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Abstract
The purpose of this work is to construct a continuous map from the homogeneous Besov

space Ḃ0
2,4(R2) in the set G of initial data in Ḃ0

2,4(R2) which gives birth to global solution of
the mass critical non linear Schrödinger equation in the space L4(R1+2). We use the fact that
solutions of scale which are different enough almost do not interact; the main point is that we
determine a condition about the size of the scale which depends continuously on the data.

1 Introduction

We consider in the space R2 the non linear Schrödinger equation of the type

(GNLSm)

{
i∂tu+∆u = P3(u, u)

u|t=0 = u0(x)
(1)

where P3 is a homogeneous polynomial of order 3 in z and z. Let us observe that if we define uλ(t, x) =
λu(λ2t, λx) for a solution of (GNLSm) then uλ is also a solution. As we work in R2, the L2 norm,
which represents the total mass, is invariant under this scaling transformation. This family of equations
is thus called "mass critical".

As done for instance in [4], Strichartz estimate for the Schrödinger equation claims that for any
couples (pj , qj)

2

p j

+
2

q j

= 1 and (pj , qj) ̸= (2,∞) =⇒ ∥u∥Lp1 (I;Lq1 (R2)) . ∥u(I−)∥L2(R2) + ∥i∂t +∆u∥
Lp′2 (I;Lq′2 (R2))

.

(2)
It is now classical to prove, with a fixed point argument, that Equation (GNLSm) is locally well posed
for initial data in L2(R2), and globally well posed for small initial data in L2(R2). More precisely, we
have the following theorem (see for instance [4]).

Theorem 1.1. Let u0 be an initial data in L2(R2). Then a positive time T exists such that there is
a unique solution to (GNLSm) in L4([0, T ] × R2). Moreover, a positive constant c0 exists such that,
if ∥u0∥L2(R2) is less than or equal to c0, the solution is global and belongs to L4(R1+2) and∫

R1+2

|u(t, x)|4dxdt . ∥u0∥4L2(R2). (3)

Let us mention that some important particular cases of (GNLSm) have been intensively studied:
the case when P3(u, u) = |u|2u, called defocusing case and the case when P3(u, u) = −|u|2u called the
focusing case. In the defocusing case, B. Dodson proves in [8] that for any initial data in L2(R2), a
unique global solution exists in L4(R1+2) ; he proved in [9] that it was also the case in the focusing
case when the mass of the initial data was less than the mass of the ground state. In the works [12]
and [13], refined blow phenomena are described for initial data closed to the ground state.
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In the present work, we proved general results far away from using the refined structure of the
focusing or defocusing case. As observed by P. Gérard in an unpublished work (see the text [15] by
F. Planchon and references therein), it is possible to improve a little this result using Besov spaces.
For technical reasons, we prefer to use a continuous version of the Littlewood-Paley theory. Let us
consider a radial function φ in D(Rd \ {0}) such that

φ(ξ) = f(|ξ|) with
∫ ∞

0
f(r−1)

dr

r
= 1 and thus

∫ ∞

0
φ(µ−1ξ)

dµ

µ
= 1

because the measure µ−1dµ is invariant under dilatation. Let us define ∆µa
def
= F−1

(
φ(µ−1ξ)â(ξ)

)
.

Now let us recall the definition of Besov spaces.

Definition 1.1. We define the Besov space as the space of tempered distributions such that

∥u∥Ḃs
p,r(Rd)

def
=
∥∥µs∥∆µu∥Lp

∥∥
Lr(R+; dµ

µ
)
.

The space Ḃ0
2,4(R2), bigger than L2(R2) = Ḃ0

2,2(R2), has the same scaling. One has the follow-
ing result [4].

Theorem 1.2. Let u0 be an initial data in Ḃ0
2,4(R2). Then a positive time T exists such that there is

a unique solution to (GNLSm) in L4([0, T ] × R2). Moreover, a positive constant c0 exists such that,
if ∥u0∥Ḃ0

2,4(R2) is less than or equal to c0, the solution is global and belongs to L4(R1+2) and∫
R1+2

|u(t, x)|4dxdt . ∥u0∥4Ḃ0
2,4
. (4)

It is proved in [15], which moreover proves the global existence of weak solutions for small initial data
in B0

2,∞. Let us give some sketchy indications about the proof of this theorem. Using an improvement
of Strichartz inequality (2) proved by J. Bourgain in [2], we get

∥eit∆u0∥L4(R1+2) . ∥u0∥Ḃ0
2,4(R2). (5)

Then it is possible to make a fixed point theorem in the space L4([0, T ]× R2). Let us point out that
if u is a solution to (GNLSm) in the space L4([0, T ]× R2) then w = u− eit∆u0 satisfies

(i∂tw +∆w) = P3(u, u) ∈ L
4
3 ([0, T ]× R2) and w|t=0 = 0.

Strichartz estimate (2) with (p2, q2) = (4, 4) and (p1, q1) = (∞, 2) implies that u − eit∆u0 belongs to
the space L∞([0, T ];L2(R2)).

Definition 1.2. Let us denote by G the set of all initial data in Ḃ0
2,4(R2) such that a global solution

of (GNLSm) exists in L4(R1+2).

It is classical that the set G is an open subset of Ḃ0
2,4(R2). Indeed, if u0 belongs to G, and v0

to Ḃ0
2,4(R2), one can search the solution associated with u0 + v0 under the form u+ v, where u is the

solution associated with u0. Elementary computations lead to

i∂tv +∆v = E(u, v) with
∣∣E(u, v)(t, x)

∣∣ . |v(t, x)|
(
|u(t, x)|2 + |v(t, x)|2

)
.

Inequalities (5) and (2) allow to prove that if v0 is small enough in the norm Ḃ0
2,4(R2), then fixed point

argument works in the space L4(R1+2) for v.

