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Kinetics of precipitation of non-ideal solid-solutions in a liquid environment

I. INTRODUCTION

In natural water-rock interaction systems on the Earth surface, primary minerals are often in a thermodynamic nonequilibrium state. This is the key-condition for the alteration which takes place in the water cycle, including both weathering processes near surface and hydrothermal alteration at depth. The resulting spontaneous dissolution of primary minerals leads to the formation of secondary minerals which are generally not defined compounds but often solid solution phases (SS), with compositions that adjust to the evolution of the chemical composition of the aqueous solution (AS). The most frequent example of this property is the formation of clay mineral phases in the alteration of rock-forming silicates (Millot, 1970;Meunier and Velde, 1989), but many oxides, carbonates, and sulfates also share this property [START_REF] Drever | The Chemistry of Weathering[END_REF][START_REF] Geiger | Solid Solutions in Silicate and Oxide 1220 systems[END_REF]Rhada and Navrotsky, 2013).

In another context, formation of bimetallic nanoparticles is often the aim of wet chemistry experiments in the laboratory, due to their interesting properties for plasmonics (Major et al., 2009), catalysis [START_REF] Zhang | One-pot syn-1387 thesis of Ag-Au bimetallic nanoparticles with Au shell 1388 and their high catalytic activity for aerobic glucose oxi-1389 dation[END_REF] or electrocatalysis (Peng and Yang, 2009) applica-29 tions. Similarly to their mineral counterparts, these al-30 loys may display an ideal SS behavior, or, alternatively, 31 a tendency towards ordering or demixing (phase sepa-32 ration), depending upon the sign and strength of their 33 mixing enthalpy of formation [START_REF] Ferrando | Nanoalloys: From Theory to Applications of Alloy Clus-1205 ters and Nanoparticles[END_REF].

34

The equilibrium behavior of a SS in contact with an 35 AS, whether ideal or non-ideal, is now well established 36 (Lippmann, 1982;Glynn and Reardon, 1990), as re-37 viewed by [START_REF] Ganguly | Solid Solutions in Silicate and 1217 Oxide systems[END_REF] or [START_REF] Katsikopoulos | Precipitation and mixing properties of the 1240 "disordered" (Mn,Ca)CO3 solid solution[END_REF]. The rela-38 tionship between the SS composition and the distribu-39 tion of ions in the AS may be represented by the clas-40 sical Lippmann's or Roozeboom's diagrams (Lippmann, 41 1980;Roozeboom, 1904). Recent theoretical studies of 42 non-ideal mineral SSs at equilibrium mainly concern ce-43 ments and concretes interacting with the AS, particularly 44 in the field of nuclear waste storages and clay barriers 45 [START_REF] Börjesson | A ther-1171 modynamic model for the calcium silicate hydrate gel 1172 modelled as non-ideal binary sold solutions[END_REF][START_REF] Walker | Non-ideal solid solution modeling for syn-1384 thetic calcium silicate hydrate[END_REF] but carbon-through a porous medium (Prieto et al., 1997;Sánchez-Pastor et al., 2006) or in situ atomic force microscopy studies of the growth of SSs in a fluid cell (Pina et al., 2000;Putnis et al., 2002;[START_REF] Astilleros | Nanoscale growth of solids crystallising 1150 from multicomponent aqueous solutions[END_REF][START_REF] Astilleros | Nanoscale phenomena during 1154 the growth of solid solutions on calcite 1014 surfaces[END_REF] have provided important information on growth mechanisms and particle composition for various mineral SSs.

Inclusion of kinetic effects in the modeling of a SS formation still remains a difficult task. In the water-rock interaction model KINDIS (Madé et al., 1994) and its extension for treating reaction and transport (Nourtier-Mazauric et al., 2005), kinetic dissolution and precipitation at equilibrium of ideal SSs were included but without considering nucleation and growth. In these works, a single SS was allowed to precipitate for a given set of end-members, corresponding to the least soluble phase or, equivalently, to the phase with the highest supersaturation. More recent approaches rely on empirical rate equations, not considering explicitly nucleation, sizedependent growth and nucleation (Shtukenberg et al., 2010[START_REF] Brandt | Replacement of barite by a 1176 (Ba,Ra)SO 4 solid solution at close-to-equilibrium condi-1177 tions: A combined experimental and theoretical study[END_REF]. The same was true in the coupled reaction and transport model by [START_REF] Lichtner | Incorporating solid 1253 solutions in reactive transport equations using a kinetic 1254 discrete-composition approach[END_REF] who represented the SS by a discrete set of stoichiometric solids with fixed composition. On the other hand, atomistic Monte Carlo simulations of ideal SSs under constant supersaturation have specified how the distribution coefficients vary with the supersaturation at kink, step and terrace sites of the growing particles (Matsumoto and Kitamura, 2001;Matsumoto et al., 2005). Only in the work of Pina and Putnis (2002) did a generalized expression for the nucleation rate appear, and the composition of the critical nucleus was determined from the maximum of the nucleation frequency.

However, growth and feed-back effects were not included in this work.

To our knowledge, only in our previous works (Noguera et al., 2010;Noguera et al., 2012), were the full dynamics of a SS formation fully accounted for, with the inclusion of nucleation processes, size dependent growth, particle population and out-of-equilibrium composition of the critical nuclei and deposited layers during growth. This has led to the creation of a second version of the NANOKIN code (Noguera et al., 2010), which previously could only account for the kinetics of formation of minerals with fixed composition [START_REF] Fritz | Simulation of the nucleation and growth of simple clay 1208 minerals in weathering processes : the NANOKIN Code[END_REF]. However this second version was restricted to ideal binary SSs.

It is our goal, in the present work, to propose a theoretical description of nucleation and growth of non-ideal binary SSs. As will appear clearly in the following, it does not consist in merely introducing activity coefficients in the nucleation and growth equations. Depending on the strength of the enthalpy of mixing, which will be represented by a Guggenheim expansion restricted to two terms (sub-regular SS), and depending on the composition of the AS, several scenarios may take place in which the composition profiles of the formed particles and the precipitation dynamics are distinctly different. Each of these scenarios will be exemplified by a numerical simu-lation, under some simplifying assumptions and predic-109 tions will be made for various mineral SSs of geochemical 110 interest to assess which scenario applies to each of them.

111

The formalism primarily aims at describing SSs of 
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The solubility products of the end-members, denoted 163 in Gibbs free energy, ∆G AC and ∆G BC , for dissolution:

K AC = exp (-∆G AC /RT ) K BC = exp (-∆G BC /RT ) (1)
in which R is the gas constant and T the temperature.

