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Abstract. Approximate Numerical Expressions (ANEs) are linguistic
expressions involving numbers and referring to imprecise ranges of val-
ues, such as “about 100”. This paper proposes to interpret ANEs as
fuzzy numbers. A model, taking into account the cognitive salience of
numbers and based on critical points from Pareto frontiers, is proposed
to characterise the support, the kernel and the 0.5-cut of the correspond-
ing membership functions. An experimental study, based on real data, is
performed to assess the quality of these estimated parameters.
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1 Introduction

Approximate numerical expressions (ANEs) are vague linguistic expressions of
the general form “about z” where x is a number. They are used in daily life
to denote imprecise ranges of values, e.g., “Berlin is located at about 900km
from Paris”; “The patient has had fever for about one week”. In the field of
Human-Computer Interfaces, ANEs raise the issues of their interpretation, i.e.,
the estimation of the range of values they designate and their representation in
information systems, for instance as intervals of values or as fuzzy sets.

From a linguistic perspective, Lasersohn [10] proposes to formalise vagueness
in a general context, beyond the case of numerical expressions, through the use
of pragmatic halos, defined as the union of the entity that is explicitly referred to
by a vague expression and entities of the same semantic type that are implicitly
denoted. For instance, in the proposition “there were about 100 participants at the
meeting” , the pragmatic halo of the vague expression “about 100” corresponds to
100 exactly and a range of possible values around 100 (e.g., [90; 110]). Therefore,
interpreting an ANE corresponds to estimating the range of values that satisfy
it, i.e., the values that are included in its pragmatic halo.
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A natural approach to model the fuzziness in boundary values is to use fuzzy
sets [14, 15], that lead to represent ANEs as fuzzy numbers [16], defined by their
membership functions. Fuzzy numbers are classically used to represent uncer-
tainty or imprecision in numerical data [5]. However, to the best of our knowl-
edge, no attempt has been made to empirically characterise the membership
functions of fuzzy numbers related to ANEs in natural language.

The aim of this paper is to propose a model to characterise the support,
the kernel and the 0.5-cut of fuzzy numbers corresponding to ANEs of the form
“about x”, for x € N. More specifically, the model is based on critical points
from Pareto frontiers, as a compromise between the numbers cognitive salience
and their distance to the reference value z. An empirical study is conducted
to collect real data and to perform an experimental validation to highlight the
quality of the estimations provided by the model.

The paper is structured as follows: Section 2 describes previous works and ex-
isting models. The proposed model is presented in Section 3. The data collection
procedure is described in Section 4. Section 5 presents the experimental study
and its results. Finally, conlusions and future works are discussed in Section 6.

2 Related Works

This section introduces the notations and definitions of dimensions and proper-
ties of ANEs used in this work. Two models from the literature, estimating the
range of denoted values, are then presented: a scale-based model [8,13] and a
regression model [4]. Finally, the fuzzy set approach to vagueness is discussed.

2.1 Definitions and Notations

The ANEs considered in this paper are of the form “about z”, for x € N. In the
decimal system, = can be written as © = Y ¢_  a;-10°, where a; € [0,9]. We pro-
pose four dimensions, formally defined in Tab. 1, to characterise x: granularity
Gran(x) is the power of ten = belongs to, relative magnitude R,,(x) is the value
of its last significant digit and precision Prec(z) is the product of granularity
and relative magnitude. These dimensions are expected to influence the inter-
pretation of ANEs. For instance, precision is meant to reflect the expectation
that the width of the interval corresponding to “about 30.050” is comparable to
the one of “about 150”, 50 being the common part.

From these dimensions, two classes of natural numbers can be distinguished.
Round numbers are classically defined as multiples of 10 with a single significant
digit (e.g., 50 or 8000). We propose to define pseudo-round numbers as multiples
of 10 with at least two significant digits (e.g., 320 or 8150).