The purpose of this work is to prove the following theorem.

Theorem 1.3. A continuous function F from Ḃ0
2,4(R2) into G, and a constant C0 exist, such that

C−1
0 ∥v∥Ḃ0

2,4(R2) 6 ∥F (v)∥Ḃ0
2,4(R2) 6 C0∥v∥Ḃ0

2,4(R2).
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As far as we know, there is no results of this type in the literature. The motivation of this result is to
catch some informations about the set G in the spirit of the works [5] by J.-Y. Chemin and I. Gallagher
or [7] by J.-Y. Chemin, I. Gallagher and P. Zhang is the context of homogeneous incompressible Navier-
Stokes equation. Unfortunately, the method presented here does not give any relevant result in the
Navier-Stokes equation because in this case, it can be checked that the function F of our theorem (as
constructed here) takes its value in a small ball of the space BMO−1 and thus is a small data in the
sense of H. Koch and D. Tataru’s theorem (see [10]).

Let us discuss the choice of the space Ḃ0
2,4(R2). We treated the case of L2(R2) in [6]. The two

cases are closed technically. In the present state of the art, the biggest Besov space for which the free
solution of the Schrödinger equation belongs to L4(R1+2), is Ḃ0

2,4(R2).

2 Structure of the proof

The idea is to make the function v small by multiplication, and then to copy, as many times as required,
a dilatation of the (now small) function. Let us introduce, for p in [1,∞[, the following notation:

π
(p)
S v

def
=

v

∥v∥Lp
and πB

S v =
v

∥v∥Ḃ0
2,4

·

The first step consists in the definition of a function F on Ḃ0
2,4(R2)×R⋆

+×R+, with values in Ḃ0
2,4(R2),

which make explicit the idea explained above.

Definition 2.1. Let us consider a smooth function χ defined on R+ such that χ∣∣[0, 14 ] = 0 and χ∣∣[ 34 ,+∞[
=

1. Let us define F from Ḃ0
2,4(R2)× R⋆

+ × R+ into Ḃ0
2,4(R2) as follows

F(v,Λ, λ) =

[λ]∑
j=0

Λ−j v
(
Λ−j ·

)
+ χ (λ− [λ]) Λ−[λ]−1 v

(
Λ−[λ]−1 ·

)
.

We can wonder why we use dilation and not an other group of transformations that preserves the
set of solutions of the equation to construct our function F . Here the key point is the continuity of F
which comes from forthcoming Lemma 2.3. We have no idea how to prove such a lemma in another
case of group, in particular in the case of the group of translations. The main properties of F are
described hereafter.

Proposition 2.1. The map F is continuous from Ḃ0
2,4(R2)×R⋆

+×R+ into Ḃ0
2,4(R2). Moreover, there

exists a positive constant C and a continuous function Λ0 from ]1,+∞[×S(Ḃ0
2,4(R2)) into R+ such

that, for any v in Ḃ0
2,4(R2) different from 0, we have

Λ > Λ0(λ+ 1, πB
S v) =⇒ 1

C
(λ+ 1)∥v∥4

Ḃ0
2,4(R2)

6 ∥F(v,Λ, λ)∥4
Ḃ0

2,4(R2)
6 C(λ+ 1) ∥v∥4

Ḃ0
2,4(R2)

. (6)

This proposition means that functions, the scales of which are different enough, are, in some sense,
"orthogonal" in the Besov space Ḃ0

2,4(R2). The main point of the proposition is that the choice of the
scales size can be made continuously with respect to the function v.

Proposition 2.2. Let Bc0 be the open centered ball, the radius c0 of which is given by Theorem 1.2.
There exists a continuous function Λ1 from ]1,∞[×Bc0 into ]0,+∞[ such that for any v in Bc0 ,

Λ > Λ1(λ+ 1 , v) =⇒ F(v,Λ, λ) ∈ G.

The proof of this proposition relies on the idea that two solutions of an evolution equations with
scales that are different enough almost do not interact. The idea which is now currently used goes back
to the works of H. Bahouri and P. Gérard (see [1]) and F. Merle and L. Vega (see [14]). Again, it is
related to the fact that the choice of the size can be made continuously with respect to the function v.
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These two propositions imply Theorem 1.3. Indeed, if C0 is the constant given by Theorem 1.2, we
define

F (v)
def
=

{
1− χ

(
3 ∥v∥Ḃ0

2,4(R2)

c0

)}
v + χ

(
3 ∥v∥Ḃ0

2,4(R2)

c0

)
F
(
c0 π

B
S v,Λ(v), ∥v∥4Ḃ0

2,4(R2)

)
with

Λ(v)
def
= Λ0

(
∥v∥4

Ḃ0
2,4(R2)

+ 1, πB
S v
)
+ Λ1

(
∥v∥4

Ḃ0
2,4(R2)

+ 1, c0 π
B
S v
)
.

Let us explain why this function F fulfills the requirements of Theorem 1.3. First of all, Proposi-
tions 2.1 and 2.2 implies that F is continuous as a composition of continuous functions. Moreover,
if ∥v∥Ḃ0

2,4(R2) is less than or equal to
c0
4

, then we have F
(
c0 π

B
S v,Λ(v), ∥v∥4Ḃ0

2,4(R2)
) = v and thus

also F (v) = v. Then thanks to Theorem 1.2, F (v) = v belongs to G. If ∥v∥Ḃ0
2,4(R2) is greater

than
c0
4

, then χ

(
3 ∥v∥

Ḃ0
2,4(R

2)

c0

)
= 1, F (v) = F

(
c0 π

B
S v,Λ(v), ∥v∥4Ḃ0

2,4(R2)
) = v ; Proposition 2.1 implies

that ∥F (v)∥Ḃ0
2,4(R2) is equivalent to ∥v∥Ḃ0

2,4(R2) and Proposition 2.2 implies that F (v) belongs to G.

