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Squeeze flow between a sphere and a textured wall
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UMR 7636 CNRS - ESPCI - Université Pierre et Marie Curie - Université

Paris-Diderot
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The motion of a millimetric sphere, translating in a viscous fluid towards a wettable

textured wall, is investigated experimentally. The textures consist of square arrays of

cylindrical or square micro-pillars, the height, width and spacing of which are varied,

keeping the periodicity small compared to the sphere radius. An interferometric

device is used to measure the sphere vertical displacement, for distances between the

sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution

of 200 nm. At a given distance from the top of the pillars, the sphere velocity is

found to be significantly larger than the corresponding velocity for a smooth solid

wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication

approximation, one fluid layer having an effective viscosity that reflects the viscous

dissipation through the array of pillars. The pressure field in the gap between the

sphere and the textured surface is then used to obtain the drag force on the sphere

and hence its velocity. Adjustment of the model to the velocity measurements yields

the effective viscosity for a given texture. Finally, a correlation between the effective

viscosity and the geometry of the pillar array is proposed.
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I. INTRODUCTION

When a spherical particle moves towards a planar smooth boundary in a viscous fluid

lubrication theory predicts that the force resisting the approach diverges as the gap between

the particle and the wall vanishes1,2. In practice, this divergence is regularized when the

interacting surfaces are rough3,4. This physical importance of roughness is crucial to the

field of concentrated suspensions dynamics. As a matter of fact, surface roughness, naturally

present on most surfaces, has a strong effect on the short-range interaction between a pair

of particles, reducing the lubrication interaction, and allowing for solid-solid contacts5.

Here we consider a smooth sphere approaching a wall with controlled roughness. This

model situation is used to understand the modification of the hydrodynamic interactions at

close distance between particles, or between particles and walls, brought by surface rough-

ness. A specific wall texture has been designed using arrays of micro-pillars. The drag force

on the sphere is a result of the pressure field developing in the thin viscous fluid layer that is

squeezed out of the gap between the textured wall and an approaching sphere. We remark

and stress that the drag force is measured as a function of the gap between the sphere and

the top surface of the textures. As a consequence, the hydrodynamic resistance is decreased

relative to a no-slip boundary condition imposed by a plain smooth wall at the top surface

of the micro-pillar array. Alternatively, the reduced drag can be interpreted as due to the

permeation of the fluid through the micro-pillar array, similarly to the case of a sphere

approaching a permeable wall6. The reduction of hydrodynamic force on a sphere approach-

ing, at controlled velocity, micro-textured surfaces wetted by water in the Wenzel regime,

has been measured using a dynamic surface force apparatus7 (SFA) , and an atomic force

microscope8 (AFM) . Similar effects have been obtained for a rough sphere9 or a textured

cylindrical surface10 approaching a smooth plane wall .

In our experiments, we measure the velocity of a sphere driven by a constant gravitational

force towards a textured surface. The sphere is smooth, millimetric, and settles in a very

viscous oil. The textured surface consists of a plane wall decorated with a square array of

micro-pillars and is completely wetted by the oil. The periodicity of the array, L, is very

small compared to the sphere radius, a. The displacement of the sphere is measured by laser

interferometry, with a resolution of 0.2 µm. We focus on the near-wall region, where the

value of the gap between the sphere and the top of the texture, h0, is much smaller than the
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sphere radius. At a given distance from the top of the pillars, the sphere velocity is measured

to be larger than the corresponding velocity for a smooth wall. Such a velocity enhancement

was first found with the same interferometric device near a wall with periodic corrugations4.

It was also obtained near surfaces with random roughness11, and near textured walls with

microgrooves12. The results were interpreted using the notion of an equivalent smooth plane

that is shifted down from the top of the corrugations. It was established theoretically that

the shift length is the average of two effective slip lengths, calculated by averaging the shear

flow over the wavelength of the corrugations in the two directions parallel and perpendicular

to the corrugations4,13. Thus, the equivalent plane boundary approach is only valid in the

far-field region, where the gap, h0, is one order of magnitude larger than the wavelength of

the corrugations, L, as observed experimentally4.

Here, we propose an alternative model to the equivalent plane boundary, in order to

interpret the observed enhancement of sphere velocity in the near-field region, h ≪ L. The

specificity of our model is to replace the composite medium (flow + pillars) by a continuous

medium with an effective viscosity reflecting the viscous dissipation by the array of the

pillars. This idea has been recently introduced in the context of coating flow14. In our

model, the sphere is embedded in one fluid, and approaches a plane surface covered with

a layer of a second fluid, of constant thickness and of larger viscosity than the first one.

The lubrication approximation is used to derive the flow in the two fluid layers, as the

sphere approaches the surface at distances much smaller than the particle radius. From

the calculated pressure field, the drag force on the sphere approaching the surface is finally

obtained.

