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Abstract: Due to multiple light scattering inside biological tissues, deep
non-invasive optical medical imaging is very challenging. Acousto-optic
imaging is a technique coupling ultrasound and light that allows recovering
optical contrast at depths of few centimeters with a millimeter resolution.
Recent advances in acousto-optic imaging are using short focused ultra-
sound pulses often averaged over several hundred or thousand pulses. As
the pulsing rate of commercial probes is limited to about few ultrasound
cycles every 100µs, acquiring an acousto-optic image usually takes several
tens of seconds due to the high number of acoustic pulses excitation. We
propose here a new acousto-optic imaging technique based on the use
of ultrasound plane waves instead of focused ones that allows increasing
drastically the imaging rate.

© 2016 Optical Society of America

OCIS codes: (170.1065) Acousto-optics; (110.0113) Imaging through turbid media;
(170.7050) Turbid media; (290.7050) Turbid media; (170.7170) Ultrasound; (090.2880) Holo-
graphic interferometry.
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1. Introduction

Biological tissues are very strong light scattering media, so deep optical imaging is impossible
unless invasive techniques are used. Many techniques have been developed recently to over-
come these difficulties, such as diffuse optical tomography (DOT) [1], but the signal extraction
is not straightforward since it often requires solving a light transport inverse problem. Acousto-
optic (AO) imaging [2, 3] is a multi-wave imaging technique [4] that couples ultrasound (US)
and light in order to recover an optical contrast deep inside biological tissues with an ultrasonic
resolution of few millimeters or less. AO imaging can be coupled with a commercial US scanner
[5] and recently showed the first promising results concerning potential medical applications
such asex vivoresults on real pathologies [6], spectroscopy sensing of blood oxygenation [7]
or attempts to beat speckle decorrelationin vivo [8, 9]. However, all these experiments suffer
from the low imaging rate of AO imaging due to two main limitations.

The first limitation concerns the waiting time between two US pulses. With commercial US
scanners, it is usually necessary to let the probe cool down between two pulses in order not to
damage the transducers. This cooling delay depends on the type of transducers but, for MHz
probes, it usually limits the firing rate to 1 pulse of few cycles - 2 or 3 - every 100µs. Using
more resistant probes may allow to decrease the waiting time down to the ultimate physical
limit of the technique which is the US time-of-flight across the sample at 1.5 mm· µs−1, still
of the order of several tens ofµs. Classical AO US sequences use focused US pulses and need
about 100 lines,i.e. as many pulses, to get an image so that the theoretical framerate using
standard US scanners is of the order 100 fps.

Though this theoretical limit is acceptable for video rate display and thus most ofin vivo
applications, it is dramatically reduced by the low amount of useful signal in AO imaging and
the resulting high number of averaging. This second limitation implies that images obtained at
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few centimeters deep in the light beam direction (z-axis) require several thousands averaging
pulses for each line [5, 6] so that the US firing rate requires at least few tens of seconds in order
to obtain an image.

It appears here that current AO imaging rates are not compatible with real-timein vivo ex-
periments. Since the waiting delay between two pulses can hardly be reduced, it is absolutely
necessary to reduce the number of US pulses before any clinical applications can be thought of.
Two approaches - that can be coupled easily - can be considered in order to achieve that goal.
The first one consists in improving the detection scheme so that the signal-to-noise ratio (SNR)
is sufficient to reduce the number of averaging pulses. The second one consists in changing the
emitted US pattern in order to reduce the number of US pulses needed to obtain an image. As an
example, in [10] Laiet al.used an optimized photorefrective-based detection thanks to, among
others, a very high numerical aperture fiber bundle and long US pulses (from 10 to 100 cycles)
in order to decrease the number of averaging down to 64 at the cost of the longitudinal resolu-
tion (along the US propagation direction). Though this method reaches unprecedented depths,
its main drawbacks are that it uses a single element transducer at relatively low repetition rate
(100 Hz).

In this paper, we propose a new pattern based on transducers arrays and US plane waves that
allows reducing the number of pulses necessary to create an image while maintaining the firing
rate at the limit of the probe heat damage threshold. Coupled with a tomographic reconstruction,
this pattern needs about 50 times fewer US pulses at equal SNR. The idea was first suggested in
[11] for monochromatic waves and the experimental demonstration of tomographic techniques
was performed in [12] with single element transducers. Here, the novelty lies in the use of a
transducer array at a fixed position instead of a translating single transducer in order to recover
a projection in one pulse.

Similarly to ultrafast acousto-electric imaging technique [13], it will be shown below that
high imaging framerates can be performed at the cost of an image distortion and a resulting
loss of resolution in the lateral direction, the amplitude of which will be quantified.