The idea of the proof of Proposition 2.1 is elementary: we develop the quantity ∥F(v,Λ, λ)∥4
Ḃ0

2,4(R2)

and we prove that the cross terms are small enough thanks to the following lemma.

Lemma 2.3. Let us denote by S
(
Lp(Rd)

)
the unit sphere of the Lebesgue space Lp(Rd). For any p

in ]1,+∞[, there exists a continuous function Λp from ]0, 1[×S(Lp(Rd))×S(Lp′(Rd)) such that for any
couple (f, g) of

(
Lp(Rd) \ {0}

)
×
(
Lp′(Rd) \ {0}

)
, one has

Λ > Λp

(
ε, π

(p)
S f, π

(p′)
S g

)
=⇒

∣∣∣∫
Rd

f(x)Λ
− d

p′ g(Λ−1x) dx
∣∣∣ 6 ε∥f∥Lp(Rd)∥g∥Lp′ (Rd).

If one does not take continuity into account, the property is a very classical one: it is enough
to approach, up to ε, the functions π

(p)
S f and π

(p′)
S g respectively in Lp and Lp′ , by ring-supported

functions. Then, one chooses Λ large enough such that the integral of the truncated functions is 0.
The question is: can the choice of the cut off be made continuously with respect to the functions? The
answer is no, as shown by the following picture:

 f (x) > t

 t

 Μ f  (t)

x

y

Figure 1: The graph of a non-negative function and measurable function f

If the function is radial and non increasing, it becomes possible. The use of the non-increasing
reordering enables one to prove Lemma 2.3.
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 f * (x) > t

 t

x

y

Figure 2: The graph of the rearrangement f⋆

Section 3 is, first, devoted to brief recalls on the definition and main properties of the symmetric non-
increasing rearrangement. One proves, then, Lemma 2.3, which enables one to continuously truncate
the rearrangements. Once it is done, one can prove Proposition 2.1.

Section 4 concentrates on the proof of Proposition 2.2, where Lemma 2.3 plays a major role re-
garding continuity.

Section 5 is devoted to the proof of basic results on the non-increasing reordering which are collected
here for the reader’s convenience.

3 Non-increasing reordering and almost-orthogonality

To begin with, let us work in the space Rd. Let us, first, recall basic notations, that we will require
later on. For any measurable function f , we set

(f > t)
def
=
{
x ∈ Rd / f(x) > t

}
and (f 6 t)

def
=
{
x ∈ Rd / f(x) 6 t

}
.

Let us consider a non-negative function and measurable function f : Rd → R, which vanishes at
infinity, in the sense that, for any strictly positive real number t, the set (|f | > t) is of finite measure.

Definition 3.1. Let A be a measurable set of Rd, the Lebesgue measure of which is finite. A⋆

denotes the open centered ball whose measure is the same of the one of A. Let us consider a real-
valued, measurable function f , defined on Rd, which vanishes at infinity, in the sense that, for any
strictly positive real number t, the set (|f | > t) is of finite measure. The symmetric non-increasing
rearrangement of f is the measurable and non negative function f⋆, defined on [0,+∞[ by

f⋆(x) =

∫ +∞

0
1(|f |>t)⋆(x) dt .

More detailed information can be found, for instance, in [11] and [18]. One can already notice
that f⋆ = |f |⋆, and that the function f⋆ is a radially symmetric and non-increasing one, in the sense
that f⋆(x) = f⋆(y) if |x| = |y|, and f⋆(x) > f⋆(y) if |x| 6 |y|.

We will require the non-increasing reordering properties described hereafter.

Proposition 3.1. Let us consider two real-valued, measurable functions f and g, defined on Rd, which
vanishes at infinity. For any strictly positive number s,(

f(s ·)
)⋆

= f⋆(s ·), (7)∫
Rd

f(x)g(x)dx 6
∫
Rd

f⋆(x)g⋆(x)dx and (8)∫
Rd

f⋆(x)1(g⋆6s)(x)dx 6
∫
Rd

f(x)1(g6s)(x)dx . (9)

If, moreover, f and g belong to the space Lp, it is also the case of f⋆ and g⋆; in addition,

∥f∥Lp = ∥f⋆∥Lp and ∥f⋆ − g⋆∥Lp 6 ∥f − g∥Lp .
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For the convenience of the reader, this proposition is proved in Section 5.

Proof of Lemma 2.3 Thanks to inequalities (7) and (8), one is led to find an upper bound to∣∣∣∫
Rd

f(x)Λ
− d

p′ g(Λ−1x)dx
∣∣∣ 6 IΛ

def
=

∫
Rd

f⋆(x)Λ
− d

p′ g⋆(Λ−1x)dx .

As explained in the introduction, this means truncating the functions f⋆ and g⋆ in rings, which can
be done using the following lemma.

Lemma 3.2. For any p in [1,∞[, there exists a continuous function R0 from ]0, 1[×S(Lp) to R+ such
that, for any f in S(Lp),

∥ϕR0(ε,f)f
⋆∥Lp = ε with ϕR(x)

def
= 1− 1{R−16|x|6R}(x).

Proof. Let us first prove that, for any positive valued function h, radially symmetric, non-increasing,
the Lp norm of which is equal to 1, and for any real number ε in ]0, 1[, there exists a unique R(ε, h)
such that ∫

Rd

ϕR(ε,h)(x)h
p(x)dx = ε .

From the dominated convergence theorem, the function

ρh(R)
def
=

∫
Rd

ϕR(x)h
p(x)dx

is continuous and non-increasing on [1,∞[. Moreover : ρh(1) = ∥h∥pLp = 1, and ρh(+∞) = 0. Let us
denote by Rh the maximum of numbers R satisfying ρh(R) = 1. The function ρh is decreasing on the
interval [Rh,∞[. Thus, there exists a unique Rh such that ρh(Rh) = εp. Applying this property to the
function h = f⋆ enables one to define the function R0.

