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ABSTRACT 

 The electrocatalytic activity of synthesized quasi-spherical Pt 

nanoparticles (NPs) have been studied taking as a model the COads 

electrooxidation reaction in two imidazolium-based ionic liquids such as 1-

butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim+][NTf2
-] and 

1-butyl-3-methylimidazolium tetrafluoroborate [C4mim+][BF4
-]. In particular, the 

effect of i) water content, ii) temperature and iii) nature of the room temperature 

ionic liquid (RTIL) on the electrocatalytic behavior of these Pt NPs have been 

systematically evaluated. The obtained results show how important are those 

parameters, since the COads oxidation peak potential exhibits a great sensitivity 

depending on the water content, temperature and nature of the RTIL used. 

Interestingly, the charge density associated with the COads electrooxidation 
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peak strongly depends on the nature of the ionic liquid, which reflects the 

complexity of this electrocatalytic reaction in this media. Moreover, Pt NPs 

electrocatalyst degradation in those RTILs, considered as loss of 

electrochemically active area, has been evaluated and shows high stability 

despite the extreme potentials afforded in RTILs. 

 

Keywords: Platinum nanoparticles, ionic liquids, electrocatalysis, carbon 

monoxide. 

 

INTRODUCTION 

 In the last decade, a myriad of contributions have been reported dealing 

with the use of room temperature ionic liquids (RTILs) as promising solvents for 

different electrochemical applications. RTILs are commonly defined as materials 

entirely composed of organic cations and organic or inorganic anions, which 

melt at or below 100 ºC. Particular physicochemical properties of RTILs 

including, low vapor pressure, high intrinsic conductivity and non-flammability 

[1,2,3] confer them outstanding improvements in several and relevant 

electrochemical devices such as electrochemical sensors and biosensors, 

batteries and fuel cells. Then, those novel applications of RTILs in different 

electrochemical technologies are giving rise to a new generation of devices 

[4,5,6], where safety concerns are not an issue. In particular, 1,3-dialkyl-

imidazolium [Cnmim+] cations are one of the most common RTIL cations for 

electrochemical purposes, since they exhibit a high enough ionic conductivity. 

Moreover, it is well established in the literature that water content in RTILs may 

drastically affect their conductivity and electrochemical potential window. For 
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this reason, we study here two different RTILs, in both the cation remains 

constant, 1-butyl-3-methylimidazolium [C4mim+], but the anion differs, being the 

bis(trifluoromethylsulfonyl)imide [NTf2
-] mainly hydrophobic and the 

tetrafluoroborate [BF4
-] mainly hydrophilic. Some relevant properties of those 

two RTILs are shown in Table 1. For sake of comparison, Table 1 also contains 

physicochemical data for a 0.5 M H2SO4 aqueous solution. In particular, the 

most interesting point in Table 1 is the difference in viscosities, since the fair 

conductivity exhibited by both RTILs in comparison with the sulfuric aqueous 

solution is enough to carry out electrochemical reactions, but their high viscosity 

may represent an important drawback to solve in RTILs. 

 

Table 1. Physicochemical properties of RTILs: conductivity [7], density [7] and 

water content [8] at 298 K and viscosity [1] at 293 K. Physicochemical properties 

of 0.5 M H2SO4 aqueous solution at 298 K [9,10].  

 Conductivity 

(mS/cm) 

Density 

(g/cm3) 

Viscosity 

(cP) 

Maximum H2O 

content (ppm) 

[C4mim+][BF4
-] 3.5 1.21 154 Miscible 

[C4mim+][NTf2
-] 3.9 1.43 52 5680 

0.5 M H2SO4  223.2 1.033 1.01 ---- 

 

 On the other hand, the use of nanoparticles (NPs) as electrode material 

have produced relevant improvements on the performance of different 

electrochemical energy devices such as batteries and fuel cells [11,12,13,14,15]. 

This is mainly due to their elevated surface to volume ratio, particularly 

important for scaling up highly expensive noble metal based catalysts. For this 
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reason, studying electrocatalytic reactions at NPs concentrates a lot of attention 

for developing new energy sources. In this sense, noble metal nanoparticles, 

and particularly platinum nanoparticles (Pt NPs), have been extensively 

investigated as electrocatalysts for those types of devices [16,17,18,19]. 

