary, Discrete Ele-

ments Models (DEM) – such as lattice models or particle models – are designed

to describe discontinuous mediums. In spite of high computational costs, the

necessity to enhance discrete element models accounting for complex loadings

lies in the possibility to couple such approaches with continuous ones thanks

to multiscales framework [1] and to use this physical type of models as virtual

laboratory tests for better identification [2].

The first lattice model has been introduced by [3] to solve classical problems

of elasticity. The elastic material is discretised using one-dimensional elements

– springs or beams – that allow force transfers between the nodes forming the

lattice. The development of computational simulation allowed its extension to

the study of metals by considering a brittle behaviour for the lattice elements

[4]. [5] and [6] modified the approach to apply it to the quasi-brittle failure of

concrete in tensile mode. However, these models cannot describe the fracturing

process in compressive mode.

Particle models have been proposed by [7] to study the behaviour of gran-

ular assemblies. For the first applications, only contact forces were needed to

model the interactions between the particles. Then [8] proposed a modification

to model cohesive interactions and thus materials such as concrete. Unfortu-

nately, such modelling of the cohesion of granular materials generally lacks the

simplicity of the lattice models and thus its computation time is much higher.

In this paper, the combined beam-particle model – inspired by [9] and mod-

ified by [10] and [11] – is used. The concrete is represented through polygonal

particles linked together by brittle beams and exhibiting frictional contact after

failure of the beams. With this model, it is possible to qualitatively reproduce

the failure pattern for compressive or tensile simulations.

Unfortunately, this model raises the same problem as the lattice models

as regards the energy dissipation. Indeed, it is well known that those models

generally exhibit a brittle failure behaviour in tension [6]. To reproduce the

quasi-brittle behaviour of the concrete in tension, material heterogeneities are
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introduced. The tendency of those models to exhibit a brittle behaviour in

compression is less known but still a major issue. The formulation of the local

criterion is discussed to overcome this difficulty.

The complete calibration process is then presented and validated. Finally,

the beam-particle model is applied to various test cases of tensile, compressive

and shear failure.

2. Description of the model

The main features of the beam-particle model are summarised. A more

detailed description of the proposed model can be found in the literature [10, 11].

2.1. Mesh generation

The medium is described as an assembly of polygonal particles. The gener-

ation of the mesh follows the proposition of [12].

Firstly, a grid is superimposed on the specimen. The spacing of this grid

corresponds to the average particle size lp and is set as a material parameter.

Secondly, points are randomly generated in each cell of the grid. Those

points represent the centroids of the particles. The heterogeneity of the mesh

is controlled by the random placement of the centroids of the particles.

Thirdly, Delaunay’s triangulation of the set of points is performed. The edges

of the Delaunay triangles represent the cohesive beams linking neighbouring

particles.

Finally, the polygonal particles are computed from Voronoi’s tessellation.

2.2. Particle interactions

2.2.1. Cohesive forces

In order to represent the cohesion of the material, the particles are joined

together through Euler-Bernoulli beams linking the centroids of the particles.

Those particles are rigid. Therefore, the cohesive forces must reproduce the

elastic behaviour of the material.

The beam i − j, linking the particles i and j, has four parameters (see

on figure 1). Two of them, the length lb,ij and the cross section area Ab,ij ,
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are prescribed by the mesh geometry and are different for each beam. The

two other parameters, the Young’s modulus of the beams E and the inertia

coefficient α = 64Ib,ijπ/A
2
b,ij — where Ib,ij is the moment of inertia — are

supposed to be equal for all beams.

i

j

+

+

θi

θj

E, α, Ab

lbui

uj

Figure 1: Two cohesively linked particles

The cohesion forces and moment between two connected particles i and j

are expressed as:

F coh,ij =























































FN,ij =
EAb,ij

lb,ij

(

ui − uj

)

.nb,ij
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12EIb,ij
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(
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)
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(
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)

.tb,ij +
4EIb,ij
lb,ij

(

θi −
θj
2

)

(1)

where ui and uj are the displacements of the particles i and j, θi and θj are

the rotations of the particles i and j and nb,ij and tb,ij are the normal and

tangential vectors of the cross-section of the beam i− j.

At this point, the discrete model is equivalent to a lattice model [13, 14].

2.2.2. Frictional Contact

The modelling of concrete failure under cyclic or multi-axial loadings re-

quires considering frictional contact interactions between particles to capture

mechanisms such as crack closure or aggregate interlocking.

Contact interactions are only introduced when two separated particles – i.e.

that are not linked by a cohesive beam – overlap. The magnitude of the contact
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forces, as well as their direction and their point of application, are computed as

a function of the overlapping areas because particles are perfectly rigid bodies.

Overlapping. First, it is necessary to detect the overlapping of two particles.

Since particles are polygonal, the intersection cannot be analytically described

— as with discs — and numerical tools are required. Overlap detection is a time-

consuming process, increasing quickly with regard to the number of particles.

In order to limit its costs, intersection search is restricted to close neighbours

[15].

The complete description of the polygonal intersection is computed through

an algorithm developed for convex polygons [16]. Then, the following contact

properties (see on figure 2) are computed:

- the intersection area Sr which is the area of the intersection polygon.