In order to prove the continuity of R0, let us consider a sequence (εn, fn) of ]0, 1[×S(Lp), which
converges towards (ε, f) in ]0, 1[×S(Lp). It is enough to prove that any convergent subsequence con-
verges towards R0(ε, f). Let us denote by R∞ the limit of a convergent subsequence of R0(εn, fn). For
sake of simplicity, extraction will not be distinguished. The triangle inequality leads to

∥ϕR0(εn,f⋆
n)
f⋆
n∥Lp − ∥f⋆ − f⋆

n∥Lp 6 ∥ϕR0(εn,fn) f
⋆∥Lp 6 ∥ϕR0(εn,fn) f

⋆
n∥Lp + ∥f⋆ − f⋆

n∥Lp .

By definition of R0,

εn − ∥f⋆ − f⋆
n∥Lp 6 ∥ϕR0(εn,fn) f

⋆∥Lp 6 εn + ∥f⋆ − f⋆
n∥Lp .

Since the symmetric non-increasing rearrangement is 1−lipschtizian on the Lebesgue spaces Lp, one
has

εn − ∥f − fn∥Lp 6 ∥ϕR0(εn,fn) f
⋆∥Lp 6 εn + ∥f − fn∥Lp . (10)

The Lebesgue theorem implies then that:

lim
n→+∞

∥∥ϕR0(εn,fn) f
⋆
∥∥
Lp = ∥ϕR∞ f⋆∥Lp .

By passing through the limit in (10), we obtain ∥ϕR∞ f⋆∥Lp(Rd) = ε, which, by definition of R0, leads
to R∞ = R0(ε, f). Then, the function R0 is a continuous one. The lemma is proved.

Conclusion of the proof of Lemma 2.3 One can estimate IΛ. Thanks to the identities

f⋆ = ϕR0(ε,f)f
⋆ + 1 1

R0(ε,f)
6|x|6R0(ε,f)

f⋆ and g⋆ = ϕR0(ε,g) g
⋆ + 1 1

R0(ε,g)
6|x|6R0(ε,g)

g⋆ ,
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we have

IΛ 6
∫
Rd

(
ϕR0(ε,f)f

⋆
)
(x) Λ

− d
p′ g⋆

(x
Λ

)
dx

+

∫
Rd

(
1 1

R0(ε,f)
6|x|6R0(ε,f)

f⋆
)
(x) Λ

− d
p′
(
ϕR0(ε,g)g

⋆
) (x

Λ

)
dx

+

∫
Rd

(
1 1

R0(ε,f)
6|x|6R0(ε,f)

f⋆
)
(x) Λ

− d
p′
(
1 1

R0(ε,g)
6|x|6R0(ε,g)

g⋆
) ( x

Λ

)
dx

6 ∥ϕR0(ε0,f)f
⋆∥Lp∥g∥Lp′ + ∥f⋆∥Lp∥ϕR0(ε,g)g

⋆∥Lp′

+

∫
Rd

(
1 1

R0(ε,f)
6|x|6R0(ε,f)

f⋆
)
(x) Λ

− d
p′
(
1 1

R0(ε,g)
6|x|6R0(ε,g)

g⋆
) ( x

Λ

)
dx.

As ∥f∥Lp = ∥f⋆∥Lp = ∥g∥Lp′ = ∥g⋆∥Lp′ = 1, this leads to

IΛ 6 2ε+

∫
Rd

(
1 1

R0
(ε,f)6|x|6R0(ε,f)

f⋆
)
(x) Λ

− d
p′
(
1 1

R0(ε,g)
6|x|6R0(ε,g)

g⋆
) (x

Λ

)
dx

6 2ε+

∫
Rd

1 1
R0(ε,f)

6|x|6R0(ε,f)
(x)1 Λ

R0(ε,g)
6|x|6ΛR0(ε,g)

(x) f⋆(x)Λ
− d

p′ g⋆
(x
Λ

)
dx .

Let us notice that if
Λ > 2R0 (ε, f) R0 (ε, g) (11)

then {
x ∈ Rd ,

1

R0 (ε, f)
6 |x| 6 R0 (ε, f)

}
∩
{
x ∈ Rd ,

Λ

R0 (ε, g)
6 |x| 6 ΛR0 (ε, g)

}
= ∅.

Thus, provided the condition (11) is satisfied, one has IΛ(f, g) 6 2ε. For (f, g) in S(Lp) × S(Lp′), let
us define

Λp(ε, f, g)
def
= 2R0

(ε
2
, f
)
R0

(ε
2
, g
)
.

This function is suitable and Lemma 2.3 is thus proved.

Proof of Proposition 2.1 A basic expansion and the use of the scaling invariance lead to∣∣∣∥F(v,Λ, λ)∥4
Ḃ0

2,4
−
(
([λ] + 1) + (χ(λ− [λ]))4

)
∥v∥4

Ḃ0
2,4(R2)

∣∣∣ . Ev,Λ,λ where

Ev,Λ,λ
def
=

∫ ∞

0

∑
(j1,j2,j3,j4)∈J̃

∥∥∆µ(Λ
−j1v(Λ−j1 ·))

∥∥
L2

∥∥∆µ(Λ
−j2v(Λ−j2 ·))

∥∥
L2

×
∥∥∆µ(Λ

−j3v(Λ−j3 ·))
∥∥
L2

∥∥∆µ(Λ
−j4v(Λ−j4 ·))

∥∥
L2

dµ

µ
with

J̃
def
=
{
0, . . . , [λ] + 1

}4 \ {(j, j, j, j) , j ∈ {0, . . . , [λ] + 1}
}
.