Beyond these arithmetical characteristics, we propose another one, taking
into account a cognitive component. Indeed, it has been observed than some
numbers occur more frequently than others in corpuses [7,2] and complexity
Cpz(x) aims at capturing this salience. It appears that, firstly, the more signifi-
cant digits a number has, the lower its frequency. Secondly, numbers whose last
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Dimension Formal definition Example x = 4750
Granularity Gran(z) = 10" where 10

i* = min{i|a; # 0}
Relative magnitude R (z) = as= 5
Precision Prec(z) = a;- - 107 50
Number of significant digits| NSD(z) =¢—14i"+1 3
Complexity Cpx(z) = NSD(x) — B(z) 2.5

Table 1: Dimensions of a natural number x = -7  a; - 10, illustrated by x = 4750 in
the last column. B(x), used in the complexity definition, is defined in Eq. (1).

significant digit is 5 or, to a lower extent, 2, occur more frequently. For symmetry
reasons around multiples of 10, we propose to process numbers with R,,(x) = 8
(e.g., 18 = 20 — 2) as numbers with R,,(z) = 2 (e.g., 22 = 20 + 2). Thus, we
propose to formalise the complexity of a number as its number of significant
digits minus a bonus to capture these specific cases, if the number of significant
digits is at least 2.

The bonus function thus distinguishes three categories, depending on the
value of the last significant digit R,,(x) and respecting the order of frequency of
appearance: B(z1) > B(zz) > B(zs), for z1, 22,25 € N such that R,,(x1) = 5,
R (x2) € {2,8} and Ry, (x3) ¢ {2,5,8}. We arbitrarily propose to set these
values at 0.5, 0.25 and 0. The bonus function is therefore formalised as:

0.5 if Ry(z) =5 and NSD(z) > 1
B(xz) =< 0.25if Ry, (z) =2 or Ry,(x) =8 and NSD(z) > 1 (1)
0  otherwise

The plus signs on Figure 1 illustrate the complexity Cpz(z) for all integers x
between 400 and 500.

2.2 Scale-Based Models (SBM)

The first approach in interpreting ANEs is proposed from a linguistic perspec-
tive and models the range of denoted values as an interval. Scale-based models
(SBM) [8,12,13] rely on scale systems S = {s1,..., s, }, where s; are granularity
levels such that s; < s;41. As examples, one can mention the time scale-system,
S = {1 min, 5 min, 15 min, ...}, or the decimal one, S = {1,10,100,...}.

The interpretation of a numerical expression can occur at any granularity
level. For instance, in the decimal system, the numerical expression “100” can
be interpreted at the 1, 10 or 100 levels. The finer the granularity, the narrower
the interval. Speakers express the intended level through the use of approxima-
tors [12]: “exactly” refers to the finest granularity level the expression belongs to,
while “about” refers to the coarsest one (e.g., the level of thousands for “about
1000”), formally defined as Granc(x) = sup({s; € S|z mod s; = 0}). If the
scale-system S is the decimal system, Granc(z) = Gran(z) (see Tab. 1).
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SBM proposes that the values denoted by an ANE x are the ones closer to x
than to any other number on Grang(x).The interval is formally defined as:

Ispy(z) =[x — Granc(z)/2; ¢ + Granc(x) /2] (2)

For instance, Is g (300) = [250; 350]; Ispar(8150) = [8145; 8155]. This approach
has the advantage of taking into account the ANE granularity; however, it does
not address the issue of the relative magnitude: all ANEs at the same granularity
level result in the same interval width, although, one may expect, for instance,
that the interval of “about 100” would be narrower than the one of “about 800" .

2.3 Regression Model (REGM)

Ferson et al. [4] propose an empirical approach using real data to test the rel-
evance of predictors of the interval width. Semantically contextualised ANEs
(e.g., “Roughly 25% of Canadians are Protestant.”) were presented to partici-
pants, who were asked to estimate the boundaries of the corresponding intervals.
The proposed model then estimates the interval as:

104 104(®)
5 T
where L(z) =A+ B-Op(z) +C - R(z) + D - f(x)
+ E-Op(z)  R(x)+ F - Op(z) - f(z)+ G- R(z) - f(2)
+ H - Om(z)- R(z) - f(x) 3)

where A to H are parameters empirically set by performing a regression on
the data. O,,(x) is the ANE order of magnitude (O,,(z) = log;y(x)), R(z)
its roundness (R(x) = i* + 1), and f(x) its “fiveness”, defined as f(z) = 1 if
a; = 5, f(x) = 0 otherwise. O,,(x), R(x), f(x) and their combinations have
been empirically selected as predictors for the interval width.