- the contact band width Lc which the longest segment contained in the

intersection polygon.

- the contact normal vector ~nc and tangential vector ~tc to the longest seg-

ment in the intersection polygon.

- the application point C of the contact forces which is the center of inertia

of the intersection polygon.

i

j

+ +
Oi

Oj

nc

tcSr

+
C

Lc

Figure 2: Two overlapping particles in contact

Constitutive contact model. The beam theory used for cohesion turns out to be

very convenient for elastic contact force computation between polygonal par-
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ticles [17, 9]. A slight modification is made in the normal force formula to

introduce the overlap area Sr:

F cont,ij = −
ESr,ij

lc,ij
nc,ij (2)

where lc is a characteristic length supposed to be the harmonic mean of the

diameter of the contacting particles:

1

lc
=

1

2

(

1

Di
+

1

Dj

)

(3)

Frictional sliding. A Coulomb’s type of friction is considered introducing the

friction coefficient µ:

F fric,ij = min

(

EIc,ij

(lc,ij)
3

[(

uc,ij − uc,ji

)

.tc,ij −∆us,ij

]

, µ||F cont,ij ||

)

tc,ij (4)

where the inertia moment is Ic =
1× l3c
12

.

Before reaching perfectly plastic friction, the behaviour is elastic and com-

puted from the tangential force formulae in beam theory. Only the fraction of

the displacements accumulated since contact has begun is taken into account:

ut+1
c,ij =



















ut
c,ij + δut

i if i and j are overlapping

0 if i and j are not overlapping

(5)

where uc,ij is the accumulated displacement in the normal direction of the par-

ticle i since the contact with particle j has begun. A new internal variable ∆us

measuring the sliding relative displacement between two particles is introduced

and updated in order to verify Coulomb’s criterion. Both internal variables uc

and ∆us are reset when contact is lost.

2.3. Fracture

A brittle behaviour is imposed to the beams in order to reproduce the quasi-

brittle behaviour of the material. The breaking threshold Pij of the beam

linking particle i to particle j depends on the axial strain of the beam and on

the rotations of the two particles:
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Pij

(

ǫij
ǫcrij

,
|θj − θi|

θcrij

)

> 1 (6)

where the breaking parameters are ǫcrij , the critical strain of the beam i− j, and

θcrij , the critical rotation of the beam i− j.

When the breaking threshold is reached, the beam is removed and a crack

appears at the common edge of the particles formerly linked by this beam.

A local crack opening eij can then be computed by considering the relative

displacements of those particles.

2.4. Implicit solving algorithm

Unlike most DEM models, the solving algorithm developed for the beam-

particle model is implicit [11]. In the context of latter pursued analysis, only

quasi-static loadings are considered at the macroscopic scale, therefore dynamic

effects are consistently neglected at the lower scale, including inertial cracking

effects [18]. Neglecting dynamic effects allows us to avoid the introduction of

local kinematics displacements field assumption at the RVE scale. It also allows

interesting computation costs reduction, and consequently permits implicit in-

tegration. Robust integration is made possible by means of a combination of

the saw-tooth algorithm, of a predictor-corrector algorithm and finally of a nu-

merical relaxation.

The saw-tooth algorithm proposed by [19] is modified to compute the failure

of the cohesive beams. If a beam exceeds its failure criterion after reaching

equilibrium, the beam is removed and equilibrium is solved again until no more

beams fail. This way, the stress redistribution due to the relaxation of the

forces contained in the broken beam is automatically performed. If more than

one beam exceeds its failure criterion, the beam to be removed is the one which

exceeds its criterion most.

The iterative predictor-corrector algorithm is employed in between the saw-

tooth iterations to compute the equilibrium of the cohesion forces, the con-

tact forces and the frictional forces. Unlike cohesion, the contact behaviour is

strongly non-linear and dependent on the displacements and rotations of the
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particles. The non-linearities lead to robustness issues and a predictor step is

mandatory to improve convergence. An efficient prediction of the equilibrium

is to assume a linear dependence between the displacements and the contact

forces, using an equivalent secant stiffness. As a result cohesion forces, contact

forces and frictional forces can be assessed simultaneously during the predictor

step.

Relaxation is done by only considering a certain amount of the predicted

displacement increment, if the residue increases or decreases too slowly:

uk+1 = uk + hk+1δuk+1 hk+1 =



















hk if δrk+1 ≤ 10−4

hk

2
if δrk+1 > 10−4

(7)

where δuk+1 is the predicted increment, δrk+1 is the residue increment and hk+1

is the relaxation factor at the current iteration k + 1.

3. Failure behaviour and energy dissipation

Using a lattice discrete model with a simple brittle behaviour for the beams

allows a straightforward modelling of the breaking patterns. Nevertheless, those

models are limited in terms of energy dissipation, as they exhibit a brittle failure

behaviour of the material [9]. Moreover, the energy dissipation is dependent on

the mesh size [6].