As we have
∆µ(Λ

−jv(Λ−j ·)) = Λ−j(∆µΛjv)(Λ−j ·),
one gets, due to the scaling of the L2 norm, that

E(v,Λ, λ) =
∫ ∞

0

∑
(j1,j2,j3,j4)∈J̃

∥∥∆µΛj1v
∥∥
L2

∥∥∆µΛj2v
∥∥
L2

∥∥∆µΛj3v
∥∥
L2

∥∥∆µΛj4v
∥∥
L2

dµ

µ
·

Without any loss of generality, we can assume that j2 is smaller than j1 in the above integral. Hölder

inequality, for the measure
dµ

µ
, and the scaling invariance of this same measure, imply that∫ ∞

0

∥∥∆µΛj1v
∥∥
L2

∥∥∆µΛj2v
∥∥
L2

∥∥∆µΛj3v
∥∥
L2

∥∥∆µΛj4v
∥∥
L2

dµ

µ

6 ∥v∥2
Ḃ0

2,4(R2)

(∫ ∞

0

∥∥∆µv
∥∥2
L2

∥∥∆µΛ−(j1−j2)v
∥∥2
L2

dµ

µ

) 1
2

·
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One deduces that:

E(v,Λ, λ) . ([λ] + 1)3∥v∥2
Ḃ0

2,4(R2)

[λ]+1∑
j=0

(∫ ∞

0

∥∥∆µv
∥∥2
L2

∥∥∆µΛ−jv
∥∥2
L2

dµ

µ

) 1
2

·

The problem is reduced to the study of an integral of the form∫ ∞

0
f(µ)g(Λ−1µ)

dµ

µ
·

with f and g in L2(]0,∞[;µ−1dµ). We define

f̃(µ)
def
= 1[0,∞[(µ)

f(µ)

µ
1
2

·

Let us now write that ∫ ∞

0
f(µ)g(Λ−1µ)

dµ

µ
=

∫
R
f̃(µ)Λ− 1

2 g̃(Λ−1µ) dµ .

Let us apply Lemma 2.3 with d = 1, p = 2 and let us choose ε = C([λ]+1)−4; this gives Inequality (6).
In order to prove the entire proposition, let us concentrate on the continuity of F which comes mostly
from the following lemma.

Lemma 3.3. The map

D
{

Ḃ0
2,4(R2)× R⋆

+ −→ Ḃ0
2,4(R2)

(v, δ) 7−→ δ−1 v
(
δ−1 ·

)
is a continuous one.

Proof. It is worth noting that this map is an isometry in the sense that

∥D(v, δ)∥Ḃ0
2,4

= ∥v∥Ḃ0
2,4
.

For any (v0, δ0) and (v, δ) belonging to Ḃ0
2,4(R2)× R⋆

+,

∥D(v, δ)−D(v0, δ0)∥Ḃ0
2,4(R2) 6

∥∥δ−1 (v − v0)(δ
−1 ·)

∥∥
Ḃ0

2,4(R2)
+
∥∥δ−1 v0(δ

−1 ·)− δ−1
0 v0(δ

−1
0 ·)

∥∥
Ḃ0

2,4(R2)

6 ∥v − v0∥Ḃ0
2,4(R2) +

∥∥v0 − δ δ−1
0 v0(δ δ

−1
0 ·)

∥∥
Ḃ0

2,4(R2)
.

Let us then consider a strictly positive real number ε. There exists a function v0,ε of D(R2) such that

∥v0 − v0,ε∥Ḃ0
2,4(R2) 6

ε

4
·

This yields then, for any strictly positive real number δ,∥∥v0 − δ−1 v0(δ
−1 ·)

∥∥
Ḃ0

2,4(R2)
6 ∥v0 − v0,ε∥Ḃ0

2,4(R2) +
∥∥v0,ε − δ−1 v0,ε

(
δ−1 ·

)∥∥
Ḃ0

2,4(R2)

+
∥∥δ−1 v0,ε(δ

−1 ·)− δ−1 v0(δ
−1 ·)

∥∥
Ḃ0

2,4(R2)

6 2 ∥v0 − v0,ε∥Ḃ0
2,4(R2) +

∥∥v0,ε − δ−1 v0,ε(δ
−1 ·)

∥∥
Ḃ0

2,4(R2)

6 2
ε

4
+ C

∥∥v0,ε − δ−1 v0,ε(δ
−1 ·)

∥∥
L2(R2)

.

As lim
δ→1

∥∥v0,ε − δ−1 v0,ε(δ
−1 ·)

∥∥
L2(R2)

= 0, one can infer that the mapping D is a continuous one.
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Conclusion of the proof of Proposition 2.1 The above lemma assures that the function F is continuous
on L2(R2) × R⋆

+ × (R+ \ N⋆). In order to conclude the proof, let us observe that, for any positive
integer k,

∀λ ∈
]
−1

4
+ k, k +

1

4

[
, F(v,Λ, λ) =

k∑
j=0

Λ−jv(Λ−j ·) (12)

which, thanks to Lemma 3.3, ensures the continuity of the function F on Ḃ0
2,4(R2) × R⋆

+ × R+. If λ
belongs to the interval ] − 1/4 + k, k[, then [λ] = k − 1, χ(λ − [λ]) = 1, and Identity (12) is satisfied.
If, now, λ belongs to the interval [k, k + 1/4[, then [λ] = k, χ(λ − [λ]) = 0, and the identity (12) is,
again, satisfied. Proposition 2.1 is then proved.