The paper is organized as follows. In section II, the experimental device is described

together with the geometry of the textures, and the enhancement of velocity for a sphere

approaching a micro-pillar array is measured. In section III, the squeeze flow model is

formulated for two adjacent fluid layers, and the pressure field and resulting drag force on

the sphere are obtained. The calculated velocity of the sphere is compared to experimental

data, yielding the value of the effective viscosity of the second fluid. In section IV, the results

for the effective viscosity are discussed in terms of viscous dissipation through an array of

pillars. The effective viscosity is correlated to the geometry of the pillar array. Finally,

section V presents a brief conclusion.
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FIG. 1. (a) Sketch of a sphere approaching a wall decorated with an array of micro-pillars. SEM

photograph of micropillars arrays obtained by photolithography : (b) square pillars (e = 90 µm, L

= 97 µm, 2b = 53 µm) and (c) cylindrical pillars (e = 92 µm, L = 88 µm, 2b = 48 µm). (d) Sketch

of the interferometer and of the data conversion and acquisition set-up (Mirrors are denoted by M

and lenses by L).

II. MEASUREMENT OF SPHERE MOTION PERPENDICULAR TO A

TEXTURED WALL

We use an interferometric technique, first designed to measure very small displacements of

a sphere with a resolution on the sphere displacement of 0.2 µm15. Recently, this device was

used to measure the effect of wall corrugations4 and micro-grooves12 on the sphere velocity.

In the present study, new type of surfaces, i.e. textured walls with arrays of micro-pillars,

are tested for the first time with this device.

A. Materials and procedures

1. Interferometry

The sphere is embedded in a fluid contained in a cylindrical vessel with a 50mm diameter

and a 40mm height. The lateral walls are made with altuglass, and the top and bottom

plane walls are made of glass of optical quality. The fluid is a Newtonian and incompressible

PDMS (silicone) oil, with density of ρf = 978 kgm−3 and kinematic viscosity ν = 0.1 m2s−1

at 25◦C. Experiments are conducted at ambient room temperature. Physical properties of
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FIG. 2. Examples of interferometric signal for the motion of a sphere approaching (a) a quasi-

smooth wall (glass) and (b) an array of micropillars. Between two maxima of the signal, the sphere

has moved a distance equal to λ/2n = 0.224µm.

the oil (viscosity, refraction index) vary slowly with temperature. The oil has a Newtonian

behavior for shear rates up to 100 s−1. The particles are spherical steel balls with density

ρp = 7.8 × 103 kgm−3 and diameters ranging from 7mm to 12.7mm. The roughness, Ra,

of the steel balls, as indicated by the manufacturer, is 0.013 µm. The Reynolds number

based on particle diameter and particle Stokes velocity, Re = (2a)VSt/ν, is vanishingly

small (Re ≃ 10−5).

The vessel is inserted in the interferometric device so that the sphere reflects one of the

laser beam, whereas the second beam is reflected by a fixed mirror at the bottom of the

wall. Interference fringes (circular rings) are formed, that move according to the sphere

displacement. The recorded signal is the light intensity at the centre of the interference

pattern. Signal variation from one maximum (bright fringe) to another is due to a displace-

ment of the sphere equal to λ/2n, where λ is the wavelength of the laser, and n the index

of refraction of the suspending fluid. Here, with a silicon oil (n = 1.404) and a He-Ne laser

beam (λ = 632.8 nm), we have λ/2n = 0.224µm. The sphere velocity is related to the

velocity of fringe displacement by multiplying λ/2n by the frequency of the signal. The

signal, after opto-electronic conversion by a photodiode (Thorlabs DET10A/M), is recorded

with an electronic oscilloscope, transferred to a PC and processed by a Matlab code for

detecting its extreme values as a function of time. The spatial resolution is therefore equal

to λ/2n = 0.224µm.

Figure 2(a) depicts the signal evolution for a sphere arriving at a quasi-smooth wall

(optical glass). The deceleration of the sphere is reflected in the decrease of the amplitude,
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and increase of the period of the signal, until contact occurs. The contact position with the

wall (h0 = 0) is defined from the recorded signal, as the time when the period of the signal

becomes very large indicating a vanishing velocity. This is done with an error of the order

of 224 nm on the contact position. From this contact position, the previous positions of the

sphere are reconstructed by multiplying the velocity by the time interval. Note that the

signal-to-noise ratio deteriorates at vanishing frequency, because the low frequency limit of

the oscilloscope is reached. The error on the frequency of the signal comes from the error on

the time at which a maximum is detected. The measured frequency is averaged over 7 to 8

periods (75 points), so that the velocity may appear to be very smooth. The resulting error

on the velocity is smaller than 1%. However, no averaging has been applied just before the

contact, in order to capture the rapid variations in velocities occurring in that region. Here,

the error on the velocity can be estimated not to exceed 5%.

2. Textured surfaces

Textured surfaces with controlled texture geometry were fabricated in clean room using

standard lithography. In a first step, geometric shapes are transferred from a mask to a sili-

cone (Si/SiO2) wafer coated with a photo-reticulable (SU8, MicroChem) resin, by exposure

to UV, developing and hard-baking. The thickness of the film is controlled by spin coating.

The size of the structures obtained in this first step are checked by mechanical profilometry.