In tension, energy dissipation during the post-peak regime is explained by

the occurrence of crack-bridging, due to the presence of heterogeneities. In the

case of concrete, defects, pores or interfaces would be a preferable path of crack

propagation which will result in a more dissipative path than in a homogeneous

material. For that reason, it has been hinted that a mesoscopic description of the

material – reproducing the different phases – is required to obtain a more realis-

tic dissipation [20, 21]. However, a mesh based on the meso-structure implies the

introduction of lower-scale material parameters which would significantly com-

plicate the model calibration. Here, we will simply introduce heterogeneities

through statistical distributions of the breaking parameters as proposed by [22].
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To correctly reproduce the tensile behaviour and ensure the mesh objectivity,

several authors have proposed to include a softening behaviour into the failure

model [23, 24]. We show in this section that it is not necessary to implement such

laws in order to capture the quasi-brittle behaviour of the material. Indeed, the

introduction of heterogeneities of the breaking parameters seems to be sufficient.

Moreover, the density of the mesh is set as a material parameter which means

that mesh objectivity is beyond the scope of this model.

Post-peak behaviour in compression is not as much influenced by hetero-

geneities and material properties as in tension. The relative ductility of the

compression behaviour is rather explained by structural effects. The different

mechanisms occurring during compression tests, according to [25] or [26], are

summarized on figure 3. First, cracking is diffuse and occurs only at the micro-

scale. Then, Poisson’s effect induces extensions in the perpendicular direction

to the applied load and cracks propagate in the direction of this load. Columns

of material are then created but there is no significant loss of stiffness. Finally,

peak load is reached and the cracks start to localize. The columns previously

created collapse under excessive bending, leading to the failure of the speci-

men. In order to account for such mechanisms, we focus our interest on the

formulation of the local failure criterion.

con�ned areas due to adherence

Figure 3: Three stages of failure under compression
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3.1. Statistical aspects

In order to reproduce the post-peak behaviour in tension [27], we introduce

a statistical distribution of the breaking parameters. Gauss and Weibull dis-

tributions have been proposed and investigated. [28] showed that the resulting

displacement field at the top of the crack is visually the same as long as the

distributions are identical in terms of mean value and standard deviation. How-

ever, following the conclusions of [22] regarding the crack patterns, a Weibull

distribution has been chosen. The Weibull probability density function is:

f(x) =
k

λ

(x

λ

)k−1

e−(x/λ)k (8)

where λ is the scale factor and k the shape factor of the Weibull distribution.

We consider that the spatial variability is the same for both breaking pa-

rameters. Consequently, the shape factor is kept identical for each parameter

and the scale factor alone varies. Moreover, no minimal or maximal value has

been assigned to the breaking parameters, contrary to the proposition of [22].

Thus, the number of parameters is minimised.

0 0.5 1 1.5 2
0

0.5

1

Normalised Strain

N
o
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a
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d
S
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s

Experimental

k = 0.5

k = 1.5

k = 2.5

k = 3.5

k ≃ ∞

Figure 4: Normalised uni-axial response under tension with respect to the peak stress and
strain

On figure 4, we compare the model response in uni-axial tension for a deter-

ministic model – the breaking parameters are the same for every beam (k ≃ ∞)

– and a probabilistic model – the breaking parameters follow a spatial varia-

tion. We observe a satisfactory softening behaviour in tension if and only if we
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use a probabilistic model. For this comparison, scale factors of the threshold

distribution are λǫcr = 2.39 10−4 and λθcr = 3.26 10−3.

Further consideration of the spatial variability of the parameters would re-

quire the introduction of spatial covariance in the statistical distributions. How-

ever, such a process is more complex and is quite similar to building explicit

morphological meso-structures [29].

3.2. Formulation of the local failure criterion

We have previously proposed to introduce a spatial variability for the break-

ing thresholds ǫcrij and θcrij in order to dissipate energy in tension. Unfortunately,

DEM-based models are also known to display an excessively fragile behaviour

in compression [30]. To overcome this limitation, a modified formulation of the

failure criterion Pij(ǫij/ǫ
cr
ij , |θj − θi|/θ

cr
ij ) > 1 is proposed to reproduce experi-

mental results [31]. Many formulations of failure criterion can already be found

in the literature [24] and some of them offer an accurate description of the com-

plete failure behaviour. [32] tested several formulations based on Rankine’s or

Mohr-Coulomb’s criterion. They observed that the use of extensions and ro-

tations instead of axial forces and bending moments, as originally proposed by

[6], does not change the results. Therefore, a criterion based on ǫij , θi and θj is

chosen to remain in the kinematic framework of this beam-particle model.

The simplest failure criterion which correctly captures the tensile failure is

a Rankine’s criterion based on the beam extension:

PR,ext
ij =

ǫij
ǫcrij

> 1 (9)

However, a unique threshold in extension is not sufficient to observe a stiff-

ness loss in compression and it is necessary to add a rotation threshold:

PR,rot
ij =

|θi − θj |

θcrij
> 1 (10)

Moreover, it is incorrect to separately check PR,ext
ij > 1 and PR,rot

ij > 1.

Indeed, the failure under bending depends on the state of compression of the

beam. Thus, we combine the two criteria:
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PMC
ij =

ǫij
ǫcrij

+
|θi − θj |

θcrij
> 1 (11)

One should note that the extension term is not squared as proposed by [4].