Considering the SS as a single component stoichiometric solid, the change of Gibbs free energy ∆G(x) during the dissolution of one mole of composition x may be written as:

∆G(x) = (1 -x)∆G AC + x∆G BC + ∆G E M (x) -RT (x ln x + (1 -x) ln(1 -x))
(2)

The 

∆G E M (x) = ∆H M (x) -T ∆S E M (x)
. We will neglect ∆S E M (x) which may originate from non-configurational entropy [START_REF] Benisek | A relationship to esti-1162 mate the excess entropy of mixing; Application in silicate 1163 solid solutions and binary alloys[END_REF] or deviations from perfect randomness. As regards ∆H M (x), whose variations with the SS composition are usually represented by the Guggenheim expansion [START_REF] Guggenheim | Theoretical basis of Raoult's 1234 Law[END_REF], we will only keep its first two terms, and thus restrict ourselves to sub-regular SS:

∆H M (x) = -RT x(1 -x)[A 0 + A 1 (2x -1)] (3) 
The two dimensionless parameters A 0 and A 1 characterize the non-ideality of the SS. A 0 may be related to first neighbor pairwise interactions. Its sign drives the tendency to ordering (if negative) or to unmixing (if positive). When A 0 exceeds some critical value, the SS possesses a miscibility gap, which means a range of compositions in which phase separation takes place. The A 1 coefficient introduces an asymmetry of ∆G E M (x) about

x = 1/2.
The stoichiometric solubility product of the SS: (2x-1)] (4) One can deduce the stoichiometric saturation state I(x) of the AS with respect to a SS of composition x (sometimes called β(x) (Prieto et al., 1993)), equal to the ratio between the ionic activity product

K(x) = exp(-∆G(x)/RT ) is equal to: K(x) = K 1-x AC K x BC (1 -x) 1-x x x e x(1-x)[A0+A1
Q(x) = [A] 1-x [B] x [C]
and K(x):

I(x) = I AC (1 -x) 1-x I BC x x e -x(1-x)[A0+A1(2x-1)] (5)
In this expression, I AC and I BC are the saturation states of the AS with respect to the pure end-members AC and BC, respectively:

I AC = [A][C] K AC ; I BC = [B][C] K BC (6) 
I(x) can also be written in terms of the activity coeffi-205 cients λ AC and λ BC of the end-members:

206 I(x) = I AC (1 -x)λ AC (x)) 1-x I BC xλ BC (x) x (7)
The coefficients λ AC and λ BC depend on x and, for a 207 sub-regular SS, are equal to [START_REF] Glynn | MBSSAS: a code for the compu-1223 tation of Margules parameters and equilibrium relations 1224 in binary solid-solution aqueous solution systems[END_REF]:

208 λ AC (x) = e x 2 [A0+A1(4x-3)] λ BC (x) = e (1-x) 2 [A0+A1(4x-1)] (8) 
Thermodynamic equilibrium between the SS and the 
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They can be recast under the standard form:

215

I AC = (1 -x 0 )λ AC (x 0 ) I BC = x 0 λ BC (x 0 ) (9) 
In the following, we will focus on the characteristics 

W = I BC I AC = [B]K AC [A]K BC (11) 
When Eq. 10 has a single root, x st varies smoothly as a in the case of a strongly non-ideal SS. symmetry of the miscibility gap about x st = 1/2 is to be 261 linked to the shape of the Gibbs free energy of mixing.

W A 0 =1 A 0 =1.7 A 0 =2.1 A 0 =2.5 A 1 =0 0 0.2 0.4 0.6 0.8 1 0.8 1.2 1.6 2 2.4 x st W A 0 =4 A 0 =2.5 A 0 =2 A 0 =1.7 A 0 =1.4 A 0 =1.2 A 0 =1.1 A 0 =1 A 1 =1
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In sub-regular SSs (A 1 = 0), the transition between A 0

A 1 = -0.5 A 1 = 0 A 1 = 0.5 A 1 = 1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 0.5 1 1.5 2 A 1 A 0 FIG.
3: Top: position Wc of the xst discontinuity as a function of A0 for A1=1, 0.5, 0, and -0.5. At constant A1, the crosses mark the critical A0 value above which a discontinuity starts taking place. This critical value is represented in the bottom panel as a function of A1. In the region between the two lines, Eq. 10 has a single root whatever W , which means that xst varies smoothly as a function of the composition of the AS.

parameters, x st is uniquely defined by the value of W , 

∆G(n, x) = -nk B T ln I(x) + n 2/3 v(x) 2/3 Xσ (12)
The first (bulk-like) term -nk B T ln I(x), with I(x) the stoichiometric saturation state given by Eq. 7, represents the gain (if I(x) > 1) of Gibbs free energy when ions from the AS condense into a solid phase. The second term E s = n 2/3 v(x) 2/3 Xσ is the total surface energy of the nucleus. In this expression, v(x) is the volume of a formula unit of composition x, that will be assumed to vary linearly between its end-member values (no excess molar volume):

v(x) = (1-x)v AC +xv BC .
The geometric factor X is equal to X = (36π) 1/3 for spherical particles and σ is the surface energy per unit area.

When I(x) > 1, ∆G(n, x) displays a maximum as a function of n, which defines the characteristics of the critical nucleus: its size n m (x) and the barrier to be overcome

for its nucleation ∆G m (x) = ∆G(n m (x), x): n m (x) = 2u(x) ln 3 I(x) with u(x) = 4X 3 σ 3 v(x) 2 27(k B T ) 3 (13) 
and :

∆G m (x) k B T = u(x) ln 2 I(x) (14) 
Assuming that the flow of nuclei through size and composition space is confined to a path through this point only (Reiss and Shugard, 1976), the composition of the critical nuclei is determined by the condition that the nucleation frequency F (x) is maximum with respect to

x. F (x) depends exponentially on the nucleation barrier ∆G m (x):

F (x) = F 0 exp{-∆G m (x)/k B T } (15) 
There have been attempts to theoretically estimate the prefactor F 0 for specific systems. However, in most cases, it has resulted in huge (several orders of magnitude) discrepancies with measured values, even in the case of minerals of fixed composition. For this reason, we will assume it to be a constant, with a value that must be empirically determined. The maximum nucleation rate is thus obtained when ∆G m (x) is minimum with respect to x, in which case the critical nuclei correspond to a saddle point in the ∆G(n, x) energy surface.

Taking these expressions into consideration, after some algebra (Appendix D), the minimization of the nucleation barrier yields the critical nucleus composition x * , solution of the implicit equation:

I AC (1 -x * )λ AC (x * ) v BC = I BC x * λ BC (x * ) v AC (16)
For ideal SSs, Eq. 16 has a single root. For regular or sub-regular SSs, there may be one or three roots and one 

ln I c (x * ) = u(x * ) ln F 0 (18)
All quantities related to a given critical nucleus: x * , n * = n m (x * ), ∆G * = ∆G m (x * ) and F (x * ), depend on the time t 1 at which nucleation occurs. This time dependence comes from the instantaneous values of the saturation states I AC (t 1 ) and I BC (t 1 ) of the AS with respect to the pure SS end-members, entering Eq. 16 which determines x * (t 1 ).