4 Almost-orthogonality and making of global solutions

We hereafter aim at proving Proposition 2.2. Classically, one searches the solution related to F(v,Λ, λ)
under the form uapp +R, where the approached solution uapp(t, x) is given by

uapp(t, x)
def
=

[λ]+1∑
j=0

Vj,Λ(t, x) with

Vj,Λ(t, x)
def
= Λ−j NLS(v)

(
Λ−2 j t,Λ−j x

)
for j in {1, · · · , [λ]} and

V[λ]+1,Λ(t, x)
def
= Λ−([λ]+1)NLS

(
χ(λ− [λ])v

)(
Λ−2([λ]+1)t, Λ−([λ]+1)x

)
.

and where the term R has to be understood as an error one.

The idea is that if we choose the scaling parameter Λ large enough, then the error term R is small,
due to the fact that solutions of very different scale almost do not interact. The point here is thus to
prove that the choice of the size of the parameter Λ can be made continuously when the function v
varies. In order to do so, let us write the equation satisfied by the error term R. One has

{
i ∂tR+∆R = ẼΛ +Φ(R)

R|t=0 = 0
with

|ẼΛ(t, x)| . EΛ(t, x)
def
=

∑
06j,k,ℓ6[λ]+1
(j,k,ℓ) ̸=(j,j,j)

|Vj,Λ(t, x)| |Vk,Λ(t, x)| |Vℓ,Λ(t, x)| and

|Φ(R)(t, x)| . |R(t, x)|3 + |uapp(t, x)|2|R(t, x)|.

Here Φ is a generic notation used to denote a function of R that will not be explicitly given, for the
sake of simplicity.

Let us estimate ∥EΛ∥
L

4
3 (R1+2)

. By definition of the functions Vj,Λ, we get using the Hölder inequality
in the space variable

Ej,k,ℓ
Λ

def
=

∫
R1+2

|Vj,Λ(t, x)|
4
3 |Vk,Λ(t, x)|

4
3 |Vℓ,Λ(t, x)|

4
3dxdt

6
∫
R
Λ− 2 (j+k+ℓ)

3

∥∥NLS(v)(Λ−2 j t, ·)
∥∥ 4

3

L4(R2)

×
∥∥NLS(v)(Λ−2 k t, ·)

∥∥ 4
3

L4(R2)

∥∥NLS(v)(Λ−2 ℓ t, ·)
∥∥ 4

3

L4(R2)
dt.

9



As (j, k, ℓ) is not of the type (j, j, j), we can assume up to a perturbation of indices that k is smaller
than ℓ. Hölder inequality and then a change of variable imply that

Ej,k,ℓ
Λ 6

(∫
R

∥∥NLS(v)(Λ−2 j t, ·)
∥∥4
L4(R2)

Λ−2jdt

) 1
3

×
(∫

R

∥∥NLS(v)(Λ−2 k t, ·)
∥∥2
L4(R2)

Λ−(ℓ−k)
∥∥NLS(v)(Λ−2 ℓ t, ·)

∥∥2
L4(R2)

Λ−2kdt

) 2
3

6 ∥NLS(v)∥
4
3

L4(R1+2)

(∫
R

∥∥NLS(v)(t, ·)
∥∥2
L4(R2)

Λ−(ℓ−k)
∥∥NLS(v)(Λ−2(ℓ−k) t, ·)

∥∥2
L4(R2)

dt

) 2
3

.

Applying Lemma 2.3, with d = 1, p = 2, f = g = ∥NLS(v)(t, ·)∥2L4(R2), one gets

Λ > ΛF (ε, v)
def
= Λ2

(
ε, π

(2)
S ∥NLS(v)(t, ·)∥2L4(R2), π

(2)
S ∥NLS(v)(t, ·)∥2L4(R2)

)
=⇒ Ej,k,ℓ

Λ 6 ε
2
3 ∥NLS(v)∥4L4(R1+2).

As the function v is assumed to be in the ball Bρ, we have ∥NLS(v)∥L4(R1+2) . ∥v∥Ḃ0
2,4(R2). Moreover

the map {
Bρ −→ L2(R)
v 7−→ ∥NLS(v)(t, ·)∥2L4(R2)

is continuous. Thus the map (ε, v) 7−→ ΛF (ε, v) is continuous from ]0,∞[×Bρ into ]0,∞[, and we have

Λ > ΛF (ε, v) =⇒ Ej,k,ℓ
Λ . ε

2
3 ∥v∥4

Ḃ0
2,4(R2)

. (13)

By definition of EΛ and Ej,k,ℓ
λ , we have

∥EΛ∥
4
3

L
4
3 (R1+2)

.
∑

06j,k,ℓ6[λ]+1
(j,k,ℓ)̸=(j,j,j)

Ej,k,ℓ
λ .

With (13) this leads to

Λ > ΛF (ε, v) =⇒ ∥EΛ∥
L

4
3 (R1+2)

6 Cε
1
2 ([λ] + 1)

9
4 ∥v∥3

Ḃ0
2,4(R2)

. (14)

The estimate of ∥uapp∥L4(R1+2) follows the same lines. Indeed, let us write that

∣∣∣∥uapp∥4L4(R1+2) −
[λ]∑
j=0

∥Vj,Λ∥4L4(R1+2)

∣∣∣
6

∑
06j1,j2,j3,j46[λ]+1
j1,j2,j3,j4 ̸=(j,j,j,j)

∫
R1+2

|Vj1,Λ(t, x)| |Vj2,Λ(t, x)| |Vj3,Λ(t, x)| |Vj4,Λ(t, x)| dxdt.

Up to a permutation of indices, we can assume that j1 ̸= j2. Hölder inequalities and scaling invariance
lead to

∣∣∣∥uapp∥4L4(R1+2) −
[λ]+1∑
j=0

∥Vj,Λ∥4L4(R1+2)

∣∣∣
. ([λ] + 1)3∥v∥2

Ḃ0
2,4(R2)

([λ]+1∑
j=1

∫
R
∥NLS(v)(t, ·)∥2L4(R2)Λ

−j∥NLS(v)(Λ−2jt, ·)∥2L4(R2)dt

) 1
2

.
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Applying Lemma 2.3, with d = 1, p = 2 and f = g = ∥NLS(v)(t, ·)∥2L4(R2) gives

Λ > ΛF (ε, v) =⇒
∣∣∣∥uapp∥4L4(R1+2) − ([λ] + 1)∥NLS(v)∥4L4(R1+2)

∣∣∣ 6 C([λ] + 1)4ε
1
2 ∥v∥4

Ḃ0
2,4(R2)

.