2. Theoretical considerations

Let us consider a static sample, with negligible Brownian motion, illuminated by a monochro-
matic optical wave. The irradiance (W.m−2) inside the scattering medium in a plane perpendic-
ular to the optical beam axis (z-axis) at a fixed depthz, is Ψ(x,y). The aim of AO imaging is
to recoverΨ(x,y). The light is modulated by an arbitrary US wavePUS(r , t) propagating along
ther = (x,y) direction in this plane:

PUS(r , t) = P0

(

t −
KUS · r

ωUS

)

sin(ωUSt) (1)

where we considered the retarded potential.P0 represents the temporal shape of the US pulse.
In practice, the US wave is geometrically focused along thez-direction (in the elevation direc-
tion) so that we will consider that it propagates within a 2D plane(x,y) at a fixed positionz.
This ultrasonic pressure field induces a phase modulation of the light along one pathl that can
be expressed as [14]:

∆φUS(t, l) = sl ,0+ δsl sin(ωUSt) (2)

wheresl ,0 is the static optical length of the pathl andδsl is the modulation amplitude. This
last coefficient is proportional to the acoustical pressure [15]:

δsl = αP0

(

t −
KUS · r

ωUS

)

(3)
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where both scatterers position and refractive index modulation are taken into account in the
efficiency coefficientα and are considered in first approximation as uncorrelated effects.α is

usually small enough so thatδsl ≪ sl ,0 and
2πδsl

λ
≪ 1.

By using what was derived by Kempe et al. [16], it can be shown that the autocorrelation
function of the electric field inside the static scattering medium at timet measured on a detector
on the outside at the positionr ′ is:

G
(

r ′, t,τ
)

= A0−β
∫∫

Ω
(

r , r ′
)

Ψ(r)P2
0

(

t −
KUS · r

ωUS

)

(1− cos(ωUSτ))dxdy (4)

where we only considered the first order in the US contribution. HereA0 stands for the light
power flux collected on the detector atr ′ in the absence of US,Ψ(r) is the light irradiance dis-
tribution inside the scattering sample in the(x,y) imaged plane andΩ(r , r ′) is the probability
of having a tagged photon atr reaching the detector atr ′. β is a proportionality coefficient that
depends onα. According to the Wiener-Khintchine theorem, the previous equation implies
that the power spectral density of the scattered field contains two main components: the un-
tagged photons at the light frequency and the tagged photons shifted by the US frequency.
In the subsequent paragraphs, only the tagged photons intensity will be considered. In order to
simplify the following expressions, we will get rid ofΩ(r , r ′) without changing the physics of
the phenomenon by introducing the AO image to be recoveredI (r , r ′) = Ω(r , r ′)Ψ(r). Indeed,
acousto-optic imaging actually images a section of the scattering envelope, the shape of which
depends on the position of the detector. Therefore, it measuresΩ(r , r ′)Ψ(r) instead ofΨ(r)
only:

IT = β
∫∫

I
(

r , r ′
)

P2
0

(

t −
KUS · r

ωUS

)

dxdy (5)

Ther ′ variable will not be kept in the subsequent paragraphs by considering that the detector
is at a fixed position and defines a certain shape of the scattering envelope.I(r) is thus the
measured light irradiance that implicitly depends on the real light irradiance inside the medium,
the position of the detector and the probability that a photon inr reaches it. This formula is just
expressing the fact that photons are tagged over the entire US pulse volume and indistinctly
counted on the detector.

Let us now consider that the US pattern we use consists in a plane wave generated by a
commercial scanner and propagating within the sample with an angleθ , see Fig. 1 and [17]. As
photons are tagged along the entire US volume, the single detector indistinctly counts all tagged
photons coming from the plane wavefront. Here, we use a wavefront adaptive photorefractive
crystal-based detection in a negative gain configuration [14, 18] with Sn2P2S6:Te crystals (SPS-
Te) [19, 20] in order to record a voltage proportional to the tagged photons intensity on the
photodiode. When interfering in a PRC, a signal beam (the multiply scattered light) and a
reference plane wave engrave a dynamic hologram in the form of a refractive index gratingi.e.
a thick phase hologram. This dynamic hologram is then self-read by these very same beams as
they diffract on it during their propagation through the crystal. This phenomenon is so-called
Two-Wave Mixing (TWM) and gives a signal proportional to the light irradiance inside the
medium integrated along the US wavefront:

s(t,θ ) ∝
∫∫

I (x,y)P2
0

(

t −
xcosθ + ysinθ

VUS

)

dxdy (6)

whereVUS is the sound velocity inside the medium. It is possible to write Eq. (6) as
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I(r)=Ω(r,r’)Ψ(r)

θ

y

x

VUS.t

US probe

PUS

y

x

z

US Imaging plane

Fig. 1. Schematic of the US plane wave propagating inside an illuminated sample with
an angleθ . The US are focused along thez-direction so that they propagate in a plane
perpendicular to light propagation direction. The figure represents this section defined by
the US probe position. The three plain blue lines represent the ultrasonic pulse propagating
atVUS. At time t, the wave is at the position of the dashed blue line. A voxel (black square)
is located through its coordinates(x,y). Photons are indistinctly tagged along the entire
wavefront so that the signal recorded on a single detector is the integrated light intensity
along the dashed line.

s(t,θ ) ∝
∫∫

I (x,y)

[

P2
0 (t)∗ δ

(

t −
xcosθ + ysinθ

VUS

)]

dxdy (7)

whereδ represents the Dirac distribution and∗ stands for the convolution product. Except
from the termP2

0 (t), this is very close to the Radon transform of the light irradiance repartition
inside the medium. This problem is similar to the CT Scanner imaging technique, and the
solution is known and widely studied in this field [21].