Nevertheless, only in the last few years, a combined use of metallic NPs and 

RTILs as a solvent-supporting electrolyte system has been proposed in the 

literature, but mainly in other type of applications different than electrocatalysis, 

such as biosensors, synthesis of nanoparticles [20,21,22,23], as well as for 

preparing composite electrodes in which the RTIL mainly acts as a binder [24] or 

intercalator [25]. However, to the best of our knowledge, a detailed 

characterization of the Pt NP-RTIL interface from an electrocatalytic point of 

view has been scarcely reported. Furthermore, important effects such as 

temperature and water content on the resulting electrocatalytic properties of Pt 

NPs in RTILs remain almost unexplored. Consequently, we describe herein a 

general experimental methodology to study/analyze the electrochemical 

response of quasi-spherical Pt NPs in two different RTILs, [C4mim+][NTf2
-] and 

[C4mim+][BF4
-]. In addition to this, we study the electrooxidation of carbon 

monoxide (CO) on Pt NPs in those RTILs by the CO stripping voltammetry as a 

model and technologically relevant electrocatalytic reaction. As recently 

reported by Hanc-Scherer et al. [26], this electrocatalytic reaction exhibits a 

surface structure sensitive behavior at the Pt(hkl)–RTIL interface in two short 

alkyl-chain imidazolium-based RTILs such as [C2min+][BF4
-] and [C2min+][NTf2

-]. 

Interestingly, the charges associated with the CO electrooxidation process at 

the Pt(hkl) single-crystal electrodes reported there were not only much higher 

than expected, since the corresponding associated charge in aqueous media is 
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approximately 300 µC cm-2 [27], but also sensitive to the nature of the RTIL 

anion. Ejigu et al. [28] also studied the electrochemical oxidation of CO by 

stripping voltammetry at Pt polycrystalline electrodes varying the temperature in 

a different type of RTIL, a protic ionic liquid. They reported an evident shift in 

the CO oxidation stripping peak towards more negative potentials when 

increasing the temperature. This is a similar behavior to that observed in 

aqueous media, which was attributed to the formation of an adsorbed layer of 

OHads at more negative potential values when increasing the temperature [29]. 

OH radical adsorption represents the rate determining step for achieving 

complete oxidation of COads to CO2 by following the reaction scheme 1. More 

recently, Ejigu and Walsh [30] studied, for a series of protic ionic liquids, the 

important role during the electrooxidation of CO at Pt surfaces played by the 

specific adsorption of the cations and the anions forming the RTIL studied. In 

particular, they performed CO-displacement measurements to estimate the 

potential of zero total charge (pztc) and they reported the predominant 

adsorption of [NTf2
-] on Pt even at relatively low potential values, which strongly 

affects the resulting electrocatalytic properties of Pt in this media. Finally, Yang 

et al. [31] studied using infrared spectroscopy, the potential-induced structure at 

the Pt-RTIL interface and the dynamic ion variation on CO-covered Pt 

electrodes in [Pip14
+][TNf2

-]. They reported a gradual conversion from bridge CO 

to linear CO as the electrode potential shifts towards positive values as a 

consequence of a strong electrostatic interaction of the adsorbed CO with the 

cation [Pip14
+]. Such COads conversion had not been observed in previous 

contributions by the Baldelli's group using sum frequency generation 

spectroscopy measurements of CO-covered Pt electrodes in imidazolium-based 
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RTILs [32,33,34]. All these previous contributions studying the electrooxidation of 

CO in different RTILs pointed out the important role that the i) temperature, ii) 

water content and iii) nature of RTIL play on the subsequent electrocatalytic 

properties of Pt in those particular RTILs. Thus, owing to the necessary 

transition from bulk electrodes to NPs for scaling-up the catalysts involved in 

energy production electrochemical devices, we study for the first time in this 

paper some of those effects, but using unsupported Pt NPs instead of bulky Pt 

electrodes. Moreover, we evaluate the Pt NPs degradation in the studied RTILs. 

ads ads 2Pt CO Pt OH 2Pt CO H e             (1) 

 

EXPERIMENTAL 

Chemicals  

 All chemicals were reagent grade and were used without further 

purification. H2SO4 95-97% from Merck, acetone (CH3COCH3) from Fisher 

Scientific, ferrocene (Fe(C5H5)2) 98%, H2PtCl6·6H2O, polyethylene glycol 

dodecyl ether (BRIJ®30) and hydrazine monohydrate (N2H4•H2O) 98% from 

Sigma-Aldrich, n-heptane 99+% from Across Organics and 1-butyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim+][NTf2
-] 99% and 1-

butyl-3-methylimidazolium tetrafluoroborate [C4mim+][BF4
-] 99% from Iolitec. 