Indeed, such a choice would not only cause failure under pure contraction but

would also cancel the strengthening of the beam in compression.

The formulation can be seen as a Mohr-Coulomb-type criterion (see figure

5) controlled with only two parameters, which set for each beam the cone vertex

position ǫcrij and the intersection of its edge with the zero-extension plane θcrij .

The resistance in rotation increases with the level of contraction inside the beam.

Such a formulation of the failure criterion can be seen as an homogenisation of

lower scale degradation mechanisms of voids and defects [33].

ǫij

|θi − θj |

ǫ
cr
ij

θ
cr
ij

O
+ +

+

Figure 5: Mohr-Coulomb failure criterion
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Figure 6: Normalised uni-axial response under compression with respect to the elastic limit
stress and strain
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The model response under uni-axial compression (see figure 6) shows the

necessity of using a Mohr-Coulomb criterion to capture the ductile failure in

compression. For this comparison, the scale factors of the threshold distribution

are λǫcr = 2.39 10−4 and λθcr = 3.26 10−3 (when used) and k = 2.3.

4. Parameter Identification

4.1. Particle size

The density of the mesh is set by setting the average size of the particles

lp. A compromise must be found in order to limit the computation time while

ensuring the macroscopic homogeneity of the material.

On one hand, [10] showed that there should be at least 50 particles in the

smallest dimension of the specimen in order to obtain the convergence of the

elastic properties. One should note that the convergence of the failure properties

– such as the peak load or the amount of dissipated energy – cannot be achieved

with this kind of model [34]. However, an increase in the number of particles

still leads to a decrease of the dispersion of all the properties — be they elastic

or failure properties.

On the other hand, the total number of particles should be kept inferior to

50000 if one wants to obtain results within reasonable computation time and

use of memory on a regular computer.

Finally, one should note that the dependency of the failure properties on the

density of the mesh means that the calibration of the full set of parameters is

relevant only if one does not change lp.

4.2. Elasticity

The procedure to identify the two elastic parameters – namely the beams’

Young’s modulus E and their inertia coefficient alpha – has been proposed by

[35]. These two parameters are calibrated in order to fit the elastic material

properties Em, the Young’s modulus, and νm, the Poisson coefficient. These

material properties are obtained thanks to a uni-axial tensile test. The sensibil-

ity analysis showed that the material’s Young’s modulus Em is proportional to
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the beam’s Young’s modulus E and that the material’s Poisson coefficient νm

does not depend on the beam’s Young’s modulus E. Therefore the two steps of

the procedure are:

• Calibrate α with respect to material’s Poisson coefficient νm.

• Calibrate E with respect to material’s Young’s coefficient Em.

4.3. Failure

The calibration of the failure behaviour is achieved by choosing the breaking

parameters. Given that we chose a Weibull distribution and a Mohr-Coulomb-

type failure criterion, those parameters are the shared shape factor k and the

scale factors of the Weibull distributions of the critical strain, λǫcr , and of the

critical rotation λθcr .

We observed that the peak load of failure tests which show beams breaking

in bending is influenced by k, λǫcr and λθcr . Moreover, the peak load of failure

tests which show beams breaking in extension is impacted by k and λǫcr . Finally,

the post-peak phase of a failure test in extension is only affected by k.

The following steps are adopted:

• Calibrate k on the post-peak phase of a complete failure test in extension,

• Calibrate λǫcr on the peak load of a failure test involving extension break-

ing such as the direct tension test, the three-point bending test or the

wedge splitting test,

• Calibrate λθcr on the peak load of a failure test involving bending breaking

such as the compression test or the Brazilian splitting test.

As randomness is introduced through the mesh generation and the fracture

parameters’ distribution, an average numerical response of 50 computations on

the same specimen is used to fit the experimental response.

One should note that the splitting test, the compression test and the three-

point bending test are standardized tests for experimentally characterising a

14



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

specific concrete and should therefore be easily accessible. However, the split-

ting test should be preferred to the compression test. Indeed, the friction effects

at the loading surfaces significantly impact the failure behaviour and are repro-

duced through the loading conditions with difficulty.

Finally, the failure parameters can be calibrated on the experimental ten-

sile strength, compression strength and fracture energy. This identification is

however limited because the experimental boundary conditions for the deter-

mination of the compression strength are unknown and the fracture energy ex-

tracted from a three-point bending test gives less information than the complete

post-peak behaviour of this test.

4.4. Friction

Finally, the calibration of the friction coefficient µ – introduced in the formu-

lae of the frictional force of the contact mechanism obeying a Coulomb criterion

– is carried out.

Here again, an inverse identification can be used to calibrate the friction

coefficient. Indeed, [36] show that the confined compression test response is

impacted by the value of µ. The simulation with the beam-particle model of

a compression test under a lateral confinement pressure of 10 MPa shows an

increase of the post-peak energy dissipation with an increase of the friction

coefficient (see on figure 7).