In order to proceed further studies on the AO signal with US plane waves, we will use the
projection-slice theorem [22] that states that the temporal Fourier transform (FT) of one pro-
jection at an angleθ is a slice of the spatial 2D Fourier transform (FT , to be distinguished
from the temporal FT) of the unknown imageI(x,y) along the straight line at the same angle,
see Figs. 2(a) and 2(b):

s̃(ν,θ ) = FT{s(t,θ )}= P̃(ν)
∫∫

I (x,y)exp

(

−2iπν
xcosθ + ysinθ

VUS

)

dxdy (8)

whereP̃(ν) = FT
{

P2
0 (t)

}

. Apart from the term derived from the frequency response of the
US excitation, one can see here the spatialFT of the irradiance along the line defined by the
couples(kx,θ ,ky,θ ) such askx,θ = ν

VUS
cosθ andky,θ = ν

VUS
sinθ . This is a slice of the spatial

2D FT Ĩ(kx,ky) of the image inside the medium in the directionθ . It is therefore possible to
reconstruct the latter by recording different projections at different angles and iteratively recon-
structing the 2D Fourier plane back. The image is eventually recovered thanks to an inverse 2D
FT notedFT −1 in the following, see Fig. 2(b).

In order to take into account the electronic system beyond the photodiode that may alter the
tagged photon signals(t,θ ), let us introduce temporal bandwidthR̃(ν) of the detection scheme.
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θ
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20°
kx,m

ky,m

Fig. 2. Illustration of the projection-slice theorem and the limitation of the Fourier space
(a) The temporal FT of the signal recorded on the photodiode is taken and represents a slice
at θ of spatial 2DFT of the light irradiance. (b) The slice is placed back in its rightful
place in the spatial 2D Fourier space and it is done for all angles. The inverse 2DFT of
the reconstructed Fourier space gives the expected image. (c) The receiving and emitting
bandwidths limit the highest accessible frequency modulus and the probe limits the angular
range so that the accessible region is limited to a segment of the Fourier plane (darker gray
portion).

s̃(k,θ ) = R̃(k)P̃(k)I
(

kx,θ ,ky,θ
)

(9)

wherek = ν
VUS

=
√

k2
x + k2

y, so that the reconstructed imageI (x,y) of the light irradiance

within the scattering sample is obtained by summing over all angles:

I (x,y) = FT
−1

{

∑
θ

s̃(k,θ )

}

= FT
−1{R̃(k)P̃(k)

}

∗FT
−1

{

∑
θ

Ĩ(kx,θ ,ky,θ )

}

(10)

The quality of the reconstructed image is then influenced by:

• The receiving bandwidth of the optical detection scheme. In order not to degrade the
image, it is important that the system can follow the propagation of the plane wave pulse.
Ultimately, this bandwidth is limited by the sampling rate of the acquisition system.

• The shape of the US pulse. The broader it is, the lower the resolution is.

• The number of angles used for the reconstruction. This is the most critical parameter. The
2D Fourier plane must be assessed precisely in order to ensure images of good quality.
The influence of the angular extent will be studied in the next section.

3. Influence of the angular exploration

In an ideal case, angles should be scanned overπ with carefully chosen steps. As the whole
angular domain is not accessible, the resulting image will necessarily be degraded. Elements
on a US commercial flat probe have a typical directivity of±20◦ so that the angular domain
is limited to 40◦. The goal of this section is to derive the point spread function (PSF) of the
system as a function of different angular configurations.

Let us consider that the 2D Fourier plane is now truncated by a limited angle exploration
range±θm. It means that all angles outside the angular domain[−θm,θm] are not physically
accessible through the system. The image obtained is:
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I (x,y) = FT
−1

{

∑
θ∈[−θm,θm]

s̃(ν,θ )

}

(11)

In order to assess the PSF of the system, let us consider a point objectδ (x,y). The receiving
and emitting bandwidths̃R(k) andP̃(k) limit the maximum frequency modulus accessible so
that the accessible portion of the Fourier plane is a segment of finite radiuskm between±θm ,
see Fig. 2(c). As̃R(k) andP̃(k) result in an homogeneous broadening in bothx andy directions,
they will be left aside in the following and taken into account in first approximation in a finite
radiuskm of the Fourier spectrum. The PSF can then be expressed as:

PSF(x,y) = FT
−1

{

∑
θ∈[−θm,θm]

δ̃ (kx,θ ,ky,θ )

}

(12)

where δ̃ (kx,ky) is the 2D Fourier transform of a Dirac distribution and is equal to 1 all
over the Fourier plane. In order to find an analytical solution, we will simplify the problem by
replacing the discrete sum overθ with a truncation of the Fourier space. The problem is now
reduced to finding the inverse 2D Fourier transform of a cone between±θm.