Karl Fisher titrations were performed for measuring the water content of both 

RTILs [8], being 50 or 480 ppm in [C4mim+][NTf2
-] and 600 ppm in [C4mim+][BF4

-

]. All solutions were prepared with high-purity Milli-Q water with resistivity >18 

Megaohm cm at 25 ºC. Argon (99.995% Alphagaz) and CO (99.995% 

Alphagaz) gases were used in all experiments. 

Synthesis of platinum nanoparticles 
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 The experimental details for the synthesis and surface cleaning of the 

quasi-spherical Pt NPs studied here are extensively detailed in some previous 

contributions [16]. Very briefly, the Pt NPs were synthesized by reduction of 

H2PtCl6 with hydrazine by mixing equal volumes of two different water-in-oil 

(w/o) microemulsions composed by a mixture of water (3%) / polyethylene 

glycol dodecyl ether (BRIJ®30) (16.5%) / n-heptane (80.5%) (the values in 

brackets represent the volume percentage of each compound). One of those 

microemulsions containing 0.1 M H2PtCl6 and the other one 2.5 M hydrazine. 

After complete reduction, which takes place in a few minutes, acetone is added 

to the solution to cause phase separation. Then, the precipitate formed by the 

Pt NPs is repeatedly washed with acetone, acetone-water mixtures and water in 

order to eliminate surfactant molecules. Finally, clean Pt NPs are stored in ultra-

pure water as a suspension.  

Physical characterization by TEM 

 The size and distribution of the synthesized Pt NPs were characterized 

using a Transmission Electron Microscopy (TEM, JEOL, JEM-2010 microscope 

working at 200 kV) and a High Resolution Transmission Electron Microscopy 

(HRTEM, JEOL 3010 microscope (LaB6, Cs=1.1 mm) operated at 300 kV). The 

samples for TEM analyses were prepared by placing a drop of the final water 

suspension of Pt NPs onto a Formvar-covered copper grid and evaporating it in 

air at room temperature. More than 100 particles from different parts of the grid 

were used to estimate the average particle size. 

Electrochemical measurements 

 Three different electrochemical cells were sequentially used for each 

electrochemical experiment: i) Initial and final Pt NPs electrochemical 
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characterization in 0.5 M H2SO4 aqueous solution, ii) CO adsorption on the Pt 

NPs surface under controlled potential in RTILs and iii) CO stripping 

voltammetry in RTILs. In all cases a one compartment electrochemical glass 

cell with a three-electrode configuration was employed for performing all cyclic 

voltammetry experiments. In all cases the working electrode was prepared by 

depositing a controlled volume (from 1 to 10 µL) of the sonicated aqueous 

suspension containing the synthesized Pt NPs (0.0195 cm2 µL-1) on a glassy 

carbon (GC) disc (3 mm diameter, 0.071 cm2 geometrical area), which acts as 

inert current collector for the electrochemical response of the Pt NPs. Then, the 

water in the sample was allowed to be evaporated under an Ar atmosphere 

before placing the working electrode within the electrochemical cell. Before 

each new experiment, the GC disc current collector was mechanically polished 

with alumina 0.05 µm, sonicated and rinsed with ultra-pure water to make sure 

that all NPs from previous experiments were removed. The reversible hydrogen 

electrode (RHE) was used as a reference electrode connected to the cell 

through a Luggin capillary for all cyclic voltammetry experiments in aqueous 

media. In contrast, potential values in RTILs were referred versus a quasi-

reference electrode (Pt wire). For this reason, and in order to compare those 

data, ferrocene was added at the end of each experiment to use the reversible 

one-electron oxidation of ferrocene as a reference standard compound, which is 

well-accepted as a convenient redox potential scale in RTILs [35]. Thus, all 

potentials reported here in RTILs have been transferred from Pt wire to the 

ferrocene/ferrocenium (Fc/Fc+) potential scale. Being E(Fc/Fc+)= 0.105 V vs Pt 

wire in [C4mim+][BF4
-] and E(Fc/Fc+)= 0.140 V vs Pt wire in [C4mim+][NTf2

-]. A 

platinum wire (0.5 mm diameter) was used as a counter electrode in all cases. 
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All electrochemical measurements were made using a VMP3 multichannel 

potentiostat from BioLogic. 