This model presents the advantage of allowing the adaptation to different
contexts by learning parameters on a dataset. However, it can be noted that the
semantic context is not controlled in the experimental setting although mixing
different contexts may result in interactions between this factor and the ones
related to the ANE reference number.

Irpem(z) = |z —

2.4 Fuzzy Representation of Vagueness

From a linguistic perspective, Lakoff [9] considers that every term in natural
language is, to some extent, fuzzy: category membership is not a matter of all or
nothing, but rather a matter of degrees. As supported by empirical evidence [6],
fuzzy logic is therefore a relevant formalisation of the vagueness inherent to
natural language: any term can be modeled by a membership function.

Among the natural language terms, numerical expressions can be represented
as fuzzy numbers [16], defined as fuzzy sets on the universe R. From this point
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of view, approximators are modifiers of the membership function of the fuzzy
reference value [11]. For instance, the approximator ezactly narrows the curve
of the membership function whereas approrimately widens it.

Interpreting an ANE z therefore consists in estimating its membership func-
tion, fz(y), where y are values that can be denoted by “about x”. Among various
methods to elicit such membership functions (see, e.g. [1]), the random set view
interprets the membership degree of a candidate number (e.g., 95 for “about
100”) as the cumulative frequency of participants thinking that it belongs to
the interval denoted by the ANE. Thus, if half of the population think that 95
is included in “about 1007, the truth value of 95 is 0.5. The median of the dis-
tribution is therefore a critical point for membership functions that corresponds
to the 0.5 membership degree.

3 Proposed Model

This section describes the model we propose to estimate the support, the kernel
and the 0.5-cut of fuzzy numbers corresponding to ANEs.

The Pareto Frontiers Model (PFM): The model we propose is based on the
assumption that, when interpreting an ANE, human beings tend to make a com-
promise between the cognitive cost of boundary values, which can be measured
by the complexity Cpz(x), on one hand, and the range of denoted values, mea-
sured by the distance between the boundaries of the interval and the ANE z, on
the other hand. It implies that, for a given range of denoted values, the cognitive
cost is minimised; reciprocally, for a given cognitive cost, the range of denoted
values is minimised. For instance, given the ANE “about 500, participants of
the empirical study (see Sect. 4) tend to give answers such as [499; 501], [490; 510]
or [450; 550]. The boundaries of these intervals are the closest to the ANE when
Cpz(x) is 3, 2 and 1.5. Therefore, the values that optimise the compromise are
better candidates to be the boundaries than all other values.

As a consequence, the model we propose first consists in determining these
good candidates by generating Pareto frontiers [3]: all possible candidate values v
in [1;z[ for the lower boundary, and in |x, 4o00[ for the upper boundary of the
ANE z are compared on two criteria (i) the absolute distance from the ANE:
d;(v) = |v —z|; (ii) the complexity Cpx(v). The selected values, constituting
the Pareto frontier, are those that are not dominated by any other value. For a
given ANE, two Pareto frontiers are considered: P~ (x) = [y, ,...,y,_] relates
to the lower boundary of the interval and P*(z) = [y{",...,y,] to the upper
one, ordered by increasing distance to z, d,(y;). Figure 1 illustrates these Pareto
frontiers for the ANE “about 440”: P~(440) = [439, 438, 435,430, 420, 400] and
P1(440) = [441,442,445,450,500]. One can notice that the model naturally
captures the asymmetry observed in the data (see Section 4) due to salient
numbers (e.g., 420, 450) in the reference number neighborhood.
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Fig.1: Pareto frontiers (red lines) for lower (left from green line) and upper (right
from green line) boundaries of the ANE “about 440”. Black plus signs represent the
complexity Cpz(z) for each integer value in [400; 500] (see Tab. 1).

The second step of the model we propose consists in using the values in the
Pareto frontiers as candidates to be the boundaries of the support, kernel and
0.5-cut limits of fuzzy numbers corresponding to ANEs.

Support, Kernel and 0.5-cut Estimations: Any value outside the support
interval, noted Ig(zx), is considered as not referred by the ANE. We therefore
propose to define the farthest values from x of the Pareto frontiers as boundaries
of this interval, formally: Is(z) = [y, _;y.,].