In a second step, a replica molding of the SU8 structures is obtained by soft lithography,

using a thermo-reticulable PDMS (Sylgard 184). In our case, these moldings are not chosen

as a final material, because they are likely to swell when in contact with silicone oil. A last

step is then to obtain a replica of the PDMS molding by soft imprint of a photo-curable

polymer, a thiolene based resin (NOA 81, Norland optical adhesives) on glass microscope

slides (to be fixed at the bottom of the vessel). This resin was chosen for its good resis-

tance to compression, and its good adhesion to glass. The final structures are observed by

scanning electron microscopy (Figure 1). We checked that these surfaces are oleophilic : a

millimetric drop of silicon oil deposited on the surface shows progressive imbibition, until

the contact angle reaches an equilibrium value of order 30◦. So that we expect that the

oil completely fills the space between the pillars, without air bubbles being trapped at the

solid/oil interface (Wenzel state).
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FIG. 3. Sphere dimensionless mobility V (h0)/VSt as a function of dimensionless gap h0/a, measured

near a smooth wall (dashed line) and near an array of cylindric micro-pillars with e = 69 µm, L

= 88 µm, 2b = 48 µm (circles). The diameter of the sphere is 2a = 7 mm. (a) Matching of the

two curves in region (i). (b) Mobility enhancement due to the textures in region (ii). Insert shows

region (iii) with a more pronounced mobility enhancement followed by an abrupt deceleration.

Various texture geometries have been tested in this work. We denote e as the height of

the pillars (ranging from 20 to 130 µm), L the wavelength of the array (ranging from 88 to

244 µm), and 2b the diameter (side) of cylindrical (square) pillars respectively (ranging from

48 to 106 µm). The area fraction φ of the liquid-liquid interface at the top of the textures

is πb2/L2 and 4b2/L2 for cylindrical and square pillars arrays respectively, and ranges from

0.05 to 0.45.

B. Mobility curves

In the limit of small Reynolds number, the drag force FD on a sphere of radius a moving

in a fluid of viscosity µ at a given distance h0 from a solid wall with a velocity V (h0) may

be written as : FD = 6πµaf(h0)V (h0). Here, f(h0) is a dimensionless friction factor, that

represents the resistance to motion caused by the hydrodynamic interaction with the wall,
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and that increases as the distance to the wall decreases. In the case where the interacting

surfaces are smooth, this friction factor depends only on the normalized gap ǫ0 = h0/a, and

f(ǫ0) has been calculated as a series1,2. This exact solution coincides for ǫ0 < 0.25 within 1%

error with the asymtotic expansion16 : f(ǫ0) = 1/ǫ0−1/5 ln[ǫ0]+0.9713. It also coincides for

ǫ0 < 0.01 within 1% error with the standard result of lubrication theory16 : fT (ǫ0) = 1/ǫ0.

In settling experiments, and in the limit of negligible sphere inertia, the drag is balanced

by constant gravity forces, also equal to the Stokes drag in an infinite fluid, FSt = 6πµaVSt,

where VSt is the Stokes velocity. Thus, the mobility coefficient defined as the ratio of the

sphere velocity at a distance h0 from the wall, to the Stokes velocity, is equal to the inverse

of the friction factor :

V (h0)

VSt

=
1

f(ǫ0)
. (1)

1. General features

In our experiments, the velocity V (h0) of a sphere approaching a textured wall is measured

as a function of gap h0, the smallest distance between the sphere and the top of the textures

(Figure 1). Here, the friction factor becomes, in addition to ǫ0, a function of the texture

geometry. This is illustrated in Figure 3, where the mobility (the inverse of the friction

factor) of a sphere of radius a = 3.5 mm has been measured close to a textured wall with

cylindrical micro-pillars of height e = 69 µm, radius b = 24 µm, and periodicity L = 88 µm.

The mobility of the same sphere measured close to a smooth surface is presented also for

comparison. Note that in that case, our measurements are perfectly described by the Cox-

Brenner asymptotic expansion, and, for ǫ0 < 0.01, by the lubrication theory 1/fT = ǫ0. The

mobility curve obtained close to a textured wall can be divided into three regions, depending

on the spatial scale of observation.

In the region (i), the most far away from the wall, the effect of the textures is negligible

and the mobility curve for a smooth surface is recovered. Hence, we have adjusted the value

of the Stokes velocity VSt so that the velocity matches the curve measured in the same cell

for a quasi-smooth (glass) surface, with the same fluid and same sphere diameter (reference

curve). In figure 3(a), the matching holds for ǫ0 > 0.15. Note that with this procedure, the

effects of the confinement by the lateral walls can be implicitly taken into account, but we

have checked that they remain unimportant up to ǫ0 = 0.3. The main source of error with
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the adjustment procedure comes from the variations of the fluid viscosity with temperature

from an experiment to another, but these variations are kept small.

In the far-field region (ii), defined as (L/a) ≤ ǫ0 ≤ 0.15, the sphere velocity is significantly

influenced by the textures. Here, L/a = 0.025. Considering figure 3(b), at a given distance

from the top of the textures, the mobility is larger than its value at the same distance from

a smooth wall. Moreover, this mobility enhancement is, in that case, a simple shift of the

reference curve, in agreement with the equivalent plane boundary model. Here, the shift

along the horizontal axes yields an effective slip length of 7 µm.