i) Initial and final Pt NPs electrochemical characterization in deaerated 0.5 M 

H2SO4 aqueous solution (volume = 50 mL). This is done by cyclic voltammetry 

between the limits 0.05 and 0.8 V vs RHE, before and after performing the 

electrochemical characterization of Pt NPs in the RTILs, because it is necessary 

to warranty the surface cleanness and also determining the effective surface 

area of the Pt NPs. The active surface area of the Pt NPs was determined by 

quantifying the charge involved in the so-called hydrogen under potential 

deposition (UPD) region (between 0.06 V and 0.4 V vs RHE) after the 

subtraction of the double layer contribution and assuming 210 µC cm-2 as the 

calibration charge density for the desorption of a complete monolayer of H 

atoms on a Pt electrode [36]. 

ii) CO adsorption on Pt NPs surface for 20 min at controlled potential (-1.2 V 

vs Fc/Fc+) in a CO saturated (after 30 min of CO bubbling) RTIL solution 

(volume = 2.5 mL). The Pt NPs placed on a GC disc, which acts as inert current 

collector, previously characterized in 0.5 M H2SO4 aqueous solution, were 

rinsed with acetone to remove the interfacial water and dried under an Ar 

stream before being introduced in contact with the RTIL. Prior to any 

experiment using RTILs, the electrochemical cell was dried in hot air and Ar gas 

was flowed into the empty cell in order to remove any trace of water. 

iii) Thermostatic CO stripping voltammetry in RTIL solution (volume = 3.5 mL). 

After completing the adsorption of CO on the Pt NPs placed on a GC disc, 

which acts as inert current collector, this electrode was transferred into a 

thermostatic jacketed glass cell coupled to a temperature controlled oil bath, 
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where the electrode is introduced at open circuit potential (about -0.7 V vs 

Fc/Fc+) and where is cycled up to 1.65 V to electrochemically oxidize the 

adsorbed CO. In this cell, a vigorous Ar flow is continuously passed on top of 

the RTIL (not bubbled) to prevent changes in the water content of the RTIL. The 

effect of the temperature in the CO stripping voltammetry was evaluated by 

changing the temperature of the thermostatic oil bath. The water content was 

increased by exposing the particular RTIL studied to a water saturated Ar gas 

flow bubbling the RTIL for at least 30 min, which increases dramatically the 

water content in the RTIL. 

 

RESULTS 

Figure 1 shows representative TEM and HRTEM images of the synthesized Pt 

NPs. As it was already shown in previous contributions [37,38], these NPs 

present a quasi-spherical shape and an average diameter size of 4.5 ± 0.8 nm. 

It is worth noting that, as expected, the Pt NPs are agglomerated. However, 

these aggregates are clearly formed by individual NPs. This is due to the fact 

that the TEM samples are prepared from the final NPs water suspension, i.e. 

after the chemical removal of the surfactant employed in the synthesis and, 

consequently, those NPs tend to stay together, although they remain fully 

accessible for electrocatalytic purposes [37,38]. 
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Figure 1. (A) TEM and (B) HRTEM of the synthesized Pt NPs. 

 

 Figure 2 shows the characteristic voltammogram of Pt NPs in 0.5 M 

H2SO4 aqueous solution. This voltammetric profile is similar to that reported for 

polycrystalline Pt electrodes, but only shows the presence of two specific 

adsorption sites due to the presence of different crystallographic sites at the Pt 

NPs surface. One adsorption state at 0.12 V associated with (110) sites and 

another adsorption state at 0.27 V related to (100) step sites. In addition, these 

Pt NPs do not show contributions coming from large ordered terrace domains of 

(100) and (111) symmetry, which should be denoted by peak contributions at 

0.35 and 0.5 V, respectively. Furthermore, the comparison of those 

characteristic voltammograms before and after the interaction between the Pt 

NPs and the two different RTILs would allow to study their effect over Pt NPs 

and hence its stability in RTILs media. 
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Figure 2. Voltammetric profile of Pt NPs in 0.5 M H2SO4 aqueous deaerated solution at 

50 mV s-1. 