Let us switch to polar coordinates where the coordinates of the real space arer andφ and
their corresponding transform variablesk andθ . Equation (12) can thus be rewritten:

PSF(r,φ) =
∫ km

−km

∫ θm

−θm

δ̃ (k,θ )exp[2iπkrcos(θ −φ)] |k|dkdθ (13)

This expression could be used in order to compute the PSF with MATLAB (Mathworks,
Boston, MA, USA). Yet, as polar Fast Fourier Transform (FFT) algorithms are not easily avail-
able, it takes a lot of time to compute the double integral.

However, this expression can be decomposed as a sum of Bessel functions:

PSF(r,φ) =
+∞

∑
n=−∞

ein( π
2−φ)

∫ θm

−θm

einθ dθ
∫ km

−km

Jn(2πkr)|k|dk (14)

whereJn is thenth order Bessel function of the first kind. When the integral overθ is calcu-
lated:

PSF(r,φ) =
+∞

∑
n=−∞

2
n

sin(nθm)e
in( π

2 −φ)
∫ km

−km

Jn(2πkr)|k|dk (15)

The PSF can then be developed as follows thanks to the substitutionk= kmu:

PSF(r,φ) = 2θmk2
m

∫ 1

−1
J0(2πkmru)|u|du+

k2
m

+∞

∑
n=1

2
n

sin(nθm)
(

ein( π
2−φ) + (−1)ne−in( π

2 −φ)
)

∫ 1

−1
Jn(2πkmru)|u|du

(16)

Due to the parity of the Bessel functions, all odd orders are equal to zero. The PSF is then
equal to:

PSF(r,φ) = 4θmk2
m

∫ 1

0
J0(2πkmru)|u|du+

k2
m

+∞

∑
p=1

4
p
(−1)psin(2pθm)cos(2pφ)

∫ 1

0
J2p(2πkmru)|u|du

(17)
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As expected, if the angular range is± π
2 , i.e. the whole angular domain is scanned, only the

first term remains. As the integral of the 0th order Bessel function can be rewritten thanks to the
properties of the Bessel functions, the PSF is in this case:

PSF(r,φ)
4θmk2

m
=

J1(2πkmr)
2πkmr

(18)

This is the Airy disk and the spreading is due to bandwidth limitationkm. Equation (17)
above can be numerically assessed. As the integral overJ2p also takes time to be computed, it
is interesting to use the properties of the Bessel functions to derive an inductive relationship
between the different orders. The PSF can be expressed eventually as (see Appendix A):

PSF(r,φ)
4θmk2

m
= A(r)+

∞

∑
p=1

Bp(r,φ)+
∞

∑
p=1

Cp(r,φ) (19)

in which each term can be separately assessed and obeys to the following relationships:











A(r) = J1(2πkmr)
2πkmr

Bp(r,φ) = 2(−1)p+1sinc(2pθm)cos(2pφ) J2p−1(2πkmr)
2πkmr

Cp(r,φ) = 2p(−1)p

πkmr sinc(2pθm)cos(2pφ)cp(r)

(20)

wherecp(r) can be calculated by recursion thanks to the following relationships:
{

c0(r) =
J0(2πkmr)−1

2πkmr

cp+1(r) = cp(r)− 1
πkmr (J2p(2πkmr)− J2p(0))

(21)

The relationships above are much faster to compute than the integral. The functions
J2p(2π .km.r)

2π .km.r
decrease very fast withp andr. It appears that they rapidly become negligible around

the center of the PSF so that higher orders affect regions further from the center. In our case,
only a dozen of orders or less are enough to obtain a good approximation (with an error of less
than 0.1%) of the PSF on a disk area of 4 mm diameter.

Figure 3(a) shows the PSF for an angular range of±20◦ which is the typical range for a
commercial linear probe. One can see that the finite angular range distorts the PSF in the lat-
eral direction compared to the isotropic case. A slice along theφ = 0◦ (x-axis) andφ = 90◦

(y-axis) directions are plotted respectively on Figs. 3(b) and 3(c). The full width at half maxi-
mum (FWHM) of the main lobe in each direction was assessed thanks to these two plots and
it was found that the lateral size is about 3 times larger than the longitudinal one. One way
of interpreting this fact is to consider the Fourier plane represented in Fig. 2(c). The maxi-
mum spatial frequency accessible in thex-direction (US propagation axis) iskm given by the
bandwidth of the system. In they-direction however, the maximumky accessible iskmsin(θm)
which is approximately equal to 0.34km in the case of an angular range of±20◦. We thus expect
a distortion of future images in the lateral direction by a factor of about 3.