In the near-field region (iii), defined as ǫ0 ≤ (L/a), the velocity enhancement is even

more significant, and larger than would be predicted by the equivalent plane boundary

model (see insert in Figure 3(b)). Finally, for ǫ0 ≤ (b/a), the sphere decelerates abruptly,

within a few interfringes, before it stops completely. This deceleration is also visible on the

interferometric signal measured near an array of micro-pillars and shown in Figure 2(b).

This corresponds to the interaction of the sphere with the nearest pillar of radius b. Here,

b/a = 0.007. It is not the purpose of the present work to describe with more precision this

part of the mobility curve. In the following, we will focus on the effect of texture geometry

in the part of near-field region (iii) limited to b/a ≤ ǫ0 ≤ L/a.

2. Effect of texture geometry on the sphere mobility

Figure 4 depicts the sphere mobility measured near arrays of cylindrical micro-pillars of

various concentration and height. The diameter of the pillars is essentially the same in all

experiments (2b varies between 40 and 50 µm from one array to another).

Figure 4(a) shows the sphere mobility measured for different pillar concentrations, φ,

at a fixed pillar height (e = 20 µm). The mobility is larger near a textured wall than

near a smooth wall. Moreover, the smaller the pillar concentration, the higher the mobility

enhancement. The effect of the textures is remarkably significant for a small pillar concen-

tration. For example, for φ = 0.1 and e = 20 µm, it is found that the mobility at ǫ0 = 0.004

is increased by a factor of about 2 compared to its value at the same distance from a smooth

wall. This is consistent with the idea of the squeezed fluid escaping more easily through less

concentrated array of pillars, thus decreasing the pressure in the gap compared to the case

of a plain smooth wall, and finally decreasing the drag force on the sphere. For concentrated
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FIG. 4. Mobility of a sphere (diameter 2a = 7 mm) measured near arrays of cylindrical micro-

pillars (a) with fixed pillar height, e = 20 µm, and different pillar concentrations, φ = 0.1, 0.2 and

0.3. (b) with fixed pillar concentration, φ = 0.1, and different pillar heights, e = 20, 50, 82 and

117 µm. Circles : Mobility measured near a smooth surface.

arrays, on the contrary, the mobility approaches the limiting case of a plain smooth wall

(which would be recovered for φ = 1).

In Figure 4(b), the pillar height has been varied at a fixed pillar concentration φ = 0.1.

In all cases, the mobility enhancement increases with increasing pillar height, e. However,

this effect is more efficient when the concentration is the smallest (φ = 0.1). In the limit

of vanishing pillar concentration, the drag tends towards the drag measured near a smooth

wall. However, measuring the drag from the top of the pillars amounts to shift the velocity

curve along the horizontal axis by a distance of the order of the pillar height. Indeed, it can

be observed that the different mobility curves are approximately shifted from the reference

curve of the smooth wall. However, the equivalence is not conserved for the highest pillars.

Rather, a saturation is observed : increasing further the pillars height does not give rise to

any supplementary mobility increase. Moreover, the curves are not parallel. This saturation

is due to the fact that the motion of the fluid between the pillars is impeded by the proximity

of more and more pillars.

Similar trends have been observed for textures made of square pillars, with the same

qualitative effects of pillar height and concentration on the sphere mobility, as shown in
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Figure 7(b).

III. LUBRICATED SQUEEZE FLOW OF TWO ADJACENT FLUID

LAYERS

In this section, we develop a flow model in the lubrication approximation, for the squeeze

flow between a sphere and a wall, of two adjacent immiscible fluid layers of different viscosi-

ties. The smooth sphere is immersed in one fluid, and moves towards a smooth wall that is

covered with a layer of a second fluid. A strong assumption of this model is that the plane

interface between the two fluid layers remains undeformed during the process of squeezing.

In practice, this is unlikely to occur as the sphere gets closer to the interface, even if the

interface deformation could be impeded by several mechanisms17 like large density gradients,

or large interfacial tension. In our experiments however, the height of the second fluid layer

is by definition equal to the height of the pillars, and thus remains uniform and constant

during the sphere approach. We consider this layer as a continuous medium having an ef-

fective viscosity larger than the viscosity of the actual fluid flowing between the pillars14.

The configuration is sketched in Figure 5. The sphere moves in the first fluid, denoted ”1”,

that occupies, at a given time t, the region of the space such as e ≤ z ≤ h(r), with h(r) the

equation of the sphere surface. The viscosity of this first fluid layer is µ1 ≡ µ. The second

fluid, denoted ”2”, forms a layer of uniform thickness e, and is in contact with the ground

and with the top fluid. It thus occupies the portion of the space 0 ≤ z ≤ e. The viscosity of

this second fluid layer will be denoted as µ2 = kµ, with k a dimensionless coefficient larger

than unity.

A. Model formulation

We consider the axisymmetric configuration sketched in Figure 5. The sphere moves in

fluid ”1” towards fluid ”2”, and at a given time t, it is situated at a distance h0 from the

top of layer of fluid ”2”. We denote as V0 the velocity of the sphere at this distance h0 (with

V0 > 0 corresponding with motion towards fluid ”2”).