 Once Pt NPs are characterized in aqueous solution, we study the 

important effects played by water content, temperature and nature of RTIL on 

the electrocatalytic properties of Pt NPs using the electrooxidation of COads as a 

model reaction. Firstly, the water content effect is evaluated by keeping 

constant the cell temperature at 298 K and only using [C4mim+][NTf2
-], which is 

not totally miscible with water. Thus, figure 3 shows the stripping voltammetry of 

COads on Pt NPs in [C4mim+][NTf2
-] in the presence of different amounts of 

water. It is well-accepted that the amount of water dissolved in RTILs plays a 

critical role in most of their physical properties (viscosity, conductivity, 

density[39,40]). Consequently, it is important to evaluate how the electrocatalytic 

properties of Pt NPs may be altered by the presence of water in RTILs. Figure 3 
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shows two independent stripping voltammetries of COads on Pt NPs, where the 

water content in each case varies from 50 ppm to that resulting after water 

saturation of [C4mim+][NTf2
-] by bubbling water-saturated Ar, which is 5680 ppm 

[8]. The same type of study is not affordable using [C4mim+][BF4
-], since this 

RTIL is totally miscible with water. 
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Figure 3. Stripping voltammetry of COads on Pt NPs in argon saturated [C4mim+][NTf2
-

] containing 50 ppm H2O (black solid line) and 5680 ppm H2O (black dashed line) at 

298 K. Scan rate 20 mV s-1. 

 

 As can be observed, important differences in CO oxidation peak potential 

and shape are shown in figure 3. These differences can be mainly attributed to 

a higher availability of H2O to form OH adsorbed species at the Pt surface when 

the water content increases. This fact is also evident by comparing the positive 

potential region in both voltammograms, since the Pt surface oxidation appears 

at more negative potential values under water saturation conditions. This is 
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accompanied by a remarkably increase of the current at higher potential than 

1.2 V, which may be attributed to a higher contribution of the water oxidation 

reaction. This later feature is, in fact, direct consequence of the first one and is 

related to the subsequent reduction of the oxidised Pt surface, which takes 

place at a potential below 0.5 V, and that is significantly higher in the case of 

water-saturated [C4mim+][NTf2
-]. 

 Consequently, as water content increases (figure 3, dashed line), the Pt-

OHads species are available at lower potentials, which not only activates the 

COads electrooxidation, but also makes this oxidation faster as can be deduced 

from the sharp shape of the COads oxidation peak. In contrast, if the OH source 

is limited (figure 3, solid line), the COads electrooxidation takes place at higher 

potential and its corresponding peak is wider. However, and despite this 

different water content, the charge involved in the COads electrooxidation 

reaction displayed in figure 3 is almost equal (620 µC cm-2) in both cases, as 

expected from a CO stripping experiment in which the CO coverage is restricted 

to a single monolayer. In order to perform a proper evaluation of the charge 

density strictly corresponding to the CO stripping peak, with the minimum 

contribution from concomitant oxidation of the RTIL anion or other secondary 

reactions, a similar approach to that used in aqueous solution and based on 

subtracting the subsequent voltammogram after COads stripping is performed 

[41]. Figure 4 shows two consecutive voltammograms, where COads is only 

present in the first potential scan and then, the second potential scan accounts 

for all secondary concomitant reactions happening at the same potential. 
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Figure 4. Two consecutive stripping voltammetries of COads in argon saturated 

[C4mim+][NTf2
-] containing 480 ppm H2O at 298 K. Scan rate 20 mV s-1. First potential 

cycle (black solid line) and second potential cycle (black dashed line) A) Full cyclic 

voltammograms and B) Linear voltammograms within the integration range of potential. 
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 The water content effect in RTILs does not only affect electrocatalytic 

reactions such as COads electrooxidation, since this also significantly affects the 

extension of the potential electrochemical window, which is narrowed when 

water content increases [8]. In this regard, figure 5 shows the blank 

voltammetric profiles of the Pt NPs in [C4mim+][NTf2
-] with different water 

contents at 298 K. In these voltammograms, the potential window was limited 

from -2.15 to 1.35 V vs Fc/Fc+ to minimize the water oxidation reaction and 

easily compare the shift observed in the onset potential for the hydrogen 

evolution reaction. In addition to the multiple waves attributed to the 

contributions of the different ions present in the [C4mim+][NTf2
-], the most 

relevant feature in figure 5 is the clear shift towards less negative potentials of 

about 250 mV on the onset for hydrogen evolution reaction in water-saturated 

[C4mim+][NTf2
-]. Moreover, a clear peak appears at -1.2 V, which is almost 

negligible in the water-saturated [C4mim+][NTf2
-]. It is feasible to believe that this 

peak may be due to a radical-radical reaction, which is only possible in 

[C4mim+][NTf2
-] with a low water content, but turns inhibited in the presence of 

an important water content. 
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Figure 5. Voltammetric profile of Pt NPs in argon saturated [C4mim+][NTf2
-] containing 

50 ppm H2O (black solid line) and 5680 ppm H2O (black dashed line) at 298 K. Scan 

rate 50 mV s-1. 