IV. GROWTH

Growth involves the condensation of ions from the AS on the surface of the particles. A growth law which correctly describes such processes has to be size-dependent, but its expression depends upon the rate limiting process: diffusion in the liquid or the gaseous phase, continuous interfacial effects, and two-dimensional nucleation on flat faces or spiral growth [START_REF] Burton | The 1180 growth of crystals and the equilibrium structure of their 1181 surfaces[END_REF][START_REF] Baronnet | Ostwald ripening in solution. The 1160 case of calcite and mica[END_REF]Parbhakar et al., 1995). In the following, we will restrict ourselves to a continuous growth mechanism, limited by the incorporation of growth units at the surface of a rough nucleus (Markov, 1995;Pina et al., 2000).

Furthermore, we will define an average rate of incorporation, so that the particle keeps the same shape as the critical nucleus (Wulff or Wulff-Kaishev shape) during its growth. Actually, the particle size may increase or decrease according to whether it is larger or smaller than the instantaneous size of the critical nuclei. This is the Ostwald ripening process (Ostwald, 1900;Lifschitz and Slyozov, 1961). We will consider the two cases of positive growth or redissolution (negative growth) separately.

A. Positive growth

The energetic cost to increase the dimensions of a particle may be related to its change of volume δV and its change of total surface energy δE s :

δ∆G(x) = - δV v(x) k B T ln I(x) + δE s (19) 
In the following, we will make the assumption of local equilibrium at the particle-solution interface. It amounts to considering that short-range transport across the interface is rapid enough to equilibrate the ions in the liquid and solid layers in contact. It is valid provided that the interface motion is slow enough [START_REF] Aziz | Non-equilibrium interface kinet-1157 ics during rapid solidification: theory and experiment[END_REF]. When this is the case, the chemical potentials of ions at the surface of the particle are equal to those in the aqueous solution. The composition x of the layer which is deposited is obtained from the condition that δ∆G(x) is minimum with respect to x. as often assumed in the literature [START_REF] Lasaga | Chemical kinetics of water-rock 1251 interactions[END_REF]Parkhust and Appelo, 1999), is unable to lead the solid 478 phase toward equilibrium, whatever the values of the em-479 pirical exponents p and q. In the long term, it correctly 

493 q M (t) = t 0 F (t 1 )(n * (t 1 ) -1)X M (t 1 )dt 1 + t 0 F (t 1 )dt 1 t t1 dt 3 dn(t 1 , t 3 ) dt 3 X M (t 3 ) (24) 
The first term represents the contribution of nucle- The equation giving q M (t) (Equation 24), together 511 with those which fix I(t, x), x * (t 1 ), n * (t 1 ), ∆G * (t 1 ),

512

F (t 1 ), and ρ(t 1 , t) form a complete set which, together do not introduce it, so that this limit is not well-treated 559 by our approach and will not be further discussed. For sub-regular SSs, the A 1 coefficient should also be taken into account. However, in the logics of the Guggenheim expansion and its truncation, A 1 is expected to be smaller than A 0 , in absolute value, so that extension of the zone of existence of a miscibility gap towards negative A 0 values in Figure 3 appears meaningless.

critical nuclei or in the deposited layers becomes relevant only when W = W c because then the nucleation barrier (Eq. 14) takes equal values for x * = x 1 and x * = x 2 and the same is true for the interfacial Gibbs free energy for growth (Eq. 19).

Consequently, the scenario of precipitation depends on whether and how the condition W = W c is met during the time evolution of the system. The initial conditions (embedded in the value of W at time t = 0) and the sign of dW /dt in the vicinity of the discontinuity are the relevant factors in that respect. We first note that, in the presence of a miscibility gap, W (t) has a slope discontinuity at W = W c , due to the different values x 1 and x 2 of the SS composition for W < W c and W > W c , respectively (Appendix E). We will note dW 1 /dt and dW 2 /dt the associated two time derivative values of W (t), respectively. This allows discrimination of the following scenarios:

• conditions are such that during the precipitation process the discontinuity is not met. This takes place if, at t = 0, W < W c and close to the discontinuity dW 1 /dt < 0, or if, at t = 0, W > W c

and close to the discontinuity dW 2 /dt > 0. This scenario will be referred to, in the following, as Precipitation Scenario #2 (Sc. #2).

• conditions are such that, during the precipitation process, the discontinuity is met but dW /dt has the same sign on both sides of the discontinuity.

The discontinuity is thus crossed but the time spent by the system at W = W c is irrelevant. No phase separation takes place. This scenario will be referred to as Precipitation Scenario #3 (Sc. #3).

• finally, it may be that the discontinuity is met but dW /dt has opposite signs on both sides of the discontinuity, which tends to bring it back towards W = W c on both sides. There is then a conflict between the variations of W forcing it to stay constant and equal to W c (Lyapunov stable equilibrium point (Lyapunov, 1992)). It is in this case that phase separation takes place, in order to allow the condition dW /dt = 0 to be fulfilled. This scenario will be referred to as Precipitation Scenario #4 (Sc. #4).

To go further, one has to determine the sign of dW /dt on the left and right of the discontinuity. It is possible to derive formal expressions for dW 1 /dt and dW 2 /dt from the feed-back equations, as described in Appendix E, and also to deduce the relative percentages α and (1 -α) of the two SSs with composition x 1 and x 2 when phase separation occurs. These expressions may then be quantitatively estimated for specific cases.

Aside from this numerical approach, in the following, in order to gain some physical insight into practical conditions of occurrence of the four scenarios, we restrict the discussion to regular SSs and some simplified conditions of precipitation. This will allow us to devise a dia-gram of occurrence of the scenarios as a function of some The simplifying assumptions are the following:

636

• the SS is regular (A 1 = 0)

637

• the formula unit volume as well as the surface en-638 ergy of the SS are assumed to be independent of x.

639

For example they may be set equal to the average 

659 1 W dW dt ∝ -x * (t) -(1 -x * (t)) K BC K AC (25) 
with x * equal to x 1 or x 2 when W c is smaller or larger 660 than 1, respectively.