For values of distance h0 much smaller than the sphere radius a, the equation of the
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FIG. 5. Sketch of the squeeze flow of a two adjacent fluid layers with different viscosities.

sphere surface is approximated by :

h(r) = h0 +
r2

2a
. (2)

We solve the classical lubrication equations for the axisymmetric velocity field in each fluid

layer, valid in the limit (h0 + e) ≪ a. The continuity equation implies that wi ≪ ui, with

(ui(r, z), wi(r, z)) being the velocity components in r and z directions of layer number, i.

Thus, the equations of motion reduce to :

∂pi
∂r

= µi

∂2ui

∂z2
,

∂pi
∂z

= 0. (3)

for each layer, in which µi is the dynamic viscosity of layer number, i. The pressure, pi

is only a function of r, so that we may write p1(r) = p2(r) = p(r). Therefore, integrating

equation 3 yields two parabolic flow profiles :

ui(r, z) =
1

2µi

dp(r)

dr

(

z2 + Ai(r)z +Bi(r)
)

, (4)

where the functions Ai and Bi are determined by the boundary conditions. These conditions

are the non-slip conditions at the ground, u2(r, 0) = 0, and at the sphere surface, u1(r, h+e)

= 0, the continuity of the velocity at the interface between the two layers, u1(r, e) = u2(r, e),

and the continuity of the viscous stresses at the interface between the two layers :

µ1
∂u1

∂z
(r, e) = µ2

∂u2

∂z
(r, e). (5)

Solving for the boundary conditions yields

B2(r) = 0, (6)
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A1(r) = A2(r) = −(h + e)2 + (1/k − 1)e2

(h+ e) + (1/k − 1)e
, (7)

B1(r) = −(h+ e)A1(r)− (h + e)2, (8)

where h ≡ h(r). Mass conservation yields

q(r) + πr2w(z = h0) = 0, (9)

where the curvature of the sphere has been neglected. The no-slip condition for the velocity

component in z direction yields w(z = h0) = −V0. The radial flow rate q(r) through a

cylinder centered on the axis, of radius r and of height e+ h(r) , is obtained by integrating

the flow fields across the gap as follows

q(r) =

∫ h+e

e

u1(r, z)2πrdz +

∫ e

0

u2(r, z)2πrdz. (10)

Finally, we find the expression of the radial pressure gradient

dp(r)

dr
= −6µrV0

h̄(r)3
, (11)

where :

h̄(r)3 = 2[e3(1− 1/k)− (h+ e)3] + 3A1(r)[e
2(1− 1/k)− (h+ e)2]− 6B1(r)h (12)

Note that, for e = 0 and k = 1, we recover the classical result for one layer : h̄(r) = h(r). The

pressure field is obtained by integration of equation 11 between the current radial position,

r, and the position R0 =
√
2ah0, where it recovers its value at infinity (p = p0 as r → ∞)

p(r)− p0 =

∫ R0

r

−dp(r′)

dr′
dr′. (13)

A second integration yields the drag force FB on the sphere

FB =

∫ a

0

(p(r)− p0)2πrdr. (14)

The integrations are performed numerically with Matlab, for different values of nominal

distance, h0. In contrast to the experiments, the numerical calculation is operated at a

given velocity, V0, thus yielding a different drag for each distance. Hence, the corresponding

mobility coefficient 1/fB is obtained by

1

fB(ǫ0)
=

V (h0)

VSt

=
6πµaV0

FB(h0)
(15)

Note that, in equation 15, the function 1/fB(ǫ0) depends implicitly on the values of e and

k through equation 12. We have checked that, for e = 0 and k = 1, we recover numerically

the classical mobility coefficient 1/fT , as illustrated in Figures 6 and 7.
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B. Comparison with measurements : Determination of the viscosity

coefficient

In the previous section we have demonstrated that the mobility 1/fB of a sphere moving

towards a plane interface between two fluids of different viscosities can be calculated in the

lubrication approximation. Here, we test the applicability of this model to the mobility of

the sphere measured near a textured wall. For this purpose, the height of the bottom layer

is set equal to the height of the pillars, e, which is prescribed by the design of the texture

and measured by profilometry. The viscosity coefficient, k, is a priori unknown, and has to

be obtained by adjustment of the calculated mobility to the experimental curves.

In Figure 6(a), the values of viscosity coefficient, k, have been obtained by the best adjust-

ment of equation 15 (dashed lines) to the mobility curves measured near arrays of cylindrical

micro-pillars. Here, the arrays have the same pillar height (e = 50 µm), comparable pillar

diameters (2b ranges from 40 to 50 µm), but different pillar concentrations (φ = 0.1, 0.2

and 0.3). An excellent agreement is obtained between model and experiments in the region

b/a < ǫ0. Interestingly, the model accurately describes the non-linearity of the mobility

curves in that region. Note that the equivalent plane boundary model would simply shift

the linear reference curve obtained for a smooth surface. Moreover, the values of k are found

to be larger for larger pillar concentrations (5.5, 12 and 28 respectively), consistently with

an effective viscosity increasing with pillar concentration.

However, equation 15 does not describe either the rapid deceleration of the sphere just

before contacting the top of the pillars (0 < ǫ0 < b/a), nor the vanishing velocity at contact.