 

 The temperature affects several properties of RTILs by increasing 

conductivity and ion mobility, but decreasing viscosity, among others [42,43,44]. 

For this reason, we have studied this effect on [C4mim+][BF4
-], since due to its 

high viscosity value (see Table 1) the temperature effect will be much more 

relevant in this case. This improvement in the diffusion of species in solution 

caused by increasing the temperature would be only relevant for the OHads 

diffusion, since the CO is already adsorbed on the Pt NPs surface, and would 

strongly influence the kinetics of electrochemical reactions. Thus, a higher 

temperature would allow a less positive potential for CO stripping, as is 

confirmed in Figure 6. Thus, the temperature effect is evaluated by keeping 
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constant at 600 ppm the water content in [C4mim+][BF4
-] for the stripping 

voltammetry of COads on Pt NPs at two different, but not too much, 

temperatures of 291 (red solid line) and 299 K (red dashed line). Despite the 

selected temperatures are only 8 K different, the CO stripping peak potential is 

shifted 180 mV towards a less positive potential when the temperature is 

increased. Thus, this points out the tremendous effect of the temperature on the 

electrocatalytic properties of RTILs and the relevance of using a thermostatic 

electrochemical cell in this type of experiments. However, the charge involved in 

the COads electrooxidation reaction remains almost constant at both 

temperatures (903.5 µC cm-2 at 291 K and 894.5 µC cm-2 at 299 K), although 

the oxidation peak potential is clearly modified. This fact points out that, in this 

short temperature range, the CO coverage does not change significantly. These 

results clearly evidence that a fine control of the temperature is required to 

properly perform electrocatalytic studies in RTILs. 
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Figure 6. Stripping voltammetry of COads on Pt NPs in argon saturated [C4mim+][BF4
-] 

containing 600 ppm H2O. Scan rate 20 mV s-1. Two different temperatures are 

considered, 291 K (red solid line) and 299 K (red dashed line). 

 

 So far, it has been proved the importance that water content and 

temperature play in COads electrooxidation on Pt NPs in two different 

imidazolium-based ionic liquids, [C4mim+][NTf2
-] and [C4mim+][BF4

-], which 

present a very different set of physical properties (see Table 1). However, the 

particular nature of ions forming the RTIL also represents a critical parameter, 

since the different specific adsorption of those ions controlled by their 

hydrophilic/hydrophobic character may also play an important role for the 

electrooxidation of COads on Pt surfaces [30]. Consequently, a distinct behavior 

as a function of the nature of the RTIL is expected even keeping basically 

constant temperature and water content. Figure 7A compares the COads 

stripping voltammetry of Pt NPs in [C4mim+][NTf2
-] and [C4mim+][BF4

-]. This 

comparison shows a clear peak potential difference between both RTILs as a 

consequence of their different physical properties, which are mainly determined 

by the nature of ions that form each RTIL. Figure 7B compares the distinctly 

background behaviour of the same Pt NPs in these two RTILs, which shows 

multiple signals whose nature still have to be fully understood. Nevertheless, 

the most interesting feature in figure 7 is not the specific potential at which the 

COads is oxidised and/or the presence of multiple and different contributions in 

the blank voltammograms in both RTILs, it is the different charge involved in the 

COads electrooxidation depending on the RTIL used for the same amount and 

active surface of Pt NPs. Comparing both voltammograms shown in figure 7A, it 

is easy to realize that the charge involved in the COads electrooxidation in 
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[C4mim+][BF4
-] (1150 µC cm-2) is higher than that obtained in [C4mim+][NTf2

-] 

(720 µC cm-2). A similar situation was observed by Hanc-Scherer et al. [26], 

since they reported a clear dependence in the charge associated with the COads 

electrooxidation process on Pt(hkl) with the nature of the imidazolium-based 

ionic liquid ([C2min+][BF4
-] and [C2min+][NTf2

-]). In addition to this, these charge 

densities were remarkably higher than their value in aqueous solution (about 

300 µC cm-2 [27,29]), since values of about 1800-2100 µC cm-2 and 4500-5000 

µC cm-2 were reported corresponding to [C2min][BF4] and [C2min][NTf2], 

respectively. An important part of this large difference between the charge 

density values reported here and those reported by Hanc-Scherer et al. [26] is 

due to the different method employed for subtracting the secondary competitive 

reactions involved, being more accurate the approach presented here and 

based on subtracting the following voltammogram after COads stripping. 
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Figure 7. A) Stripping voltammetry of COads on Pt NPs in in argon saturated 

[C4mim+][BF4
-] containing 600 ppm H2O (red solid line) and [C4mim+][NTf2

-] containing 

480 ppm H2O (black solid line). Temperature 298 K. Scan rate 20 mV s-1. B) 

Background voltammetric profile of clean Pt NPs in [C4mim+][BF4
-] containing 600 ppm 
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H2O (red solid line) and [C4mim+][NTf2
-] containing 480 ppm H2O (black solid line). 