The radial PSF in the longitudinal and lateral directions can be computed for different an-
gular ranges so that the resolution is assessed in both directions and plotted on Fig. 3(d). The
green and blue crosses respectively correspond to the computed values of the lateral and lon-
gitudinal resolution. A simple way of physically understanding the evolution of the two curves
is to assimilate the 1D PSF to a section of an Airy disk corresponding to a Fourier space of
radius respectivelykx,m andky,m, wherekx,m andky,m are the maximum spatial frequency values
accessible in the Fourier plane in each direction. The FWHM of the primary lobe is given in
this simple case by:
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Fig. 3. (a) PSF for an angular range of±20◦ which is the typical range for a commercial
linear ultrasound probe. One can see here that the limited angular range degrades the lat-
eral resolution. (b) Slice along theφ = 0◦ direction (x-axis). (c) Slice along theφ = 90◦

direction (y-axis). (d) Plot of the resolution (FWHM) along both directions as a function
of the angular range. Crosses stand for the computed values. Plain lines correspond to the
FWHM of the main lobe assuming the 1D PSF is a section of an Airy disk.

{

∆x= 0.7
km

∆y= 0.7
kmsinθm

(22)

This simple model was plotted in plain lines on Fig. 3(d) and is in good agreement with the
computed values of the resolution. It is interesting to note that the longitudinal FWHM is even
more degraded compared to an isotropic case, but its evolution is quite consistent. The fact
that the 1D PSF is not perfectly an Airy function is also appearing in the longitudinal direction
along which the secondary lobes are important. In this case the computed FWHM is below the
predicted value. An interesting point here is that the longitudinal size of the PSF is actually
increasing with the angular range to fit the isotropic PSF radius. Qualitatively, one can guess
that the final images will also be slightly distorted in the longitudinal direction leading to an
image slightly sharper in this direction.

Here it is important to notice that the lateral spatial cutoff frequency of the process depends
on the spectral content of the object contrary to the diffraction limit case for instance. It will
result in an object-dependent distortion and not a simple anisotropic blurring, though this dis-
tortion also results in a loss of resolution in the lateral direction.

4. Reconstruction method

The two previous sections showed that AO imaging with US plane waves is a physical problem
very close to the CT scanner technique. It is known that several tomographic methods can
then be used in order to recover the final image. Theoretically, the most immediate way is to
calculateI (x,y) directly thanks to a 2D inverse polar Fourier transform of the reconstructed
Fourier plane. However, polar FFT algorithms are not easy to implement numerically and often
need to interpolate the polar Fourier Transform on a square grid. The filtered backprojection
[23] is usually preferred and is mathematically equivalent. This is the technique used in this
paper.

#255903 Received 16 Dec 2015; revised 27 Jan 2016; accepted 28 Jan 2016; published 16 Feb 2016 
© 2016 OSA 22 Feb 2016 | Vol. 24, No. 4 | DOI:10.1364/OE.24.003774 | OPTICS EXPRESS 3782 



The idea of the filtered backprojection is the following. Instead of replacing each projection
in the Fourier plane and then calculating the inverseFT , the backprojection calculates the
contribution of each projection in real space and sum over all contributions. However, in order
to take into account the fact that the Fourier plane is in polar coordinates, one must filter each
projection with the Jacobian matrix of coordinates switch|k|. In practice, this filtering step is
critical due to the presence of noise in projection signals. In order not to overweight high fre-
quencies dominated by white noise, this filter is usually multiplied by a rectangle function with
a width corresponding to the bandwidth of the image. In order to smooth the image, the ramp
is sometimes also windowed so that remaining high frequencies are attenuated (for instance
cosine, sinc or hamming windows). The resulting filter is notedf (k).

The principle of the filtered backprojection in AO imaging is the following. First, the tem-
poral FTs̃(ν,θ ) is calculated for each temporal AO signals(t,θ ). As shown in section 2, the
FT s̃(ν,θ ) is also a slice of the spatial 2DFT s̃(k,θ ). It is filtered by the correcting filter
f (k) and each filtered 1D signalsf (r,θ ) = sf (VUS× t,θ ) is then back-projected in real space
using a delay-and-sum beamforming algorithm very similar to what is used in conventional US.
Briefly, for each voxel of the image, the one-way time of flight of the US plane wave is calcu-
lated. This time of flight targets a portion of the 1D temporal signal which defines the value of
the corresponding voxel. The different values of the voxels defined by the different angles are
then summed in order to recover the final image.

In our case, each projection was filtered with the following filterf (k) before being placed
back in the real space:

f (k) = |k|cos

(

πk
2km

)

rectkm(k) (23)

where rectkm(k) represents the rectangle function which value is 1 over[−km,km] and 0 else-

where. In practice,km=
BW
VUS

whereBW is the temporal bandwidth of the detection scheme and

VUS is the sound velocity in the medium

5. Experimental results

The previous sections showed that it was possible to recover an AO image thanks to a tomo-
graphic reconstruction. However, the limited angular range accessible for commercial ultra-

sound probes degrades the lateral resolution by a factor of the order of
1

sinθm
. The goal of this

section is to experimentally demonstrate the capability of this method in terms of contrast and
framerate.