One deduces, then(
ε 6 1

4 ([λ] + 1)6
and Λ > ΛF (ε, v)

)
=⇒ ∥uapp∥4L4(R1+2) 6 2C([λ] + 1)∥v∥4

Ḃ0
2,4(R2)

. (15)

Let us admit for a while that, for any time T smaller than the maximal time of existence T ⋆,

∥R∥L4([0,T ]×R2) 6 C
(
∥EΛ∥

L
4
3 (R1+2)

+ ∥R∥2L4([0,T ]×R2)

)
exp
(
∥uapp∥4L4(R1+2)

)
. (16)

A positive real number η being given, let us introduce the time Tη as

Tη
def
= sup

{
0 6 T < T ⋆

/ ∫ T

0
∥R(t, ·)∥4L4(R2)dt 6 η4

}
.

If we prove that T = T ⋆ then the maximal time of existence T ⋆ will be equal to +∞. Using
Inequality (16) we get that for any T smaller than Tη,

∥R∥L4([0,T ]×R2) 6 C
(
∥EΛ∥

L
4
3 (R1+2)

+ η2
)
exp
(
C∥uapp∥4L4(R1+2)

)
.

Let us choose η and ε such that

η =
1

4C
exp
(
−C∥uapp∥4L4(R1+2)

)
and

ε =
η2

4C4 ([λ] + 1)
9
2 ∥v∥6

Ḃ0
2,4(R2)

exp
(
−4C([λ] + 1)∥v∥4

Ḃ0
2,4(R2)

)
.

Assertions (14), (15) and (16) lead to ∥R∥L4([0,T ]×R2) 6
3

4
. Thus, Tη = T ⋆ which leads to T ⋆ = +∞.

Our theorem is proved provided it is the case of inequality (16). Let us introduce the increasing
sequence (Tm)06m6M+1 such that T0 = 0, TM+1 = +∞, and

∀m < M ,

∫ Tm+1

Tm

∥uapp(t)∥4L4(R2)dt = ε40 and
∫ TM+1

TM

∥uapp(t)∥4L4(R2)dt 6 ε40 (17)

for some given positive real number ε0, which will be chosen small enough later on. Obviously, we have

Mε40 6
∫ TM

0
∥uapp(t)∥4L4(R2)dt 6

∫ +∞

0
∥uapp(t)∥4L4(R2)dt 6 (M + 1)ε40 . (18)

Thus the number M of Tm such that Tm is finite is less than ε−4
0 ∥uapp∥4L4(R1+2). Let us set

R(T )
def
= ∥R∥L∞([0,T ];L2(R2)) + ∥R∥L4([0,T ]×R2)).

We are going to prove, by induction, that for any T smaller than min{Tm, T ⋆}, one has

R(T ) 6 Cm+1
0 ∥EΛ∥L4/3(R1+2).

Let us now consider a time T smaller than min{Tm+1, T
⋆}. Strichartz estimate to the interval [Tm, T ]

gives

∥R∥L∞([Tm,T ];L2(R2)) + ∥R∥L4([Tm,T ]×R2)) 6 C
(
∥R(Tm)∥L2(R2) + ∥EΛ∥

L
4
3 (R1+2)

+∥R∥3L4([Tm,T ]×R2)) + ∥R∥L4([Tm,T ]×R2))∥uapp∥2L4([Tm,Tm+1]×R2))

)
.
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By definition of ε0, we get

∥R∥L∞([Tm,T ];L2) + ∥R∥L4([Tm,T ]×R2)) 6 C
(
∥R(Tm)∥L2(R2) + ∥EΛ∥

L
4
3 (R1+2)

+(η2 + ε20)∥R∥L4([Tm,T ]×R2)

)
.

If C
(
η2 + ε20

)
6 1/2, one obtains

∥R∥L∞([Tm,T ];L2) + ∥R∥L4([Tm,T×R2) 6 2C
(
∥R(Tm)∥L2(R2) + ∥EΛ∥

L
4
3 (R1+2)

)
.

With the choice C0 = 2C + 1, the induction hypothesis immediately yields

R(T ) 6 (2C + 1)Cm+1
0 ∥EΛ∥

L
4
3 (R1+2)

6 Cm+2
0 ∥EΛ∥

L
4
3 (R1+2)

.

By induction, we deduce that, for any T less than T ⋆,we have R(T ) 6 CM+2
0 ∥EΛ∥

L
4
3 (R1+2)

. Using

Inequality (18), it turns out that

R(T ) 6 C∥EΛ∥
L

4
3 (R1+2)

exp
(
C

∫ ∞

0
∥uapp(t)∥4L4(R2)dt

)
which implies Inequality (16). Proposition 2.2 is proved.

5 Some non-increasing reordering properties

We hereafter aim at proving proposition 3.1. More information can be found in [11], [18]. We nonethe-
less recall the main results useful to our study. Various proofs of those results can be found in the
above references. In the following, we concentrate on positive-valued functions. We will frequently
refer to the fact that, for any function h,

h(x) =

∫ ∞

0
1(h>t)(x)dt. (19)

To prove (7), let us note that (f(s ·) > t) = s−1(f > t). Let Rt denote the radius such that the
volume of (f > t) is the same as the one of the centered ball of radius Rt. Thus we have

1(f(s ·)>t)⋆(x) = 1B(0,s−1Rt)(x) = 1(f>t)⋆(sx).