Any value inside the kernel interval, noted Ik (z), is considered as being fully
denoted by the ANE. We propose to define the nearest values from z of the
Pareto frontiers as boundaries of this interval, formally: I (x) = [y; ;¥ ]-

The boundaries of the 0.5-cut interval, noted Ips(z), are also selected ac-
cording to their rank in P~ (z) and P*(z). We propose to make the chosen rank
dependent on the considered ANE =z, so as to make the model more flexible.
More, precisely, we propose that the rank of the boundary estimation depends
on the number of significant digits NSD(z) and the precision Prec(x) of the
ANE: an exhaustive analysis of empirical data (omitted in this paper for reasons
of space) has validated them as factors influencing ANE interpretation. The rank
is computed as:

NSD(x)
rp(xz) = round | log(Prec(x)) — 1+ Z k (4)
k=1

The estimation of the 0.5-cut interval is then Ips(x) = [yT_P(m); y:P(I)].

For the example x = 440, as illustrated in Figs. 1 and 2, one obtains:
I5(440) = [400; 500], Ik (440) = [439;441] and I;(440) = [430;450].
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Fig. 2: Support, kernel and 0.5-cut of the membership function for ANE about 440,
based on critical points from Pareto frontiers with piecewise linear interpolation.

4 Data collection

We conducted an empirical study to collect real intervals corresponding to ANEs
so as to experimentally validate our proposed model. This section presents the
methods used to collect and process the data.

Material: An online questionnaire containing 24 uncontextualised ANEs, 15
round (20, 30, 40, 50, 80, 100, 200, 400, 500, 600, 800, 1000, 2000, 6000 and
8000) and 9 pseudo-round (110, 150, 440, 560, 1100, 1500, 4700, 4730 and 8150)
was designed. These values have been selected in order to cover different combi-
nations of dimensions, to avoid biases towards any specific one: several relative
magnitudes at a granularity level (e.g., 20/40/80), several granularity levels at a
relative magnitude (e.g., 80/800/8000), several numbers of significant digits at
the same precision (e.g., 50/150/8150). ANEs are presented in a random order.
The instructions, given in French, can be translated as “In your opinion, what
are the MINIMUM and MAXIMUM values associated with “about x”?”. This
questionnaire meets the criteria proposed by [1] to elicit membership functions
in a random set perspective. This method is also similar to the one used by [4].
146 participants have been recruited through an announcement diffused on
mailing-lists: 102 women and 44 men, aged 20 to 70 (M = 38.6; o = 14.2).

Data Preprocessing: The answer to ANE z given by participant p is noted
Ip(x) = [I, (); I} (x)]. Tt is considered as an outlier if: (i) it is inadequate (e.g.,
[0y infindty]), (ii) I, (x) > = or LF(z) < z (e.g., I(800) = [700; 750] or I(800) =
[810;850]), or (iii) I, (z) < /10 or I} (x) > 10z (e.g., 1(100) = [10;1100]). In
a second step, mean and standard deviation are computed for the remaining
boundaries of each ANE. Any boundary value beyond three standard deviations
of the mean is considered as an outlier. Finally, participants with more than 70%
missing values or outliers are considered as untrustworthy and all their answers
are excluded. The analyses include 3177 (91%) of the 3504 collected intervals.
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Global Observations: In the collected data, not detailed here, it can be ob-
served that participants tend not to agree on the intervals: on average, 15.4
different answers per boundary are obtained, ranging from 9 (for “about 20”)
to 22 (for “about 8150”). However, 84.4% of the boundaries are located on the
Pareto frontiers as defined in Section 3, which validates the principle underlying
the model we propose.

When examining whether the provided intervals are symmetric around the
reference value, the collected data show that symmetry depends on the ANE:
74.2% are symmetric with respect to the considered ANE, but intervals of some
ANEs, such as 440 or 4730, are less often symmetric (63% and 50% respectively).
This observation validates the definition of a flexible model allowing for non-
symmetric observations.

5 Experimental Study

This section presents the experimental study we performed in order to assess
the quality of the three estimated parameters of fuzzy numbers corresponding
to ANEs: 0.5-cut, support and kernel. The used quality criteria and the results
of each parameter are described in the next subsections.