−5 −4 −3 −2 −1 0

−100

−50

0

Strain (×10−3)

S
tr
es
s
(M

P
a
) µ = 0.000

µ = 0.300

µ = 0.600

µ = 0.900

µ = 1.200

µ = 1.500

Figure 7: Influence of the friction coefficient µ on the compression response for a given con-
finement pressure: 10 MPa

However, the difficulty in reproducing the loading conditions of such a test
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prevents us from using it to conduct an accurate identification of the friction

coefficient. For this reason, this coefficient is set to an average value µ = 0.7,

which leads to a coherent ductility. Such a value is found commonly in the

literature [37].

5. Illustration of the identification process

In section 4, multiple tests were introduced to perform the identification

process. Obviously, those tests must be carried out on the same batch of concrete

– or at least the same formulation – as the experiment of interest.

In this section, the experimental data from [38] is used. It contains results

from various three-point bending tests (see set-up on figure 8), splitting tests,

and compression tests.

Force

CMOD
(Crack Mouth Opening Displacement)

Figure 8: Description of the 3-point bending test’s set-up [38]

5.1. Calibration

The particle size is arbitrarily set at lp = 2 mm. This size ensures a correct

density regarding isotropy for the majority of the tests. Nonetheless, the small-

est beam might show a bias as there will only be 25 particles along the smallest

dimension of the beam.

In order to reproduce the elastic properties of the concrete, Em = 37 GPa

and νm = 0.21, the beam’s Young’s modulus is fixed to E = 46 GPa and the

coefficient of inertia to α = 0.83.
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Before calibrating the failure parameters k, λǫcr and λθcr , we show their

influence on the failure behaviour of a 3-point bending test and a splitting test

through a sensibility analysis.

First, we observe on figure 9 the influence of the three parameters on the

post-peak behaviour of a 3-point bending test on a un-notched beam of length

0.35 m and height 0.1 m. On this figure, the normalised behaviour is plot-

ted – i.e. F/Fmax versus CMOD/CMODmax. This way, the impact of the

parameters on the post-peak phase is not perturbed by their influence on the

peak. We can observe that the shape parameter k alone influences the post-peak

behaviour. Its value is then identified to k = 2.8.
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Figure 9: Influence of the failure parameters on the 3-point bending test’s normalised response:
λǫcr (left), λθcr (center), and k (right)
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Figure 10: Influence of the failure parameters on the 3-point bending test’s response: λǫcr

(left), and λθcr (right)

Then, the response of the same 3-point bending test is used to analyse the

influence of the two scale parameters on the peak-load (see figure 10). Mode I

failure is mostly involved, thus λθcr does not impact the peak-load. The value

of the critical strain scale factor is identified to λǫcr = 2.39 10−4.

Finally, the response of the splitting test on a cylinder of diameter 0.215

m, and particularly the peak-load value ft = 3.9 MPa, is used to identify the

critical rotation scale factor λθcr = 3.26 10−3 (see figure 11). The equivalent

stress is computed as σ̃ = 2F/πDL, with F the applied force, D the diameter

of the specimen and L its length, here equals to 1 m due to bi-dimensional

computations.

18



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

0 0.2 0.4 0.6
0

2

4

Displacement (mm)

E
q
u
iv
a
le
n
t
st
re
ss

(M
P
a
)

λθcr = 2.00 10−3

λθcr = 2.67 10−3

λθcr = 3.33 10−3

λθcr = 4.00 10−3

Figure 11: Influence of the failure parameters on the splitting test’s response: λθcr

The set of parameters for this batch of concrete is recapped in table 1.

lp (m) α E (GPa) λǫcr λθcr k µ
0.002 0.83 46 2.39 10−4 3.26 10−3 2.8 0.7

Table 1: Parameters values for the tests simulations

5.2. Validation of the identification process

The set of parameters obtained from a 3-point bending test on a half-notched

beam of length 0.35 m and height 0.1 m and a splitting test on a cylinder of

radius 0.215 m are applied to the study of 3-point bending test on beams of

different sizes and various notches and to the study of a compression test.

5.2.1. Size and shape effects on a 3-point bending test

The reproduction of the size and shape effects is crucial when dealing with

the modelling of failure in concrete. In general, a correct reproduction of those

effects on the peak-load and of the post-peak behaviour requires calibrating the

model on several sizes (see [39] for non-local damage models or [40] for cohe-

sive crack models). Furthermore, the sets of parameters obtained are generally

limited to a small range of sizes and geometries [38]. Finally, the reproduction

of the size effect for the non-local damage models implies the calibration of the

internal length.

Here, our internal length is a mesh density measure that is freely chosen –

with regard to the size and shape effects at least. Then, the model – which is

calibrated on a unique size and a unique notch length – gives predictive results
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for three sizes and two notch lengths (see figures 12 and 13). The beam-particle

model is able to reproduce the size effect not only on the nominal strength but

also on the slope of the post-peak phase.
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Figure 12: Influence of the specimen size on the 3-point bending test’s response of the fifth-
notched beams: experiments (dashed), simulations (plain)

In order to correctly reproduce the size effect and the shape effect, one must

consider the true nature of cracking, which is not localised in a sharp crack

tip, but is rather spread over a certain volume called fracture process zone [41].