Temperature 298 K. Scan rate 50 mV s-1. 

 

 A systematic study of the Pt loading employed in the COads 

electrooxidation reaction is performed in order to independently calculate the 

CO charge density for each RTIL studied here. Thus, the Pt loading is 

increased from 1 to 10 µL of Pt NPs suspension, since within this range no 

diffusion limitations appear due to the Pt NPs agglomeration. For each Pt 

loading, the COads stripping voltammetry is carried out and the CO stripping 

charge density measured. Then, these values are plotted versus the 

electroactive surface area of each sample (estimated from hydrogen UPD), as 

is shown in figure 8. A good linear regression is found for both RTILs, 

[C4mim+][BF4
-] (8A) and [C4mim+][NTf2

-] (8B) suggesting that all surface is 

available for the electrochemical reaction within the studied Pt loading range. 

From the slope of those linear regressions, it is possible to estimate the charge 

of CO per unit of Pt surface area. Values of 1000 µC cm-2 for [C4mim+][BF4
-] and 

700 µC cm-2 for [C4mim+][NTf2
-] are obtained. These charges densities are 

about 3 and 2 times higher, respectively, than the expected one from aqueous 

solution, but importantly much lower than those found in Pt(hkl) surfaces [26]. 

As was previously proposed by Hanc-Scherer et al [26], these higher CO 

stripping charge densities may be explained by a concomitant oxidation and/or 

adsorption of other species promoted by CO adsorption and oxidation on Pt. In 

this regard, the difference between the two RTILs would be easily 

understandable taking into account their different nature. However, it is worth 

mention that we observe a higher CO stripping charge density when [BF4
-] is 

the RTIL anion, which differs from previous findings reported by Hanc-Scherer 
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et al. [26], since they reported higher CO stripping charge density for [NTf2
-]. 

This apparent discrepancy may be due to different reasons including; i) the use 

of Pt single-crystal electrodes instead of Pt NPs, ii) the different nature of the 

cation employed [C2mim+] versus [C4mim+] and iii) the different method used for 

calculating the charge density involved in CO stripping avoiding contributions 

from secondary side reactions different than CO electrooxidation as it is 

reported here. 
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Figure 8. Correlation and linear regression of CO oxidative stripping peak charge 

versus Pt NPs surface area in argon saturated (A) [C4mim+][BF4
-] containing 600 ppm 

H2O and (B) [C4mim+][NTf2
-] containing 480 ppm H2O. Temperature 298 K. 

 

 The electrocatalyst degradation under working conditions in aqueous 

media represents a major concern nowadays [45]. For this reason, we consider 

necessary to study the stability of Pt NPs in the imidazolium-based ionic liquids, 

since not much information has been reported regarding the degradation of 

catalysts in RTILs. One of the main advantages of working in RTILs is their wide 



24 
 

potential windows. For instance, in the experiments presented here the 

difference between reduction and oxidation limits are up to 3 V in [C4mim+][BF4
-] 

and [C4mim+][NTf2
-], far away from the (0.8 – 0.9) V normally reached in 

aqueous media. Thus, it is a relevant question knowing the effect of those 

extreme applied potential values in the stability of Pt NPs. For this purpose, we 

propose the comparison of the characteristic voltammograms of Pt NPs in 

aqueous sulfuric solution, before and after the interaction between Pt NPs and 

the corresponding RTIL, as a suitable method to evaluate the Pt NPs stability 

(or degradation) in RTILs media. Figure 9 shows three different voltammograms 

of Pt NPs in 0.5 M H2SO4 aqueous solution before and after being exposed to 

[C4mim+][BF4
-] (figure 9A) and [C4mim+][NTf2

-] (figure 9B), respectively. In both 

cases, the hydrogen adsorption features at 0.12 and 0.27 V present in the initial 