Instead, it predicts a non-zero value of velocity at ǫ0 = 0. To improve this, we choose to

model the interaction of the sphere with the closest pillar as follows. Using the pressure

field arising from the lubricated squeeze flow between a sphere of radius a and a plane,

p(r)− p0 = 3µaV (h0)/h(r)
2, and summing up the resulting normal forces on the surface of

a disk of radius b, gives rise to the lubrication drag : FP = 6πµV (h0)b
2/[2h0h(b)], and thus

to the following mobility coefficient

1/fP (ǫ0) = ǫ0

(

1 + 2
a2

b2
ǫ0

)

. (16)

Thus, adding the contribution FP to the drag FB calculated in section III, we obtain the
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FIG. 6. Symbols : mobility of a sphere of diameter 2a = 7 mm measured near arrays of cylindrical

micro-pillars with e = 50 µm and different pillar concentrations φ = 0.1, 0.2, 0.3. The values of b

are 20, 25, and 25 µm, respectively. Dashed lines : Equation 15 for k = 28, 12, and 5.5 (k = 1 for

a smooth surface). Continuous lines : Equation 17 for the same values of k. (a) Linear scale (b)

Log-Log scale.

sphere mobility in the whole region (iii)

V (h0)

VSt

=
1

fB(ǫ0) + fP (ǫ0)
. (17)

In Figure 6(b), equations 15 (dashed lines) and 17 (continuous lines) have been plotted

with the same values of k. The two equations give identical results in the region b/a <

ǫ0. However, using equation 17, the final sphere deceleration in the region ǫ0 < b/a is

described correctly, without additional parameter, and with a precision that is sufficient

for our purposes. Note that the second term in equation 16 improves over the first term

alone : it gives a larger mobility near a small pillar than near a plane. In the following, the

parameter k will be searched by adjusting the mobility curves to equation 17.

In Figure 7(a) the same texture is used to modify the mobility of spheres of different

diameters (7 and 12.7 mm, respectively). Note that different sphere diameters give rise to

different mobility curves when plotted as a function of dimensionless gap h0/a, a conse-

quence of the textures introducing new length scales, in addition to the sphere diameter12.

Figure 7(a) depicts also the calculated mobility obtained by the best adjustment of the
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FIG. 7. (a) Symbols : mobility measurements of two spheres (diameter 2a = 7 mm and 12.7 mm)

near the same array of cylindrical micro-pillars (φ = 0.1 , e = 117 µm, b = 22 µm). Continuous lines

: equation 17 with k = 22 (k = 1 for the smooth surface). (b) Symbols : Mobility measurements of a

sphere (diameter 2a = 7mm) near arrays of square micro-pillars with e = 90 µm and different pillar

concentrations φ = 0.05, 0.15, 0.3, and 0.45 (b = 28, 30, 53 and 50 µm respectively). Continuous

lines : equation 17 with k = 2.8, 9.4, 21, and 62 (k = 1 for a smooth surface).

model (equation 17) to the experiments. A perfect agreement between the model and the

measurements is obtained for the two sphere diameters, yielding a unique value of k = 22 for

this texture. This supports the idea that the parameter k is a characteristic of the texture

geometry. We confirm that this is indeed the case for the range of geometries considered in

this work. Only for one of the textures with the highest pillar height (e = 117 µm) and high

pillar concentration (φ = 0.2), values of k decreasing with increasing sphere diameter have

been obtained. We proceeded similarly for arrays of square micro-pillars (in that case the

ultimate lubrication interaction of the sphere with one square pillar of side 2b is modelled

by the interaction between a sphere and a disc of area πb2, as given by equation 16), and

obtained again a very good agreement between model and experiments, as shown in Figure

7(b).

Examining the limitations of the model, it is clear from Figure 7(b) that, in general, the

model starts to deviate from the experimental curves at distances ǫ0 between 0.01 and 0.015.

As mentioned earlier, the range of applicability of the model in terms of gap thickness is
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restricted to the lubrication region (h0 + e) ≪ a. In addition, it is important to note that

the present analysis is expected to be limited also in terms of geometrical parameters of

the micro-pillar array. Indeed, the saturation of the sphere mobility observed when e/L

increases at a fixed concentration φ (see Figure 4(b)), supports the idea that when e/L is

increased beyond a threshold (which remains to be determined for each value of φ), the flow

does not penetrate all the way to the bottom of pillars. In that case, our representation of

the micro-pillar region by the lubricated squeeze flow of an effective fluid layer extending

from z = 0 to z = e, as depicted in figure 5, does not hold.

At this point, it would be interesting to know if the coefficient k measured here, by

adjustment of the model to the data, can be related to the actual viscous dissipation of

the flow through the micro-pillar array. Then, it would be possible to correlate k to the

geometrical parameters of the micro-pillar array. This point will be discussed in the next

section.

IV. VISCOUS DISSIPATION THROUGH A SQUARE ARRAY OF

CYLINDERS

In this section, our aim is to provide a correlation between the value of the viscosity

coefficient k obtained in the squeeze-flow experiments, and the geometrical parameters of

the textured surface.