The setup used in this section is the same setup as in [6]. The AO imaging setup is coupled
with a commercial US scanner (Aixplorer, SuperSonic Imagine, Aix en Provence, France). The
ultrasound probe is a commercial US transducers array (SL10-2, 192 elements, 0.2 mm pitch,
SuperSonic Imagine) with a central frequency of 6 MHz. The main difference from the setup
described in [6] is that the illumination and the collection of scattered light are performed thanks
to optical multimode fibers, see Fig. 4. The illuminating beam exits from a Thorlabs multimode
fiber ended with a collimator leading to an illuminating beam power of the order of 1.2 W on
a disc area with a 1 cm diameter. The collection is performed with a liquid core multimode
fiber with a numerical aperture of 0.4 and a collection area of 1 cm2. The temporal bandwidth
is 5 MHz and was chosen in order to be the lowest possible without degrading the shape of the
inclusion.

The sample studied here is an absorbing ink inclusion embedded within a scattering gel
matrix. The gel was made according to the method described in [6]. The embedding gel is
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Fig. 4. Schematic of the experimental setup. The laser source is a laser diode added to a
2 W tapered amplifier in order to have a MOPA system (Sacher Lasertechnik GmBH). The
wavelength is 790 nm. The light beam is split into two beams thanks to a beam splitter
(BS). The signal beam is collected in a Thorlabs multimode optical fiber (MMOF) through
a commercial collimator and guided to the scattering sample. The scattered light is collected
through a liquid core optical fiber (LCOF) with a collection area of 1 cm2 and 0.4 NA and
guided to the SPS photorefractive crystal (PRC). The reference beam (few dozens of mW)
is used to perform two wave mixing (TWM) and filter the untagged photons [6]. The AO
signal is measured on a photodiode (PD) and processed on a computer.

4× 4× 3 cm3 with a reduced scattering coefficientµ ′
s = 10 cm−1 and negligible absorbing

properties. The cylindrical inclusion is located approximately in the middle of the gel. It has
a diameter of 2.5 mm and an absorption coefficient of the order of 5 cm−1. A first image was
taken using US 2-cycles pulses at 6 MHz focused at a depth of 20 mm along the US propagation
beam (x-axis). The whole image needed 188 lines and each line was averaged 2000 times, thus
leading to a total of 376000 US pulses. Therefore, the US sequence lasts typically 40 s at 100µs
pulsing rate. The corresponding image is shown on Fig. 5(a) with a picture of the real inclusion
at the bottom. The inclusion is pointed out thanks to a white arrow. A vertical profile along the
inclusion was plotted on Fig. 5(b). The AO profile was fitted thanks to a sum of two Gaussian
curves:

Σ = Σdi f f −Σincl +C (24)

whereΣdi f f represents a Gaussian fit of the envelope,Σincl a Gaussian fit of the inclusion
andC is a fitted constant. This represents a good approximation of an absorbing inclusion in
the middle of a diffused light pattern [24]. The size of the inclusion can be measured from the
FWHM of Σincl and has a value of 2.5 mm which is the expected value. Let us define the image
contrast as the ratio between the inclusion signal depth and the profile max value. With focused
US, we find a contrast of 0.34 for the inclusion. The contrast-to-noise ratio (CNR) is defined
as the ratio between the inclusion signal depth and the amount of noise in the image. This
definition physically comes from the fact that the presence of an inclusion is detected through a
decrease of the AO signal compared to the diffuse light envelope. Here, the inclusion is detected
with a CNR of 9.

The image obtained with focused pulses is compared to an image obtained with plane waves.
The plane waves are also 2-cycles pulses at 6 MHz. The plane waves angles were ranging
from −20◦ to 20◦ with 1◦ steps (41 angles) and each 1D signal was also averaged over 2000
pulses, thus decreasing the number of pulses needed by almost a factor of 5. The bandwidth
of the ramp filter was defined in post-processing and set to 1 MHz. The image is presented on
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Fig. 5. (a) AO image using focused pulses. The white arrow points to the inclusion. (b) 1D
vertical profile along the black dashed line. (c) Picture of the inclusions taken before it was
embedded. (d) 1D horizontal profile along the white dashed line.