5.1 Evaluation of the 0.5-cut Estimation

In the random set view of membership functions [1], 0.5-cuts correspond to the
median of the intervals given by the participants. Thus, to evaluate the 0.5-cut
estimation, we propose to compare it to this median interval.

As the models from the literature [4, 13] are not fuzzy, they can be used to
estimate either the support, the kernel or the 0.5-cut. We propose to use them
to predict the 0.5-cut as it is a central indicator of the boundary distributions.

Quality Criteria: We note X the set of considered ANEs and P(x) the set of
participants whose intervals are not considered as outliers for x € X. Moreover,
we note the prediction of model m [m™(z);m™(x)], AM?, (z) = |m®(x) — z] its
distance from z for b € {—,+}, and AMed®(z) the median of the distances
AP () = |Ib(x) — x| over all participants p in P(x).

To assess whether the estimations are correct, we first propose to use the
accuracy score of the median prediction, i.e., the number of boundary values
for which the relative distance to the observed median is lower than 10%. The
median accuracy, M A, to be maximised, can be formalised as:

o[ (T PRV A

MA(m) |X|

Secondly, to assess the degree of error, we propose to evaluate the bal-
ance between participants who are above and below the estimated 0.5-cut, for-
mally defined as: Ny = [{p € P(x)|AP}(z) > AM} (x)}| and N_ = [{p €
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P(x)|AP}(z) < AM}, (x)}]. A correct estimation of the median interval implies
that the model m should be such that N, = N_ for all z,b.

However, since interval boundaries given by the participants are distributed
on few points, a perfect balance may not be possible. Therefore, the score takes
into account the balance of the actual median, i.e., N¥ = [{p € P(z)|AP!(z) >
AMed"}| and N* = [{p € P(z)|AP}(z) < AMed"}|.

The score of the model then depends on the difference between N, and N}
and between N_ and N*. Averaging over the two boundaries b € {—,+} and
all considered ANEs, the median error, to be minimised, can be defined as:

1 * *
MErr(m) = 5o 3 S0 (NG - NE NN ()
1 2EX be{—,+}

Experimental Procedure: Using these quality criteria, we compare the per-
formances of our proposed Pareto frontiers model PFM, the scale-based model
SBM (8, 13] with the decimal system (i.e.,S = {1,10,100,...}), and the regres-
sion model REGM [4]. The latter only provides the size of the intervals and no
information about their location or symmetry around the ANE. We make the
assumption that they are symmetric and centered on x.

A cross-validation procedure is performed on two benchmarks, (i) Participant
(PB): REGM learning is performed on the intervals given by 75% of the partic-
ipants, the remaining 25% constitute the test dataset. (ii) ANE (AB): REGM
learning is performed on the intervals given by all participants on 17 (66.7%)
of the ANEs. The 7 remaining ANEs are used as test dataset. Each benchmark
consists in 1000 random decompositions of the learning / test datasets, with the
constraint that they must include a mix of round and pseudo-round ANEs.

In order to determine which model shows the best results in each benchmark,
statistical analyses using ANOVA tests with model as factor, and Tukey’s HSD
post-hoc tests are performed. The significance threshold is set at p = .01.

Results: Table 2 shows the performances of the models. Results are similar in
both the Participant and the ANE benchmarks.

It can firstly be observed that our proposed model PFM shows the best per-
formances, both in median prediction accuracy (M A) and in median estimation
error (M Err), providing an empirical validation.

The behaviour of REGM (poor M A but an average M Err) can be due to
the fact that it provides real-numbered boundary estimations while participants
tend to give round or pseudo-round numbers, leading to erroneous predictions.
However, the average M Err indicates that these real-numbered estimations are
close to the actual medians. On the contrary, SBM appears to perform better
than REGM on prediction accuracy while the prediction errors are much more
important.
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Model [MA (%) - PB{MErr - PB||MA (%) - AB|MErr - AB
SBM 28.0 (6.9) | 0.76 (0.08) || 24.9 (14.5) | 0.79 (0.18)
REGM| 20.0 (7.2) |0.67 (0.18) || 15.7 (13.2) | 0.65 (0.14)
PFM | 58.3 (8.9) [0.35 (0.12)|| 63.8 (14.0) |0.27 (0.16)
Table 2: Means and standard deviations of the two criteria for each model on the Partic-
ipant (PB, left) and the ANE benchmarks (AB, right). Bold scores are the statistically
best ones according to the ANOVA and post-hoc tests.