Pt NPs (blue solid plot in figures 9A and 9B), are completely masked due to the 

[C4mim+] adsorption when the voltammogram is performed after Pt NPs 

immersion and polarization in the RTILs. This polarization comprises a wide 

potential range (from -2 V to 1.75 V vs Fc/Fc+) and at least 2 hours of cycling 

(red solid plot in figure 9A and black solid plot in figure 9B). Electroactive 

surface area of Pt NPs evaluated by hydrogen UPD in 0.5 M H2SO4 aqueous 

solution before and after immersion in RTILs and after additional COads stripping 

voltammetry are summarized in table 2. The remaining available surface on Pt 

NPs after [C4mim+] adsorption is almost constant in both cases and represents 

78% of the initial surface in the [C4mim+][BF4
-] case and 74% in the 

[C4mim+][NTf2
-] case. However, this apparent loss of available area on the Pt 

NPs does not necessary mean degradation, since it may be also justify by a 

blocking layer of [C4mim+] cations adsorbed on the surface. Thus, a COads 
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stripping voltammetry in aqueous solution is performed on those Pt NPs in order 

to displace by CO the ions adsorbed on the Pt NPs and clarify the source of Pt 

surface area loss. The resulting voltammograms after performing the CO 

displacement experiment (blue dashed line in figure 9A and 9B) exhibit a 90% 

of the initial surface. Thus, only a 10% of the initial Pt NPs surface area may not 

be recovered after immersion and polarization in those RTILs. This actual loss 

of surface area in Pt NPs can be considered as an electrocatalyst degradation 

and may be probably due to the slight sintering of Pt NPs due to the aggressive 

potential conditions employed. Thus, we have demonstrated that it is possible to 

work with Pt NPs in these novel reaction media by cycling them within a large 

potential range, but remaining mainly stable, since the electrocatalyst surface 

remains very close to the one initially present in the material. 
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Figure 9 Voltammetric profile of Pt NPs in 0.5 M H2SO4 aqueous deaerated solution 

at 50 mV s-1. A) [C4mim+][BF4
-] containing 600 ppm H2O and (B) [C4mim+][NTf2

-] 

containing 480 ppm H2O. Temperature 298 K. Blue solid plot corresponds to the initial 

Pt NPs, red solid plot corresponds to the Pt NPs after immersion and polarization in 

[C4mim+][BF4
-], black solid plot corresponds to the Pt NPs after immersion and 

polarization in [C4mim+][NTf2
-] and blue dashed plots corresponds to the final Pt NPs, 

after CO displacement cleaning treatment. 

 

Table 2. Evaluation of the electroactive surface area of Pt NPs measured by 

hydrogen UPD in 0.5 M H2SO4 aqueous solution, before and after immersion in RTILs 

and after COads stripping voltammetry. 
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 Before 
RTIL 

(cm2 Pt) 

After 
RTIL 

(cm2 Pt) 

Surface 
recovered 

(%) 

After CO 

stripping 
(cm2 Pt) 

Surface 
recovered 

(%) 
[C4mim+][BF4

-] 0.237 0.186 78 0.215 90 

[C4mim+][NTf2
-] 0.197 0.146 74 0.172 90 

 

Conclusions 

 The electrocatalytic behavior of synthesized quasi-spherical Pt NPs 

in two different imidazolium-based RTILs has been studied taking as a 

model the COads electrooxidation reaction in [C4mim+][NTf2
-] and 

[C4mim+][BF4
-]. The important effects played by water content, temperature and 

nature of RTIL have been studied. The COads oxidation peak potential has 

shown great sensitivity depending on the RTIL water content and temperature, 

which have pointed out the importance of performing Karl Fisher titrations to the 

RTILs and using a thermostatic electrochemical cell. However, in all cases the 

charge density value associated to the CO oxidation peak remains mainly 

constant, only the nature of the ions forming the RTIL provokes an important 

variation in that charge density for CO electrooxidation. A new method based on 

subtracting the following voltammogram after COads stripping is proposed for 

suitable evaluation of the charge density strictly corresponding to the CO 

stripping peak, without any contribution from secondary competitive reactions. 

Finally, we evaluated the Pt NPs electrocatalyst degradation in RTILs, 

considered as loss of electrochemically active area, by comparing the 

characteristic voltammograms of Pt NPs in aqueous sulfuric solution, before 

and after the interaction between the Pt NPs and the corresponding RTIL under 

study. Only a 10% loss of the initial electroactive area is reported after 

performing a CO stripping voltammetry in Pt NPs immersed and polarized in 



28 
 

RTILs. We consider Pt NPs sintering during polarization in [C4mim+][NTf2
-] and 

[C4mim+][BF4
-] as the main source for this 10% of degradation. 
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