661

As a consequence:

662 • dW 1 /dt > 0 if x 1 /(1 -x 1 ) < K BC /K AC 663 • dW 1 /dt < 0 otherwise 664 • dW 2 /dt > 0 if x 2 /(1 -x 2 ) < K BC /K AC 665
• dW 2 /dt < 0 otherwise 666 Using these inequalities, the conditions of occurrence 667 of Scenario #2 read:

668 [B(t = 0)] [A(t = 0)] < K BC K AC < x 1 1 -x 1 (26) 
or:

x 2 1 -x 2 < K BC K AC < [B(t = 0)] [A(t = 0)] (27) 
Scenario #3 requires that the three ratios [B(t = 0)]/[A(t = 0)], x 1 /(1 -x 1 ) and x 2 /(1 -x 2 ) are simultaneously either smaller than K BC /K AC or larger than it. Finally, Scenario #4 takes place when the following inequalities are fulfilled:

x 1 1 -x 1 < K BC K AC < x 2 1 -x 2 (28)
whatever the value of [B(t=0)]/[A(t=0)]

These conditions are graphically represented in Figure 6, as a function of ln K BC /K AC and the degree A 0 of non-ideality of the SS. The boundaries between the zones of existence of the scenarios #1, #2, #3, and #4 include the vertical line A 0 = 2 on the left of which only Scenario #1 takes place, and the two lines ln K BC /K AC = ln x 1 /(1 -x 1 ) and ln K BC /K AC = ln x 2 /(1 -x 2 ). In between the two latter, phase separation takes place within Scenario #4.

Outside these regions, Scenarios #2 or #3 may take place, depending on the initial conditions. When

ln K BC /K AC > ln x 2 /(1 -x 2 ), the discontinuity is not crossed (Scenario #2) if [B(t = 0)]/[A(t = 0)] > K BC /K AC and otherwise it is crossed (Scenario #3).
Symmetrically, when ln

K BC /K AC < ln x 2 /(1 -x 2 ), the discontinuity is not crossed (Scenario #2) if [B(t = 0)]/[A(t = 0)] < K BC /K AC and otherwise it is crossed (Scenario #3
). The difference between the two scenarios, i.e. the existence of a composition discontinuity inside the particles, is thus only fixed by the initial conditions in these regions.

VII. NUMERICAL SIMULATION AND RELEVANT EXAMPLES

In this section, we present results of numerical simulations which highlight the generic characteristics of the precipitation kinetics under conditions such that scenarios #1, #2, #3 or #4 take place. We will make use of the same assumptions as in subsection VI B and also assume that the particles have a spherical shape. Although these assumptions are rather simplistic, they help provide a first insight into the precipitation characteristics of SSs of geochemical interest.

A. Weakly non-ideal SS: precipitation Scenario #1

When the Guggenheim coefficient A 0 < 2, the SS which forms is weakly non-ideal. The only difference from truly ideal SSs lies in the corrections due to the activity coefficients λ AC and λ BC . The dynamics of precipitation presents many common characteristics with that of ideal ) and the two end-members have a small solubility 741 product ratio (K BC /K AC = 1.68 (Blanc et al., 2012)).

742

The particles formed during precipitation are thus ex- , 2002). This SS has recently been studied by [START_REF] Brandt | Replacement of barite by a 1176 (Ba,Ra)SO 4 solid solution at close-to-equilibrium condi-1177 tions: A combined experimental and theoretical study[END_REF] who confirmed a Guggenheim coefficient A 0 = 1 as theoretically predicted [START_REF] Vinograd | Solidaqueous equilibrium in the BaSO 4 -RaSO 4 -H 2 O system: first principles calculation and a thermodynamic assessment[END_REF]. At variance, particles of Mg 1-x Fe x CO 3 , for which A 0 = 1.8 [START_REF] Chai | Synthesis, characteri-1188 zation, and enthalpy of mixing of the (Fe,Mg)CO3 solid 1189 solution[END_REF] should display a core-shell structure because the solubility products of the end-members differ by about two orders of magnitude (K BC /K AC = 0.02 (Blanc et al., 2012)). The information for the three SSs described above are reported in Figure 6.

B. Strongly non-ideal SS: precipitation Scenario #2 without composition discontinuity

We present here simulation results for the precipitation of a strongly non-ideal SS (A 0 = 2.5, x 1 = 0.1448 and x 2 = 0.8552), under conditions relevant for scenario #2 (Conditions 26 or 27). In Figure 8, initial conditions and ratios of solubility products have been chosen such that W < 1 at t = 0 and dW 1 /dt < 0. The system thus does not encounter the composition discontinuity nuclei and the deposited layers remain AC rich during 767 the whole precipitation process, consistent with average 768 molar fractions of the AC and BC end-members in the 769 precipitate, q AC /(q AC +q BC ) and q BC /(q AC +q BC ), close 770 to 90% and 10%, respectively. A typical particle compo- dW 1 /dt < 0 and dW 2 /dt > 0 (Condition 28).

831

For the example shown in Figure 10, initial conditions 832 and ratios of solubility products have been chosen so that closer to x 2 than to x 1 , the end-member molar fractions 853 q AC /(q AC + q BC ) and q BC /(q AC + q BC ) strongly vary for 

-ln I(x) = -(1 -x) ln I AC -x ln I BC +x(1 -x)[A 0 + A 1 (2x -1)] +x ln x + (1 -x) ln(1 -x) (29) 
or:

-ln I(x)

I AC = -x ln W + x(1 -x)[A 0 + A 1 (2x -1)] +x ln x + (1 -x) ln(1 -x) (30) 
after introducing the ratio W of the saturation states of the AS with respect to the pure end-members:

W = I BC I AC (31) 
In the following we analyze the variations of the function f (x) equal to the right hand side of Eq. 30. Its first derivative is:

df (x) dx = ln x W (1 -x) +A 0 (1-2x)-A 1 (1-6x+6x 2 ) (32)
and its second derivative is:

d 2 f (x) dx 2 = -2A 0 + 6A 1 (1 -2x) + 1 x + 1 1 -x (33) 
There are regions of the parameter space {A 0 , A 1 } where d 2 f (x)/dx 2 > 0 whatever x. In that case, f (x) is a convex function, with a single minimum. This happens, for example when A 1 = 0 and A 0 < 2. Otherwise, f (x) may display one minimum, or two minima and a maximum, depending upon the value of W . The three curves exemplify the cases when f (x) presents a single minimum at small value of x, two degenerate minima or a single minimum at large x value. The diamonds on the curves mark the positions of the minima and the cross the maximum.

to 1 whatever the value of A 0 > 2 if A 1 = 0, but varies 931 with A 0 when A 1 = 0. 

This result can be extended to the case of particles in 957 equilibrium with a substrate on which they lie on their 958 contact with the AS, and σ bas -W adh for the one in 960 contact with the substrate (W adh the adhesion energy).