Fig. 6(a). As expected, the horizontal resolution is degraded compared to the isotropic one. A
vertical profile along the black dashed line and a horizontal one along the white dotted line are
respectively plotted on Figs. 6(b) and 6(c). It is visible here that the vertical profile is sharper
than what was obtained with focused pulses. This is due to the small distortion that also occurs
in the longitudinal direction and that was noticed in section 3. The size of the inclusion can
be calculated in both directions thanks to the same kind of fit as presented in Eq. (24). One
finds then a vertical size of the inclusion of 2 mm, which is still relevant with the expected
size, though a bit smaller. The horizontal size is 7.8 mm, which is relevant with the expected
distortion (3× 2.5 mm). The contrast can be measured the same way as for focused waves.
Here we find 0.49 which is higher than in the focused wave image. The CNR is here equal
to 24, almost 3 times higher. This suggests that, in order to obtain an image with equivalent
CNR as with focused US pulses, the number of averaging can be divided by almost 10. In
order to confirm this hypothesis, the number of averaging was decreased down to 1000, 200
and 100 pulses and the CNR was calculated in each case. It was plotted on Fig. 6(d) and shows
the intuitive and expected evolution as a square root of the number of averaging pulses. As
expected, at equivalent CNR, only 200 averaging pulses are needed with plane waves. The US
sequence in itself then needs 8200 pulses and lasts 0.82 s at 100µs pulsing rate, which is almost
50 times faster than a focused wave sequence. The computation time must be added in order to
have an idea of the overall time to get an image. In the reported example here, it took 1.8 s to
compute the image using MATLAB, leading to an overall imaging time of 2.6 s. However, the
computation time can be drastically reduced with parallel computation through the use of the
GPU provided in the US scanner for instance.

Another interesting point to the use of plane waves is the decrease of the mechanical index
(MI) of the sequence. MI is defined as the ratio of the peak negative pressure (PNP, in MPa) in
tissues to the square root of the frequency (in MHz) and quantifies the risk of creating cavitation
bubbles. FDA guidelines limit the mechanical index to 1.9 for medical applications. The PNP
in water was measured for our two sequences thanks to an optical interferometer and a cali-
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Fig. 6. (a) AO image using plane waves ranging from−20◦ to +20◦ with 1◦ steps. (b)
vertical profile along the black dashed line. (c) horizontal profile along the white dotted
line. (d) Evolution of the CNR as a function of the averaging. The CNR level for focused
US averaged 2000 times is indicated by the blue line for comparison purpose.

brated membrane. In the case of ultrasonic focused waves the corresponding MI in tissues is
1.14, much higher than with ultrasonic plane waves, for which the MI is only 0.43, way below
FDA guidelines. Interestingly, the acoustic pressure can be increased up to the safety limits if
necessary, leading to an increase of AO signal - as the square of the pressure increase - much
higher for plane waves than focused ones.

This increased CNR that allows decreasing the number of averaging can be interpreted by
considering the amount of US energy delivered to the sample. Due to the high MI of focused
sequences and the directivity of the transducers, only small apertures of few tens of transducers
can be used to produce focused US. On the contrary, plane waves sequences use the whole
probe: the number of pulsing transducers is increased by a factor of almost 5, and so is the
US energy delivered to the system. In other words, the US tagging volume is much bigger with
plane waves than with focused waves as the US pressure is only 2.5 times weaker. With focused
waves, the tagging volume is of the order of the impulse size at focus, that is to say of the order
of λ 3

US ∼ 2·10−2 mm3. For plane waves, the tagging volume extent is of the order ofλUS in the
x- andz-directions but is the length of the probe in they-direction which is about 150 times the
wavelength: the tagging volume is thus of the order ofLprobeλ 2

US ∼ 2 mm3. Hence the number
of tagged photons that is expected to be higher with plane waves than with focused waves.

6. Improvement of the lateral resolution

The distortion of the image in the lateral direction can be compensated by adding another probe
perpendicular to the first one in order to access the missing side of the sample. A proof of
principle was realized with another sample with two inclusions disposed one beside the other
in the same imaging plane. The second sample is 4×4×4 cm3 with a scattering coefficient
µ ′