Looking at the crack patterns obtained for different notch lengths (see figure

14), we conclude that the beam-particle model ensures a correct representation

of the crack initiation and propagation.
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Figure 13: Influence of the notch depth on the 3-point bending test’s response on one of the
small (0.350 m × 0.100 m) beams: experiments (dashed), simulations (plain)
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Figure 14: Influence of the notch-length on the crack pattern (focus on the central part of the
beam): a) half-notched beam, b) fifth-notched beam and c) un-notched beam

5.2.2. Dispersion of the results
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Figure 15: Variability of the response of a small fifth-notched 3-point bending test

The dispersion of the model’s responses is studied on a 3-point bending test

on a small (0.350 m × 0.100 m) fifth-notched beam (see figure 15). Several

hypotheses can explain the fact that the variability of the simulated responses

is higher than the experimental ones. First, only three experiments were per-

formed for each size of beam which might not be enough to observe the full

dispersion of the experimental results. Second, the shape parameters of the

thresholds distributions k influences not only the post-peak behaviour but also

the dispersion of the results. Last, the mesh is not refined enough for this size

of beam, leading to a cracking-pattern excessively influenced by particles shape

and spatial organization.

Because we do not have access to more than three experimental results, and
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because we do not want to change the shape factor k, we investigate the influ-

ence of the number of particles on the dispersion of the results. The number of

particles increases with the size of the specimen and its influence on the stan-

dard deviation is given on figure 16. First, we observe that the experimental

relative standard deviation is not constant which is due to the lack of experi-

mental results. Then, we note that the numerical relative standard deviation

decreases with the number of particles and seems to converge toward the ex-

perimental value. Therefore, the setting of the particle length should not only

ensure the convergence of the mean elastic properties but also the convergence

of the relative standard deviation of the peak.
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Figure 16: Influence of the number of particles in the height on the dispersion of the peak
load

Nevertheless, using a coarse mesh remains an interesting option to obtain

conservative results – the experimental range of responses being entirely in-

cluded in the numerical one – for a limited computational cost.

5.2.3. Compression response

Compression tests are intricate because solicitations near the loading platens

are difficult to simulate. Indeed, highly multi-axial stress states can occur de-

pending on the adherence between the specimen and the platens. Due to the

quasi-static framework, boundary conditions at the platens have to be applied

in a specific manner to avoid rigid body motion without adding unrealistic con-

straints.
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Application of partially restrained boundary conditions. Figure 17 illustrates the

application of partially restrained boundary conditions.

loading-platen

Figure 17: Schematic description of the application of partially restrained boundary conditions

The loading platen interacts with the first layer of particles. To simulate

a perfectly sliding interface between the specimen and the platens, we should

apply vertical displacements on the first layer (in red) of particles, without ap-

plying any horizontal displacement. Unfortunately, rigid-body motion will occur

in the horizontal direction. A possible solution would be to lock a red particle

horizontally. However, failure can localise around this particle and brings back

the original issue of rigid-body motion. Finally, if failure is prevented, horizontal

constraints appear and bias the results.

The solution proposed here consists in applying boundary conditions on two

layers of particles instead. On the first layer vertical displacements are applied

and the horizontal displacements are completely locked. On the second layer

(in orange), only the vertical displacement is imposed. At this point, boundary

conditions are equivalent to perfectly adherent loading platens.

In order to simulate the influence of partial adherence, the amount of stress

transferred from the loading platen to the specimen must be adjusted. To do

this, the stiffness of the beams linking the first layer to the second layer is

reduced by a factor kp. These beams are also considered unbreakable to avoid

localisation of failure due to their higher compliance. A null stiffness (kp = 0)

is equivalent to having perfect sliding in between the loading platen and the
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specimen, while an intact stiffness (kp = 1), as aforementioned, is equivalent to

having perfect adherence in between the platens and the specimen.

Simulations. The numerical results for a compression test on a cylinder of height

0.14 m and diameter 0.074 m are compared to experimental ones on figure 18.

The sensibility of the compression results on the adherence level is studied.

Because teflon was placed between the loading platens and the specimen, one

could have expected to observe no adherence (kp = 0). However, the experi-

mental response is accurately reproduced for softened boundary conditions with

kp = 0.0015.
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Figure 18: Influence of the boundary conditions on the response of a compression test

Experimentally [42], the inclination of the localised macroscopic crack has

been observed to depend on the adherence level of the platens. The beam-

particle model with the modification to partially apply restrained boundary

conditions allows the reproduction of the experimental results: the crack pattern

slope increases with the friction (see dashed red line on figure 19).
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Figure 19: Influence of the adherence at the loaded ends on the cracking patterns in compres-
sion

6. Complex loading and failure

The validation of the model is continued with quasi-structural test cases.

Mode I failure has been previously studied, therefore only mixed mode (I/II)

failure and mode II failure test cases are investigated. The model parameters

previously calibrated cannot be directly used for those test cases. Unfortunately,

the available experimental results do not allow us to rerun a complete identifi-

cation process. Therefore, the beams’ Young’s modulus E and the scale factors

of their failure parameters’ distributions (λǫcr , λθcr ) are slightly adjusted on

one of the provided structural responses. For this reason, the results presented

in this section cannot be considered as entirely predictive. Nevertheless, it is

proven that the beam-particle model is able to predict the impact of a change

of geometry or boundary conditions on the load-displacement responses and the

cracking patterns.