One obtains inequality (7) by integration in t.
The proof of Inequality (8) relies on the following observation. Let A and B denote two sets of Rd

of finite measure. If A⋆ and B⋆ are two centered balls, one has

meas(A⋆ ∩B⋆) = min
{
meas A⋆,meas B⋆

}
= min

{
meas A,meas B

}
> meas (A ∩B). (20)
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This can be illustrated by the following drawing.

A

B

A

B

Figure 3: The sets A et B, with or without an intersection.

B
*

A
*

Figure 4: The centered balls A⋆ and B⋆.

Thanks to Fubini’s theorem, and to inequality (20), one has, from the definition of f⋆ and g⋆,∫
Rd

f⋆(x)g⋆(x)dx =

∫
Rd

(∫ ∞

0
1(f>t)⋆(x)dt

)(∫ ∞

0
1(g>s)⋆(x)ds

)
dx

=

∫ ∞

0

∫ ∞

0
meas

(
(f > t)⋆ ∩ (g > s)⋆

)
dtds.

By applying (20) in the above relation, one gets:∫
Rd

f⋆(x)g⋆(x)dx >
∫ ∞

0

∫ ∞

0
meas

(
(f > t) ∩ (g > s)

)
dtds.

If we apply then (19), we obtain:∫
Rd

f⋆(x)g⋆(x)dx >
∫ ∞

0

∫ ∞

0

∫
Rd

1(f>t)(x)1(g>s)(x)dtdsdx

>
∫
Rd

(∫ ∞

0
1(f>t)(x)dt

)(∫ ∞

0
1(g>s)(x)ds

)
dx

>
∫
Rd

f(x)g(x) dx

which ensures the required inequality.

The proof of Inequality (9) is a very close one. According to (19) and Fubini’s theorem, we get∫
Rd

f(x)1(g6s)(x)dx =

∫
Rd

∫ ∞

0
1(f>t)(x)1(g6s)(x)dxdt

=

∫ ∞

0
meas

(
(f > t) ∩ (g 6 s)

)
dt. (21)
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As 1(f>t)1(g6s) = 1(f>t) − 1(f>t)1(g>s), an integration leads to:

meas
(
(f > t) ∩ (g 6 s)

)
= meas(f > t)−meas

(
(f > t) ∩ (g > s)

)
.

By applying (20) to the sets (f > t) and (g > s), one deduces

meas
(
(f > t) ∩ (g 6 s)

)
> meas

(
(f > t)⋆

)
−meas

(
(f > t)⋆ ∩ (g > s)⋆

)
> meas

(
f > t)⋆ −meas

(
(f⋆ > t) ∩ (g⋆ > s)

)
> meas

(
(f > t)⋆ ∩ (g⋆ 6 s)

)
.

Using it in inequality (21) enables one to write, thanks to Fubini’s theorem, that∫
Rd

f(x)1(g6s)(x)dx >
∫ ∞

0

∫
Rd

1(f>t)⋆(x)1(g⋆6s)(x)dxdt

>
∫
Rd

f⋆(x)1(g⋆6s)(x)dx

which is Inequality (9).

To prove the equality of the Lp norms, let us note that, according to Fubini’s theorem, for any
positive valued function h, and any p in [1,∞[, one has

∥h∥pLp = p

∫
Rd

∫ ∞

0
1(h>t)(x)t

p−1dtdx

= p

∫ ∞

0
meas(h > t)tp−1dt .

By definition of ⋆ operation on sets, (f > t) and (f⋆ > t) are of same measure. The above formula
ensures immediately the equality of the Lp norms.

The fact that the ⋆ process is 1-lipschitzian on Lp(Rd) comes from the more general following result.

Lemma 5.1. Let J denote a convex function from R to R+ such that J(0) = 0. If f and g are two
positive-valued functions, then∫

Rd

J (f⋆(x)− g⋆(x)) dx 6
∫
Rd

J (f(x)− g(x)) dx .

Proof. Let us write

J = J+ + J− with J+
def
= 1R+J and J−

def
= 1R−\{0}J.

The two functions J+ and J− are convex, and positive valued. One proves the inequality for J+, the
proof for J− being strictly analogous. Let h1 and h2 denote two non negative functions. One has

J+ (h1(x)− h2(x)) =

∫ h1(x)

h2(x)
J ′
+ (h1(x)− s) ds

=

∫ +∞

h2(x)
J ′
+ (h1(x)− s) 1(h26s)(x) ds. (22)

If H is an increasing function on R+, its derivative in the sense of distributions is a non negative
measure (which we denote by dH) and which satisfies

H(y − s) =

∫ ∞

0
1]s+t,∞[(y)dH(t).
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Thanks to Fubini’s theorem, we deduce that, for any set of functions (h1, h2),∫
Rd

H(h1(x)− s)1(h26s)(x)dx =

∫ ∞

0

(∫
Rd

1(h1>s+t)(x)1(h26s)(x)dx
)
dH(t). (23)

By applying this formula with (h1, h2) = (f⋆, g⋆), in conjunction with Inequality (9), one obtains,
thanks to the positivity of the measure dH(t),∫

Rd

H(f⋆(x)− s)1(g⋆6s)(x)dx =

∫
Rd×[0,∞[

1(f⋆>s+t)(x)1(g⋆6s)(x)dxdH(t)

6
∫ ∞

0

(∫
Rd

1(f>s+t)(x)1(g6s)(x)dx
)
dH(t).

If, now, we apply Formula (23) with the set of functions (f, g), we get∫
Rd

H(f⋆(x)− s)1(g⋆6s)(x)dx 6
∫
Rd

H(f(x)− s)1(g6s)(x)dx.

By applying this inequality with H = J ′
+, it ensures the required result, thanks to Formula (22).
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