961

Their aspect ratio is then given by the Wulff-Kaishev 

989

• tetragonal particles lying on their basal face:

990 X = 6 ; σ = σ 2 lat (σ bas -W adh /2) 1/3 (40) 
• tetragonal particles lying on their lateral face:

991 X = 6 ; σ = (σ lat σ bas (σ lat -W adh /2)) 1/3 (41) 
• hexagonal particles lying on their basal face: The change in Gibbs free energy ∆G(n, x) for nucleation now reads:

∆G(n, x) = -nk B T ln I(x) + n 2/3 v(x) 2/3 Xσ(x) -n BCs k B T ln( I BC xλ BC (x) ) -n ACs k B T ln( I AC (1-x)λ AC (x) ) (43)
The X parameter and the average surface energy σ The expression of the critical nuclei size n m (x), obtained from the maximum of ∆G(n, x) with respect to

x is the same as in Equation 13. In order to obtain the critical nucleus composition, via the maximum of the nucleation rate, the derivative of ∆G m (x) with respect to

x has to be performed, with ∆G m (x) = ∆G(n m (x), x)

equal to:

∆Gm(x) k B T = u(x)
ln 2 I(x)

-n BCs k B T ln( I BC xλ BC (x) ) -n ACs k B T ln(

I AC (1-x)λ AC (x) ) (44) 
and u(x) given in Equation 13. The part which depends on dσ(x)/dx and the excess quantities n ACs and n BCs vanishes, because it represents the Gibbs adsorption isotherm equation [START_REF] Adamson | Physical chemistry of surfaces[END_REF]:

n(x) 2/3 v(x) 2/3 X dσ(x) dx = -n ACs d∆µ AC dx -n BCs d∆µ BC dx (45) A particularly simple choice for the Gibbs dividing surface is that for which the surface energy does not depend upon the curvature of the surface, in which case the surface excesses fulfill the relationship n ACs v AC + n BCs v BC = 0 [START_REF] Laaksonen | 1247 Liquid-drop formalism and free-energy surfaces in binary 1248 homogeneous nucleation theory[END_REF]. Associated with Eq. 45, it leads to the following values of n ACs and n BCs :

n ACs (x) = n(x) 2/3 Xx(1-x)v BC k B T v(x) 1/3 [1-2x(1-x){A0+A1(6x-3)}] * dσ(x) dx n BCs (x) = - n(x) 2/3 Xx(1-x)v AC k B T v(x) 1/3 [1-2x(1-x){A0+A1(6x-3)}] * dσ(x) dx (46)
They depend on x and are proportional to the critical nucleus area, while n(x) is proportional to the nucleus volume. They vanish if the surface energy is composition independent. In the absence of detailed information on the x dependence of σ(x), a linear law may be assumed between the end-member values of σ.

Excess quantities also contribute to the variation of Gibbs free energy during growth. The energetic cost to change the dimensions of a particle δ∆G(x) reads: The derivative of g(x) is such that:

v(x) 2 v AC dg(x) dx = ln x -z ln(1 -x) -ln W +A 0 (1 -x) 2 -zx 2
+A 1 4x 3 (1 -z) + 3x 2 (z -3) + 6x -1 (52)

The terms which depend on A 0 and A 1 turn out to be equal to ln λ BC -z ln λ AC , so that equating dg(x)/dx to zero leads to the implicit equation which determines x * (Equation 16in the main text):

I AC (1 -x * )λ AC (x * ) v BC = I BC x * λ BC (x * ) v AC (53)
The composition x * of the critical nucleus is thus obtained when simultaneously dg(x)/d(x) = 0 and g(x) is minimal. The discussion proceeds along steps similar to those relevant for x st . Depending upon the regions of parameter space {A 0 , A 1 } (which now depends on z), g(x) may be a convex function with a single minimum. Alternatively, it may display one minimum, or two minima and a maximum, depending upon the value of W . When the latter case occurs, the composition of the critical nuclei is equal to the root x which corresponds to the lowest value of g(x).

recast under the following form: [A]

-D 0 (t)(1 -α) x2 [B] -z(1-x2) [A] (58) 
and thus:

1131 α = W " -D 0 (t) x2 [B] -z(1-x2) [A] D 0 (t)(x 1 -x 2 ) 1 [B] + z [A] (59) 
All these expressions may be easily evaluated numeri- and x 2 are given by:

1144 α = - x 2 -(1 -x 2 ) K BC K AC (1 -2x 2 ) 1 + K BC K AC (61)
and are independent of time.
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  112 the A 1-x B x C type, relevant e.g. to mineral SSs with 113 homovalent substitution, like (Ba,Sr)CO 3 . However 114 the generalization to SSs of the A 1-x B x type, such as 115 bimetallic SSs, is straightforward because it only requires 116 skipping the C activities. In that way, our work can also 117 be useful in the field of metallic alloys in which, to our 118 knowledge, only thermodynamic aspects of the forma-119 tion of bimetallic nanoparticles in wet chemistry exper-120 iments have been considered. We will use the generic 121 term "aqueous" solution to refer to the solution in which 122 precipitation takes place, whether it contains water or 123 not. 124 The paper is organized as follows. In section II, we in-125 troduce thermodynamic concepts which are required for 126 describing binary non-ideal (sub-regular) SSs in contact 127 with an AS. We propose a new representation of the stoi-128 chiometric saturation condition, distinct from the Rooze-129 boom diagram. It is more compact than the latter and 130 turns out to be extremely useful in understanding the 131 scenarios of precipitation of strongly non-ideal SSs. In 132 section III, IV and V we present the theoretical back-133 ground and master equations for nucleation, growth and 134 feed-back effects on the chemical composition of the AS, 135 respectively. Then, in Section VI, we discuss the charac-136 teristics of the precipitation process as a function of the 137 degree of non-ideality of the SS and the initial conditions. 138 We highlight four possible scenarios of precipitation and 139 we devise a diagram of their occurrence as a function 140 of the solid and AS characteristics. Finally, we illus-141 trate the characteristics of precipitation in the various 142 scenarios, by simulations performed within some simpli-143 fying assumptions, and we make qualitative predictions 144 of the precipitation characteristics of SSs of geochemical 145 interest (Section VII), before concluding. The text is 146 complemented by five appendices in which most of the 147 formal equations are derived. we first recall some useful concepts rel-150 evant for a SS in contact with an AS of given compo-151 sition. This will allow us to introduce quantities, such 152 as the stoichiometric solubility product, the stoichiomet-153 ric saturation state of the AS with respect to the SS, 154 and the concept of stoichiometric saturation. Then we 155 will discuss in detail how the latter depends on the non-156 ideality characteristics of the SS, which will be a useful 157 step before addressing out-of-equilibrium processes. 158 We consider a SS of composition A 1-x B x C (0 < x < 159 1), with AC and BC its end-members. In the following, 160 A, B and C will represent the relevant aqueous species in 161 the AS and [A], [B] and [C] their activities, respectively.

  sum (1 -x)∆G AC + x∆G BC represents the change of Gibbs free energy for a mechanical mixture of AC and BC. It is complemented by the ideal entropy of mixing (on the second line), assuming full disorder of the A and B species in the SS. ∆G E M (x) is the excess free energy of mixing, which includes the excess entropy of mixing ∆S E M (x) and the enthalpy of mixing ∆H M (x):

209

  AS is reached when simultaneously I(x) = 1 (equivalent 210 to ∆G(x) = -RT ln Q(x)), and I(x) is maximum with 211 respect to x. These two conditions determine the com-212 position x 0 of the SS and that of the AS (through the 213 values of I AC and I BC ) at thermodynamic equilibrium.