A. Parallel flow

The recent development of flows near micro-textured boundaries has motivated a quan-

titative understanding of the viscous dissipation through micro-pillar arrays, and hence, a

renewed interest for the solutions of the Stokes equations for the flow through arrays of

cylinders (see18 and references therein). Recently, these solutions have been used to pre-

dict the effective slip length over superhydrophobic surfaces19, the coating flow over arrays

of micro-pillars14, and the pressure drop through arrays of cylindrical micro-reactors and

micro-heat exchangers20,21. In the case of a uniform and unidirectional flow of velocity U ,

and in the limit of small Reynolds number flows, the drag force per unit length on a single

infinite cylinder in a square array is proportional to U , the flow velocity, and to µ, the fluid
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viscosity18

fp = β(φ)µU, (18)

where the dimensionless coefficient β(φ) accounts for the hydrodynamic interactions between

the cylinders in the array, and is an increasing function of cylinder volume fraction φ. Note

that β(φ) is independent of the orientation of the flow with respect to the axis of the array,

a consequence of the linearity of Stokes equations22. The function β(φ) has been determined

theoretically in the two limiting cases of dilute and concentrated array ( for a detailed review

and comparison of the solutions, see reference20). Recall that, in the case of a parallel flow

over a plane surface covered with a square array of cylindrical pillars of finite height, the

viscous dissipation can be evaluated14,23 by considering a cell of side L, the periodicity of

the array, embedding a pillar of height e. In an effective medium approach, the effective

viscosity µe is defined14 by adding the viscous force on the bottom wall surface of the cell,

F0, and the drag over the pillar, F1

F0 + F1 = µe〈γ̇〉L2, (19)

where 〈γ̇〉 is an effective shear rate in the cell. Substituting U by 〈γ̇〉z in equation 18, and

integrating along pillar height, e, yields the drag on a pillar

F1 =

∫ e

0

fpdz = β(φ)µ〈γ̇〉e
2

2
. (20)

The viscous force exerted by the flow on the bottom wall is

F0 = µ〈γ̇〉L2. (21)

Combining the above equations yields the expression of effective viscosity µe as a function

of the geometrical parameters of the pillar array

µe = µ

(

1 + c β(φ)
e2

L2

)

, (22)

where c is a numerical factor equal to 1/2.

B. Three-dimensional squeeze-flow

In the case of the squeeze flow between a sphere and a wall, which is considered here,

the flow through the array of pillars is complicated. Firstly, due to the velocity boundary
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FIG. 8. Reduced effective viscosity, k − 1, obtained by adjusting the model developed in section

III to the experiments, for various texture geometries, as a function of (a) e/L, (b) (e/L)2. Each

symbols refers to a different value of pillar concentration φ.

conditions at the top and base of the pillars, the flow is non-uniform along a pillar’s height.

Secondly, it is the sum of a simple shear-flow and of a pressure driven flow. However, both

effects could be handled analytically by integrating the flow along a pillar’s height. Another

complication arises from the radial geometry of the squeeze flow above the pillars. To our

knowledge, there exists no predictions for the viscous dissipation by a flow forced radially

through a square array of pillars. The absence of rotational symmetry in the pillar array

may introduce some anisotropy, particularly at large pillar concentrations. This flow could

be solved numerically, however such a study is beyond the scope of the present work.

Here, we carry out a simple comparison between the effective viscosity measured in this

work, kµ, to the effective viscosity that would be obtained for a parallel flow through the same

micro-pillar array (equation 22). The values of the factor k extracted from our experiments

using arrays of cylindrical or square pillars with different geometrical parameters (e, L and

b) are summarized in Figure 8. The error bars are based on the quality of the adjustment,

which deteriorates only, as already mentioned, for the highest values of pillar’s concentrations

and heights.

In Figure 8(a) the reduced viscosity (k− 1) is plotted as a function of e/L. Each symbol

refers to a set of data obtained for the same pillar concentrations φ. Clearly, the effective

viscosity increases with the pillar concentration and with the ratio e/L. In Figure 8(b),
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(k − 1) is plotted as a function of (e/L)2, in Log-Log scale. The data obtained for a given

value of pillar concentration collapses onto a straight line, of slope equal to 1, showing that

the scaling predicted by equation 22 applies also in the case of a radial flow. The continuous

lines in Figure 8(b) are obtained by linear regression, and provide a ratio (k− 1)/(e/L)2 for

each value of φ, denoted as B(φ), and displayed in Table 1.

Figure 8(b) shows that, in the range of parameter tested here (e/L ≤ 1.5 and φ ≤ 0.45),

the scaling behavior (k − 1) ∽ (e/L)2 still holds for a radial flow. This can be understood

as follows. We consider an array of micro-pillars with a given geometry. In contrast to

a parallel flow, the effective viscosity is here spatially varying, as its value in individual

cells containing one pillar depends on the geometry of the flow in that cell. The measured

effective viscosity thus amounts to an averaging of the contribution to viscous dissipation of

the different cells. In a rudimentary description, we consider that the cells situated at the

same distance r from the center of the radial flow have the same contribution, and that the

viscous force on the bottom surface, F0, and the drag force on the pillar, F1, are functions

of the distance r only. For a given cell, they may be written as

F0(r) = µ¯̇γ(r)L2, F1(r) = µβ(r)¯̇γ(r)
e2

2
, (23)

where β(r) is a dimensionless friction coefficient, yielding the drag per unit length on the

pillar, β(r)µU , and ¯̇γ(r) is an effective shear rate. We define an averaged effective viscosity