s = 10 cm−1. The two inclusions have a diameter of 2 mm and are separated by about 5
mm. A schematic of the experiment is presented on Fig. 7(a). The two inclusions are close
enough so that they overlap on plane waves images using probe number 1 and are impossible
to distinguish. Probe number 2 is added perpendicularly to probe number 1 and is also used
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to perform plane waves AO imaging. Figure 7(b) presents a picture of the two inclusions. The
focused US AO image using probe number 1 is presented on Fig. 7(c) and the two inclusions are
visible and well separated. The plane waves AO image using probe number 1 and an angular
range of±20◦ with 1◦ steps is presented on Fig. 7(d). As expected according to the sample
design, the two inclusions are too close one from another to be separated. It then seems to be
only one big inclusion. The plane waves AO image obtained from the two probes and the same
angular domain as above is presented on Fig. 7(e). It appears that few distortions still remain
due to the absence of information along the diagonal of the sample but the two inclusions are
clearly appearing.
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Fig. 7. (a) Schematic of the sample with two inclusions and the positions of the two probes.
Numbers 1 and 192 on each probe represent the locations of the first and last elements.
The two inclusions are close enough so that they can’t be distinguished in the plane wave
image using only probe 1. (b), (c), (d) and (e) show the results on this gel. The colorbar is
the same for each AO image and is showed on the left side of (c). The black dashed line on
each image is the line along which the profiles of Fig. 8 were plotted. (b) Picture of the gel
with the two black inclusions. (c) AO image using focused US. (d) AO image using plane
waves from one probe. (e) AO image using plane waves from two perpendicular probes.
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Profiles along the black dashed lines visible on Figs. 7(c), 7(d) and 7(e) are plotted on Fig. 8.
The expected positions of the inclusions are pointed out with two black arrows. The green
profile corresponds to the inclusions on the focused US AO image which are well separated.
The red profile corresponds to the inclusions on the plane wave image using only probe num-
ber 1 and confirms that the two inclusions are not separated. The distortion of the image is
clearly appearing here since the scattered light envelope is almost flat though it is expected to
be Gaussian-shaped as explained in Eq. (24) and visible on the green profile. The blue profile
corresponds to the inclusions on the plane waves AO image using two probes and confirms that
the two inclusions are well separated. The DC level on this profile is a residual distortion due
to the fact that it still misses information in the diagonal directions of the image. Indeed, the
cross-shape of the image responsible of this DC level can be understood as a remaining of the
elongated shape of the scattered light envelope that is not properly compensated as angles are
not scanned over 360◦. It is appearing here that the two inclusions on the two-probes image are
slightly shifted compared to their position in the image obtained with focused US. This may be
due to a small inaccuracy in the determination of the position of probe number 2 in relation to
probe number 1, a wrong estimation of which would directly affect the lateral position of the
inclusions. This issue can easily be addressed by using a rigid structure that could hold the two
probes in the same imaging plane at fixed and controlled positions.

7. Conclusion

This paper showed that it was possible to obtain AO images using emitted US plane waves
from a commercial US scanner and a tomographic reconstruction. With a maximum angular
range of±20◦, it is possible to recover an image with equivalent CNR using almost 50 times
fewer pulses. We showed that this increased framerate and CNR comes at the cost of a lateral
distortion of the image and a resulting loss resolution. However, distorted images could be used
for fast preliminary imaging in order to detect the position of suspicious regions before using
slower and more precise techniques. Furthermore, this paper showed that the distortion can be
addressed by using two perpendicular probes.

Reconstruction witha priori knowledge of the shape of the objects can eventually be imag-
ined in order to correct the distortion. Thisa priori knowledge could be extracted for example
from classical US scans.

Appendix A : Derivation of the inductive relationship of section 3

Let us recall the formula for the PSF that was derived above in the article.

PSF(r,φ)
4θmk2

m
=

J1(2πkmr)
2πkmr

+

+∞

∑
p=1

2(−1)psinc(2pθm)cos(2pφ)
∫ 1

0
J2p(2πkmru)udu

(25)

This formula can be numerically computed in order to derive further properties of the PSF.
Here the presence of the integral ofJ2p considerably slows the computation. It is interesting to
develop this term and use the properties of the Bessel functions in order to find an inductive
relationship between the different orders.

Thanks to the following property of the Bessel functions:

Jn+1(x) =
nJn(x)

x
− J′n(x) (26)
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it is possible to write for all values of p:

∫ 1

0
J2p(2πkmru)udu=

2p−1
2πkmr

∫ 1

0
J2p−1(2πkmru)du−

1
2πkmr

∫ 1

0

d
du

{

J2p−1(2πkmru)
}

udu
(27)

The second term of this expression can be calculated analytically through an integration by
part:

∫ 1

0

d
du

{

J2p−1(2πkmru)
}

udu= J2p−1(2πkmr)−
∫ 1

0
J2p−1(2πkmru)du (28)

so that it results

∫ 1

0
J2p(2πkmru)udu=

2p
2πkmr

∫ 1

0
J2p−1(2πkmru)du−

J2p−1(2πkmr)
2πkmr

(29)

The second term of Eq. (29) can be easily calculated through MATLAB and gives the term
Bp in Eq. (20). Let us now focus on the remaining integral that will lead to the termCp in Eq.
(20). The Bessel functions obey to the following inductive relationship:

Jn−1(x) = Jn+1(x)+2J′n(x) (30)

By definingcp(r):

cp(r) =
∫ 1

0
J2p−1(2πkmru)du (31)

we now have:

cp(r) =
∫ 1

0
J2p+1(2πkmru)du+

1
πkmr

∫ 1

0

d
du

{

J2p(2πkmru)
}

du (32)

hence the inductive relationship of Eq. (21) :

cp+1(r) = cp(r)−
1

πkmr
(J2p(2πkmr)− J2p(0)) (33)

and the first term:

c0(r) =
∫ 1

0
J−1(2πkmru)du=

J0(2πkmr)−1
2πkmr

(34)

Hence the expression of the PSF found in section 3 with the given expressions in Eq. (20)
and Eq. (21).
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