6.1. Mixed mode I/II failure: Schlangen’s beams tests

[43] tested single-edge (SEN) and double-edge (DEN) notched beams under

four-point bending (see the experimental set-up on figure 20). The evolution of

the applied force, of the crack-mouth opening (CMOD) and of the crack-mouth

sliding (CMSD) displacements are given for sliding and fixed supports.
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a) b)

c)

Figure 20: Schlangen’s beams tests: the set-up (a) and dimensions of single-edge (b) and
double-edge (c) notched beams

The model is slightly re-calibrated on the force versus CMOD response of

the SEN beam test with sliding supports. The beams’ Young’s modulus E is

set to fit the initial slope of the response. The critical extension scale factor

λǫcr is set to obtain the most accurate fit of the peak-load value and the critical

rotation scale factor λθcr is set to reproduce the post-peak behaviour. The set

of parameters is recapped in table 2.

lp (m) α E (GPa) λǫcr λθcr k µ
0.002 0.83 46 3.26 10−4 3.91 10−3 2.8 0.7

Table 2: Parameters values for Schlangen’s beams tests simulations

6.1.1. Sliding supports

First, we focus on the responses for SEN and DEN beams with sliding sup-

ports. Three of the four supports have free horizontal displacement boundary

conditions, while the bottom left corner support is locked in order to avoid rigid

body motion.

The model is able to correctly reproduce the experimental evolutions of the

force versus CMOD and of the force versus CMSD of both SEN and DEN beams

(see figure 21).
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Figure 21: Responses of the model for Schlangen tests with sliding supports: experiments
(dashed), simulations (plain)

The numerical crack patterns are also in agreement with the experimental

ones (see figure 22).

Figure 22: Comparison between the numerical crack patterns of the a) SEN beam (respectively
b) DEN beam) and the experimental ones of the c) SEN beam (respectively d) DEN beam)

6.1.2. Fixed supports

According to finite element analysis of the Schlangen’s beams tests performed

by [44], the definition of the fixed boundary conditions requires special atten-

tion. Indeed, the fixed supports cannot be considered perfectly stiff. Therefore,
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the methodology presented in 5.2.3 has been applied to soften the boundary con-

ditions. The stiffness reduction coefficient varies to model boundary conditions

from perfectly fixed supports (kp = 1) to perfectly sliding supports (kp = 0).
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Figure 23: Influence of the compliance of the supports on the model’s response for SEN beam
tests

For the SEN beam, the vertical displacement δ2 at the right top corner

support alone is experimentally available. Unfortunately, this displacement is

greatly influenced by rigid body displacements of the experimental loading set-

up. This is why we were not able to reproduce the experimental evolution of

the force versus δ2 (see on figure 23).
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Figure 24: Response of the model for DEN beam tests with corrected friction at the supports

For the DEN beam, an experimental measure of the average of the CMOD

and the CMSD is available. We were able to compute the evolution of the force

with this measure. The comparison with the experimental results is performed
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on figure 24. For perfectly fixed supports, the core cannot expand horizontally

and so the cracks are prevented from opening and propagating. As a result, the

peak-load is never reached. Accurate results in terms of response are found for

a stiffness reduction coefficient of kp = 0.001.

Regarding crack propagation (see figure 25 and 26), the patterns are inac-

curate for both the SEN beam and the DEN beam if the supports are fixed.

Indeed, confinement is generated in the mid-section and the cracks cannot prop-

agate. If the stiffness of the support is sufficiently reduced (kp = 0.001), the

experimental crack patterns can be reproduced. Indeed, for the SEN beam we

reproduce the curved crack between the notch tip and the bottom loading platen

as well as the vertical crack under the top loading platen. For the DEN beam,

we capture the two antisymmetric curved cracks originating from each notch

and a splitting crack in the center of the beam.

Figure 25: Comparison between the numerical crack patterns with a) fixed supports and b)
modified supports and the c) experimental one of the SEN beam
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Figure 26: Comparison between the numerical crack patterns with a) fixed supports and b)
modified supports and the c) experimental one of the DEN beam

6.2. Mode II failure: Fenwick and Paulay shear test

The shear test proposed by [45] allows to test a concrete specimen under

pure mode II failure (see figure 27). The specimen (0.45 m long and 0.1 m high)

is first loaded under uni-axial tension to form a localised crack in between two

small notches at mid-length of the sample. Then the specimen is maintained to

keep the crack opening constant, and shear load is applied.