µ∗
e by integrating the viscous forces in the different cells over a disk of radius R which is

large compared to L

µ∗
e〈γ̇R〉πR2 =

1

L2

∫ R

0

(F0(r) + F1(r))2πrdr, (24)

where 1/L2 is the number density of cells. In equation 24, 〈γ̇R〉 is the average of the effective
shear rates, defined as

〈γ̇R〉 =
1

πR2

∫ R

0

¯̇γ(r)2πrdr. (25)

Combining the above equations leads to the expression of the averaged effective viscosity µ∗
e

µ∗
e = µ

(

1 + 0.5 β̄(R)
e2

L2

)

, (26)

where β̄(R) is an average of the friction coefficients

β̄(R) =

∫ R

0
β(r)¯̇γ(r)2πrdr

〈γ̇R〉πR2
. (27)

20



Note that a cell situated at a distance r, is subjected to a diverging flow whose angle of

aperture is ≈ L/r. This angle decreases as r increases, and becomes negligibly small when

r is sufficiently large compared to L. In that case, the flow in the cell can be considered

as unidirectional, and the friction coefficient β(r) becomes independent on r and equal to

β(φ) defined in equation 18. Experimentally, the fact that the measured effective viscosity

is independent of the sphere diameter is consistent with an average friction coefficient β̄(R)

becoming a constant for sufficiently large values of R.

Finally, we discuss the values of B(φ) obtained from linear regression in Figure 8. For a

parallel flow through the same pillar array, equation 22 predicts that B(φ) would be equal to

0.5β(φ). For comparison purposes, we use here an analytical solution24, that is valid up to

a concentration of φ = 0.4 and provides a good agreement with numerical and experimental

data18

β(φ) =
4π

ln( 1√
φ
)− 0.75 + φ− 1

4
φ2

. (28)

We have reported in Table 1 the values of β(φ) predicted by equation 28. The ratio

B(φ)/β(φ) measured in our experiments and in the coating flow experiments14 is reported

in the last column of Table 1. Note that the coating flow gives rise to a ratio of 0.37,

which may be a consequence of the flow profile along a pillar’s height (we used a simple

shear flow for deriving equation 22). In our experiments, a narrow range of values of the

ratio B(φ)/β(φ), of the order of 0.75 (between 0.74 and 0.85), are obtained for the arrays

of cylindrical pillars, indicating a correlation between the measurements for a radial flow

and the predictions for a parallel flow through the micro-pillar array. Hence, the radial flow

gives rise to a larger dissipation than the parallel flow. For the arrays of square pillars, the

ratio B(φ)/β(φ) remains of the same order of magnitude as for the cylindrical pillars, but

for the smaller pillar concentrations only. For larger concentrations, the values of the ratio

are more scattered. We eventually conclude that in the range of parameters explored here,

the averaged effective viscosity measured in our experiments is reasonably correlated to the

geometrical parameters of the micro-pillar array, using equation 22, with a prefactor c that

is of the order of 0.75 (instead of 0.5 for a parallel flow and 0.37 for a coating flow).
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φ B(φ) = (k − 1)/(e/L)2 β(φ) B(φ)/β(φ)

from Fig. 8 from Eq. 28

Cylindrical pillars 0.1 18.3 24.8 0.74

0.2 38.2 50.8 0.75

0.3 76.4 90.3 0.85

Square pillars 0.05 10 13.8 0.72

0.15 20.3 36.2 0.56

0.3 31.2 90.3 0.35

0.45 158.6 107 1.48

Coating flow14 0.07 7.2 19.4 0.37

TABLE I. Comparison between the reduce effective viscosity, (k − 1)/(e/L)2 , measured from ex-

periments with a radial flow through the pillar array (Figure 8.b), and the prediction by equation

28 for a parallel flow through the same array of pillars. Also shown is the experimental result for

a coating flow through an array of cylindrical pillars14.

V. CONCLUSION

We have reported on measurements of the dynamics of a millimetric sphere settling in

a viscous fluid towards a wall decorated with an array of micro-pillars. The focus is on

the near-field region, where the gap between the sphere and the top of pillars is of the

order of, or smaller than, the periodicity of the pillar array. We have varied the geometrical

parameters of the texture, i.e. the height and diameter (resp. the side length) of the

cylindrical (resp. square) pillars, and the periodicity of the array. As a result of the fluid

drainage through the array of pillars, the velocity of the sphere at a given distance from the

top of the pillars is larger than when measured at the same distance from a plain smooth

wall. To reproduce this velocity enhancement, we have developed a squeeze flow model of

two adjacent fluid layers, one of these layers having an effective viscosity larger than the

viscosity of the bulk fluid, thus taking into account the viscous dissipation of the flow through

the array of pillars. In the range of geometries tested in this work, the model describes very

precisely the velocity-distance curves, with an effective viscosity which can be correlated to

the geometrical parameters of the textures.
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of micropillars,” Europhys. Lett. 79, 56005 (2007).

24S. Kuwabara, “The forces experienced by randomly distributed parallel cylinders perpen-

dicular to the flow direction at small Reynolds number,” J. Phys. Soc. Japan. 14, 527–532

(1959).

24