236FIG. 1 :

 1 FIG. 1: Top panel: the three roots of Eq. 10, as a function of W = IBC /IAC , when A0 = 2.5 and A1 = 0. The full and dashed-dotted curves display the variations of the minima of -ln I(x) while the dotted one is associated with the maximum of this function. Bottom panel, corresponding values of ln IAC -ln I(x). The composition xst of the SS at stoichiometric saturation corresponds to the lowest value of this function. The crossing of the curves at Wc is associated to a discontinuity of xst.

FIG. 2 :

 2 FIG. 2: Composition xst of a SS at stoichiometric saturation with an AS whose composition is characterized by W = IBC /IAC , for various values of A0 when A1 = 0 (top panel) or A1 = 1 (bottom panel).
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  smooth and discontinuous variations of x st occurs at 264 smaller values of A 0 and the discontinuity (when it ex-265 ists) takes place at varying values of W c . x 1 and x 2 are 266 no longer symmetric about 0.5. 267 The dependence of W c on A 0 is represented in Figure 268 3 (top panel). W c decreases (resp. increases) asymptot-269 ically towards W c = 1, as A 0 becomes larger if A 1 > 0 270 (resp. A 1 < 0). On each curve, there exists a min-271 imum value of A 0 below which the discontinuity disap-272 pears and x st recovers a smooth variation as a function of 273 the AS composition. The range of parameters {A 0 , A 1 } 274 for which x st has no discontinuity lies inside the region 275 delineated by the two curves drawn in Figure 3 as a function of W = ([B]K AC )/([A]K BC ]) that 279 we propose presents several advantages. First it acknowl-280 edges the fact that, at constant values of the Guggenheim281

282FIG. 4 :

 4 FIG. 4: Two representations of the relationship between the SS composition xst and the AS composition. Top: Roozeboom plot as a function of [B]/([A] + [B]) for various values of KBC /KAC . Bottom: Representation as a function of W = ([B]KAC )/([A]KBC ]). In both case the SS is characterized by Guggenheim parameters A0 = 2.5 and A1 = 0.

FIG. 5 :

 5 FIG. 5: Composition of the critical nuclei x * , as a function of the ratio W = IBC /I z AC , for several values of z = vBC /vAC . All curves have been drawn for A0 = 2.5 and A1 = 0. When z = 1, x * = xst.

  represents an important ad-517 vance with respect to our previous work (Noguera et 518 al., 2010) which was restricted to ideal solid solutions, 519 spherical particles and homogeneous nucleation. The de-520 velopment of the NANOKIN code to include these new 521 functionalities is presently under progress, and its ap-522 plication to a realistic precipitation process will be the 523 subject of a forthcoming paper. In the following, we will 524 highlight some generic characteristics of the precipitation 525 of non-ideal SS, and, under some approximations, we will 526 present some numerical simulations exemplifying various 527 scenarios which may be encountered in the precipitation 528 of SSs of geochemical interest. 529 VI. PRECIPITATION SCENARIOS 530 In this section, we first discuss the characteristics of 531 the precipitation process as a function of the degree of 532 non-ideality of the SS and we evidence four possible pre-533 cipitation scenarios (Section VI A). We then discuss their 534 conditions of occurrence, under some simplifying assump-535 tions, and we represent them graphically as a function of 536 the ratio of the solubility products of the end-members 537 and the Guggenheim coefficient A 0 (Section VI B).538 A. The four scenarios 539 First we recall that when the Guggenheim coefficients 540 A 0 and A 1 belong to the zone included in between the two 541 lines drawn in Figure 3 (lower panel), the equations which 542 fix x st and x * have a single root and the precipitation 543 scenario bears strong resemblances to that of an ideal 544 SS. When A 0 > 0, the only difference with truly ideal 545 SSs lies in the corrections due to the activity coefficients 546 λ AC and λ BC . In that case the precipitation scenario 547 will be called Precipitation Scenario #1 (Sc. #1). 548 When the contribution of the enthalpy of mixing of the 549 SS to the Gibbs free energy of dissolution is negative, the 550 SS displays a tendency towards ordering. It is generally 551 associated with negative values of the first Guggenheim 552 coefficient 1 and is usually interpreted as resulting from 553 short range attraction between dissimilar first neighbors, 554 which favors A-B pairs over A-A or B-B pairs. Which 555 order is actually achieved depends on a contribution of 556 the entropy of mixing which is specific to each case. Be-557 cause at the present stage our study remains generic, we 558
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  Figure5). This occurs when the Guggenheim coefficients 564

  of the solubility products of the two 629 end-members, degree A 0 of non-ideality of the SS and ini-

640

  of the corresponding values of the end-members. 641 Consequently, there are no surface excess quanti-642 ties (Appendix C) and z = 1. 643 • the A, B and C species are the dominant forms 644 of the elements in the AS, and no mineral other 645 than the SS may dissolve or precipitate. The time 646 evolution of the [A], [B] and [C] activities thus 647 only comes from the precipitation of the SS un-648 der consideration. Moreover, for SSs with a misci-649 bility gap, we assume that, at the time when the 650 x * discontinuity is met, redissolution is negligible. 651 Both hypotheses imply that the contribution W " 652 to dW /dt which is continuous at W c vanishes (Ap-653 pendix E). 654 Under these hypotheses, in strongly non-ideal SSs 655 (A 0 > 2), the miscibility gap is symmetric (x 2 = 1 -x 1 ) 656 and W c = 1. At the discontinuity, the last equality means 657 that [B]/[A] = K BC /K AC . Moreover, close to the dis-658 continuity (Appendix E):
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 67 FIG.6: Diagram ln KBC /KAC as a function of the degree A0 of non-ideality of the SS, representing the zones of existence of the scenarios #1, #2, #3, and #4. K(Cl,Br), (Mg,Fe)CO3, (Ba,Ra)SO4, (Ca,Zn)CO3, Ca(SO4,SeO4) and (Ca,Sr)CO3 SSs are located in this diagram, represented by triangle-down, circle, star, diamond, square and triangle-up, respectively (see text).