Figure 27: Fenwick and Paulay confined sheared crack test set-up and experimental crack
patterns

The evolution of the shear stress with the shear displacement for several crack
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widths – i.e. different confinements levels – is experimentally available [46]. The

critical extension scale factor is re-calibrated in order to fit the experimental

response for the smallest crack-width (cw = 0.00006 m). The smallest crack-

width is chosen, since it is the closest configuration to a cohesive, unbroken

specimen. The whole parameter set is given in table 3.

lp (m) α E (GPa) λǫcr λθcr k µ
0.002 0.83 46 4.35 10−4 3.26 10−3 2.8 0.7

Table 3: Parameters values for Fenwick and Paulay shear tests simulations

The model is able to reproduce not only the peak-load values but also the pre-

peak overall slope of the smooth experimental curves (see figure 28). Note that

the offsets in the pre-peak behaviour (horizontal slope), especially visible at high

confinements, are evidence of the ”aggregate interlocking” mechanism. Shear

stresses transit through the crack because of geometrical incompatibilities, until

particles at the crack interface start to spall off, once all their cohesive beams

are broken. Sliding is then initiated at the crack lips until new incompatibilities

are generated. The model would hardly capture such mechanism without the

use of polygonal particles.
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Figure 28: Response of the model for Fenwick and Paulay shear test: experiments (dashed),
simulations (plain)

This phenomenon can be observed on figure 30 in the dashed ellipses. A

packing of particles, initially linked to the left block, is in contact with the
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other right block enabling the transmission of forces. However contact points

in between blocks are sparse, leading to stresses concentrations. The aforemen-

tioned packing of particles loses all of its cohesive links with the left block, and

therefore spalls off. Thus the displacement restriction of the left block due to

the previous contact is removed, and the left block can slide with respect to the

right block.

Qualitatively, the numerical crack pattern (see figure 29) is similar to the

experimental one (see figure 27). Indeed, we observe the formation of vertical

secondary cracks as well as diagonal ones.

Figure 29: Crack pattern of the model for Fenwick and Paulay shear test at crack-width
cw = 0.00032 mm

Figure 30: Zoom on the pre-crack during at crack-width cw = 0.00006 mm for three different
applied shear displacements (from left to right): 0.03, 0.1 and 0.2 mm
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7. Conclusion

A beam-particle model has been presented to model the failure behaviour

of concrete. Particles are linked by cohesive beams before failure and interact

through frictional contact after failure.

This model is based on a lattice representation and hence tends to underes-

timate the energy dissipation in tension. Spatial variability has therefore been

introduced to model a quasi-brittle behaviour in tension. Regarding the ductile

behaviour in compression, we showed that using an appropriate failure criterion

for the cohesive beams allows us capture it.

The model is governed by seven parameters which have to be correctly identi-

fied. In this paper, we proposed a detailed calibration process based on standard

tests for concrete characterisation. This procedure is illustrated and a sensibil-

ity analysis is performed. We observed that the set of parameters only requires

slight adjustments to model different mortars and concrete.

Finally, several test cases were studied to validate the model under compres-

sion, mixed mode or pure mode II. For these complex tests, we reproduced the

experimental results not only qualitatively – by comparing the crack patterns

– but also quantitatively – by comparing the evolution of the load with the

displacements. Special attention has to be paid to the boundary conditions and

a strategy to apply frictional sliding has been proposed.

To give a better idea of the time efficiency of the model, the required time

to compute the cracking pattern of the Schlangen’s beam test has been about

10 hours (9 hours and 34 minutes average on the 50 draws of the test at the

given mesh refinement) while a finite element model with damage would tackle

the problem in minutes. For industrial reinforced concrete structures such as

nuclear power plant containment vessels subjected to a complex loading for

which hundreds of cracks may initiate and propagate, such numerical procedures

would lead to excessive and prohibitive CPU time consumptions. That is why,

applications of the model are mostly found in multi-scale modeling methods,

which require a mesoscale representation of the cracking of concrete. In this
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case, a good compromise can be obtained between the computation time and

the level of precision of the cracking pattern description [34].

In perspective, the extension of the model to 3D studies need to be achieved

in order to complete the range of validation tests. The 3D developments for

the lattice part of the model had already been carried out and are relatively

straightforward [10]. However, the computation of the contact and friction

forces is heavy and therefore prohibited in 3D. Solutions exist to overcome this

difficulty. Particles can be approximated by spheres to estimate the intersection

[47] or the algorithm can be parallelised.

Future applications of the model could be found in multi-physic problems.

It has been shown that beam-particle approaches offer a reliable description of

cracking. That being said, it is well known that cracking has multiple influ-

ences on the thermo-hydro-mechanical behavior of concrete. For example, the

permeability is directly impacted by the presence of macroscopic cracks and

information about the opening and orientation of those cracks – which can be

easily obtained from a DEM based model – are crucial when computing the

anisotropic permeability tensor of a fractured material [48]. Therefore, our ap-

proach may allow to model coupled problems such as transfer of water into a

cracked material. In fact, some work has been initiated on the study of the

permeability of fractured materials such as concrete with the proposed model

[49] and further work is ongoing.
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[21] G. Cusatis, Z. Bažant, L. Cedolin, Confinement-shear lattice csl model

for fracture propagation in concrete, Computational Methods Applied Me-

chanical Engineering 195 (52) (2006) 7154–7171.

[22] J. G. M. Van Mier, M. R. A. Van Vliet, T. K. Wang, Fracture mechanisms

in particle composites: statistical aspects in lattice type analysis, Mech.

Mater 34 (2002) 705–724.

36



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
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(2014).

[29] E. Roubin, Meso-scale fe and morphological modeling of heterogeneous

media : applications to cementitious materials, Ph.D. thesis, École normale
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