5.2 Evaluation of the Support and Kernel Estimations

Quality Criterion: Assessing the quality of the support and the kernel esti-
mations the same way as the 0.5-cut raises the issue of the outliers. Indeed, in
the random set view, the support corresponds to the largest interval, and the
kernel corresponds to the narrowest one. Therefore, the presence of a single ex-
treme answer results in aberrant support or kernel values. Prediction accuracy
or distance to actual values thus lack robustness with respect to extreme values.

To overcome this issue, we propose to build a basic piecewise linear mem-
bership function, fg (y), obtained by linking the generated points of support,
0.5-cut and kernel and to compare it to an elicited reference fuzzy set fZ(y).
We build the latter in a random set view [1], defining fZ(y) as the cumulative
relative frequency of participants including y in the interval corresponding to x.

We propose to compare fg (y) to f£(y) using the area of their difference,
relatively to the area of the reference f£(y). This criterion, measuring the mem-
bership function quality, to be minimised, can be formalised as:

CGy) — fE
MFo() = ;y;g(ngm ) .

Results: Figure 4 illustrates four examples of elicited and generated member-
ship functions. The high steps observed in fZ(y) are due to boundary values
frequently given by participants.

The generated membership functions visually fit well the elicited ones of 150,
400 and 8150, corresponding to M F'Q scores 0.211, 0.397 and 0.618 respectively.
Moreover, the asymmetry of the f£(y) is captured, validating our PFM model.

The mean quality score is 0.502 (o = 0.175), ranging from 0.211 (z = 150)
to 0.950 (z = 1100). Setting a threshold at M FQ = 0.6 to consider a good
estimation, 17 over 24 (70.1%) generated membership functions are correct.

As expected, the presence of outliers (i.e., 7500 and 10000 for = = 8150; 100
and 600 for x = 400) lowers the score of some ANEs. In the particular case of
x = 1100 (Fig. 4, top right), the poor obtained fitting and score (M FQ = 0.950)
can be explained by the fact that the upper Pareto frontier ends at 2000, a value
not given by participants.

When detailing the difference between round and pseudo-round ANEs, it ap-
pears that the mean scores obtained for round (0.488) and pseudo-round numbers
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Fig.4: Generated (red) and elicited (black) membership functions of four ANEs: z =
150 (top, left), z = 1100 (top, right), x = 8150 (down, left), and = = 400 (down, right).

(0.524) are similar. However, the standard deviation reveals a higher significantly
variability for pseudo-round numbers (0.272) than for round numbers (0.087),
indicating that some ANEs are well captured while some other are less. In par-
ticular, x = 1100 (M F'Q = 0.950) and = = 4730 (M F'Q) = 0.864) result in scores
far from the mean, compared to other ANEs.

6 Conclusion and Future Works

In this paper, we propose a model to interpret ANEs of the form “about z”
as fuzzy numbers. More specifically, a computational model, based on critical
points from Pareto frontiers and capturing the cognitive dimension of number
salience, is proposed to characterise the support, the kernel and the 0.5-cut of
the corresponding membership functions.

We conducted an experimental study on real data collected from an online
questionnaire, which validates the proposed model: it shows that PFM performs
better than the models from the literature in 0.5-cut estimation. Moreover, the
piecewise linear membership functions generated from the estimations are close
approximations of the elicited ones.

Future work will study the relevance of including other points from the Pareto
frontiers as specific a-cuts to better fit the elicited membership functions. It will
also focus on extension of the model to take into account the context of an
ANE occurence as it has an effect on ANE interpretation [10, 13]. Indeed, “about
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10.000 euros”, for instance, may not be interpreted the same way it is said
by a seller or a buyer. Extensions of the model will focus on other linguistic
approximators, such as “at least” or “less than”.

Finally, the proposed model will be implemented in applications such as

search engines to improve the relevance of answers provided to approximate
queries.
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