743FIG. 7 :

 7 FIG.7: From top to bottom: time dependence of the saturation state I(t, x * (t)), time dependence of the critical nucleus composition x * and concentration profile of the surviving particles at the end of the simulation. Left and right panels refer to KBC /KAC = 1 and 10, respectively. All curves have been drawn for A0 = 1, A1 = 0, F0 = 10 19 particles per second and liter of solution, σ = 50 mJ/m 2 independent on composition, κ = 10 -10 m/s, vAC = vBC = 50 Å3 , KAC = 10 -6 and initial activities: [A(t = 0)] = 7.10 -4 , [B(t = 0)] = 9.10 -4 , [C(t = 0)] = 10 -2 .

FIG. 8 :

 8 FIG.8: From top to bottom: time dependence of W and the critical nucleus composition x * , time dependence of the end-member average molar fractions qAC /(qAC + qBC ) and qBC /(qAC + qBC ), and composition profile of long lasting particles. All curves have been drawn for A0 = 2.5, A1 = 0, F0 = 10 19 particles per second and liter of solution, σ = 50 mJ/m 2 independent on composition, κ = 10 -9 m/s, vAC = vBC = 50 Å3 , KAC = 10 -6 , KBC = 10 -7 and initial activities: [A(t = 0)] = 6.10 -4 , [B(t = 0)] = 48.10 -6 , [C(t = 0)] = 10 -2 .
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 910 FIG. 9: From top to bottom: time dependence of W and the critical nucleus composition x * , time dependence of the end-member average molar fractions qAC /(qAC + qBC ) and qBC /(qAC + qBC ), and composition profile of long lasting particles. Same parameter values as in Figure8, except KBC = 10 -5 and [B(t = 0)] = 48.10 -4 .
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  1 at t = 0, and simultaneously dW 1 /dt > 0 and 834 dW 2 /dt < 0 at the discontinuity. All other parameters 835 are equal to those of the preceding examples. The system 836 encounters the composition discontinuity at a time t c . 837 The conflicting variations of W on the left and right of 838 the discontinuity force W to remain constant and equal 839 to 1 at all posterior times (Figure 10, top panel

  c and tend to approximately 1 -α and α, respec-855 tively, in the long term. A typical particle profile is shown 856 in the lowest panel of Figure 10, highlighting a core-shell 857 structure and an abrupt interface between them. 858 Ca 1-x Sr x CO 3 is a strongly non-ideal SS characterized 859 by a Guggenheim coefficient equal to 5.5 (Casey et al., 860 1996), indicating poor solubility of Sr in aragonite and 861 a miscibility gap occupying most of the phase diagram 862 (x 1 ≈ 0.004 and x 2 ≈ 0.996). Whatever the initial con-863 ditions of precipitation, a phase separation is expected, 864 as in the example shown in Figure 10. 865 VIII. CONCLUSION 866 We have developed a formalism which describes the 867 precipitation kinetics of non-ideal SSs from an initially 868 supersaturated AS. It treats the time evolution of the AS 869 composition and the formation, growth or redissolution 870 of particles. It extends our previous work, which was re-871 stricted to ideal SSs, spherical particles and homogeneous 872 nucleation. The formalism is relevant to both mineral SSs 873 and bimetallic nanoparticle formation. To our knowl-874 edge, it is the first time, in the fields of both geochem-875 istry and metallic alloys, that these out-of-equilibrium 876 processes are fully taken into account for non-ideal SSs. 877 This work highlights how particle composition and 878 size vary with time, resulting in composition profiles 879 which may be smooth or discontinuous, depending on 880 the Guggenheim parameter values which drive the non-881 ideality of the SSs, and the ratio of the solubility prod-882 ucts of the end-members. We have shown that even for 883 strongly non-ideal SSs, phase separation is not the gen-884 eral case and that other scenarios may take place. We 885 have specified their characteristics and under which con-886 ditions they may be encountered. Numerical simulations 887 have been performed to exemplify them for a regular SS, 888 under a few simplifying assumptions, and qualitative pre-889 dictions of the precipitation characteristics of some min-890 eral SSs have been made. 891 The development of the NANOKIN code to include 892 these new functionalities is presently under progress, and 893 its application to a realistic precipitation process will be 894 the subject of a forthcoming paper. In the context of water-rock interactions, our work provides enhanced possibilities for analyzing precipitation processes for various SS types, such as carbonates, sulfates or clay minerals, among others. Appendix A: Condition of stoichiometric saturation In this appendix, we analyze the mathematical properties of the function -ln I(x) = ln K(x)-ln Q(x) whose minimum determines the stoichiometric saturation condition (Eq. 10 in the text). -ln I(x) reads:
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 1111 Figure11exemplifies this latter case when A 0 = 2.5 and A 1 = 0. At low or high values of W (typically less than 0.86 or more than 1.14), f (x) has a single minimum at x smaller or larger than 0.5, respectively. For intermediate values of W , f (x) has two minima. The composition x st which corresponds to stoichiometric saturation is the one for which f (x) is the lowest. x st displays a discontinuity between x 1 and x 2 at a critical value W c = 1 for which f (x 1 ) = f (x 2 ). This behavior is represented in Figure 1 in the main text. Similar reasoning for different values of A 0 and A 1 leads to Figure 2, which shows that W c remains equal

932Finally,

  the limiting values of A 0 and A 1 between re-933 gions of discontinuities in x st and regions where it varies 934 smoothly, are obtained from the condition that simul-935 taneously d 2 f (x)/dx 2 = 0 and, when increasing W , 936 df (x)/dx = 0 has, for the first time, three roots. They 937 are represented in Figure 3, bottom panel in the main with the homogeneous nucle-942 ation and growth of spherical particles has been presented 943 in the main text. However, most solids, except amor-944 phous ones, are non-isotropic and their external shape, 945 which departs from the sphere, reflects the relative en-946 ergies of their low index faces, as recognized by Wulff 947 (Müller and Kern, 2000 and references therein). Indeed, 948 Wulff theorem states that, at equilibrium, the distance 949 from the center of a particle to its external facets is pro-950 portional to the surface energy of these facets. For ex-951 ample, according to Wulff theorem, the aspect ratio of 952 tetragonal particles (basal dimensions l × l and thickness 953 e, Figure 12), is given by the ratio between the surface 954 energies of the basal and lateral faces (σ bas and σ lat , re-

θ

  FIG.12: Representation of rhombohedral, tetragonal and spherical cap particle shapes (from top to bottom).
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  = 36 1/3 √ 3 ; σ = σ 2 lat (σ bas -W adh /2) time evolution of all dimensions during 993 growth, one assumes that the particles keep their equilib-994 rium shape, which allows the use of equations similar to 995 20 and 22 of the main text for one dimension, deduction 996 of the others from the relationships written above for the 997 ratios between e, l and l , and estimation of the volume 998 V of the particle and finally the number of formula units 999 n = V /v. 1000 Appendix C: Precipitation of a SS with compo-1001 sition dependent surface energy 1002 This appendix specifies the modifications to introduce 1003 in the formalism which describes SS precipitation when 1004 their surface energy depends on composition. The main 1005 difference from the simplified treatment, presented in the 1006 main text, comes from the existence of surface enrich-1007 ment effects n ACs and n BCs of AC and BC composition. 1008 Starting from a reference state in which the nuclei have 1009 a sharp boundary with the aqueous solution (Gibbs di-1010 viding surface), such surface excess quantities have to be 1011 introduced, so that the Gibbs adsorption equation can be 1012fulfilled[START_REF] Adamson | Physical chemistry of surfaces[END_REF][START_REF] Laaksonen | 1247 Liquid-drop formalism and free-energy surfaces in binary 1248 homogeneous nucleation theory[END_REF] Noppel 1013 Noppel et al., 2002;;[START_REF] Gaman | Homogeneous nucleation of n-nonane and n-1213 propanol mixtures: A comparison of classical nucleation 1214 theory and experiments[END_REF].
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  have been defined in Appendix B for particles of various shapes. Here σ is explicitly a function of x. The two last terms in Eq. 43 involve surface excess quantities n ACs and n BCs , multiplied by the corresponding changes in chemical potential ∆µ AC and ∆µ BC . The surface excesses are algebraic quantities, which can take positive as well as negative values.

F 0 FF

 0 δ∆G(x) = -δV v(x) k B T ln I(x) + δE s -δn BCs k B T ln( I BC xλ BC (x) ) -δn ACs k B T ln(I AC (1-x)λ AC (x) ) (47)It is related to its change of volume δV , its change of 1051 total surface energy δE s (now a function of x through 1052 σ(x)), and its change in excess surface quantities δn ACs 1053 and δn BCs . In the minimization of δ∆G(x), the part 1054 which depends on dσ(x)/dx and the excess quantities 1055 δn ACs and δn BCs is formally similar to that written for 1056 nucleation, and yields similar expressions for δn ACs and 1057 δn BCs (Equation 46). 1058 Finally, excess quantities have to be taken into account 1059 in the feed-back equations (M=AC or BC): (t 1 )(n * (t 1 ) -1)X M (t 1 )dt 1 + t (t 1 )n M s (t 1 )dt 1 (48) Appendix D: Composition of the critical nuclei volumes (v(x) = v AC [1 -x + zx]) and on the composition of the aqueous solution, which enters in a compact way via the ratio W = I BC /I z AC .

  the contribution W " to dW /dt which 1119 does not present a discontinuity, from the one (second 1120 term on the right hand side of Eq. 56) which does present 1121 a discontinuity, due to the jump of x * (t) between x 1 and 1122 x 2 . In Eqs. 54, 56 and 57, all terms relative to [C] have 1123 to be skipped when precipitation of bimetallic A 1-x B x 1124 particles is considered. 1125 Whenever Scenario #4 takes place, the cancellation 1126 of dW /dt when W = W c yields the relative amounts 1127 D 0 (t)α and D 0 (t)(1-α) of the two SSs with composition 1128x 1 and x 2 when phase separation occurs. From Eq. 56, W " -D 0 (t)α x1[B] -z(1-x1)

1132

  cally to assess which is the scenario relevant for the case 1133 under study and, in the case where Scenario #4 applies, 1134 Eq. 59 gives the extent of phase separation and its time 1135 dependence. 1136 In particular, under the assumptions made in Sections 1137 VI B and VII, dW /dt takes the simplified form: slope discontinuity between W < W c 1139 and W > W c to be evaluated by replacing x * by x 1 or 1140 x 2 , respectively. Moreover, under the same assumptions, 1141 when phase separation takes place, the relative percent-1142 ages α and (1 -α) of the two SSs with composition x 1 1143

Because the lat- 244 ter cross each other, a discontinuity in x st between two 245 values x 1 and x 2 takes place for some AS composition
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	246				
	247	characterized by W = W c , at which the two phases of			
	248	composition x 1 and x 2 have the same Gibbs free energy			
	249	per mole. When W = W c , the solid phase may become			
	250	spatially inhomogeneous and separate into two phases of			
	251	compositions x 1 and x 2 .			
	252	Figure 2 shows the variations of x st as a function of W			
	253	for several values of A 0 and A 1 . In the case of regular			
	254	SSs (A 1 = 0), x st varies smoothly (single root in Eq.			
	255	10) as long as A 0 remains smaller than 2. x st is less			
	256	than 0.5 (which means that the SS is richer in A ions			
	257	than in B ions) whenever W < 1 and larger than 0.5 in			
	258	the opposite case. When A 0 exceeds 2, a discontinuity			
		occurs at W c = 1, whose height increases with A 0 (e.g.			
	260	x 2 -x 1 ≈ 0.4 for A 0 = 2.1 and 0.7 for A 0 = 2.5). The			

  ). For 840 all times t > t c , the ratio of B and A activities remains 841 constant ([B(t)]/[A(t)] = K BC /K AC ), although the sat-842 uration states I AC and I BC of the AS with respect to 843 the end-members decrease. Phase separation between 844 phases of compositions x 1 and x 2 takes place at t > t c , 845with relative amounts α and 1 -α (Eq. 61 in Appendix 846 E). It is not easy to tell how the two phases will be spa-

	847	
	848	tially organized, but an average composition in the criti-
	849	cal nucleus or the instantaneous deposited layers may be
	850	defined at each time t > t c as x = αx 1 + (1 -α)x 2 . Be-
	851	cause α remains constant, the same is true for x, which
	852	in the present example is equal to 0.833. Because it is
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The methodology to determine the composition x * of 1062 the critical nucleus is very similar to that used to find the 

g(x) can also be written:

Aside from the parameters A 0 and A 1 , it depends on In this appendix, we derive formal relationships allowing the determination of dW /dt, a crucial quantity to assess which scenario will take place. Moreover, we specify the relative percentage of each phase when phase separation takes place in Scenario #4.

We recast the feed-back equation under the following form: The time derivative ln W reads:

which, after some algebra and using Eq. 54, may be 

Surface excess quantities of end-member M in a particle

Ionic activity product of a SS of composition x q M (t) Amount of end-member M withdrawn at time t from the AS (formula unit/liter of solution)

Composition of a SS at thermodynamic equilibrium with an AS x st

Composition of a SS at stoichiometric saturation with an AS x * Critical nucleus composition x 1 , x 2

Values of the SS composition at the limit of the discontinuity in strongly non-ideal SSs Activity coefficient of the end-member M in the SS (M=AC or BC) ρ(t 1 , t)

Radius at time t of a spherical particle created at time t 1 (m) σ(x)

Mean surface energy per unit area of SS particles of composition x (J/m 2 ) σ lat , σ bas Lateral and basal surface energies per unit area of non-spherical particles (J/m 2 ) θ

Wetting angle