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Abstract

It is shown that the general 3-point function (P, P,), with continuous values of charges a, b, ¢ of
a statistical model operators, and the 3-point function of the Liouville model, could all be obtained by
successive analytical continuations starting from the 3-point function of the minimal model.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recent interest in the 3-point functions (®,.®;,P,) with continuous values of charges a, b, c,
which do not satisfy the neutrality conditions of the Coulomb gas minimal models, is, princi-
pally, due to recently found realisations of these correlation functions in the context of statistical
models, on the lattice: Potts model 3 spin correlation function [1], loop models [2].

On the other side, the interest in the Liouville model correlation function was always present,
since 1981 [3].

The Liouville 3-point function was defined in [4,5]. The statistical model general 3-point
function (of imaginary Liouville or Coulomb gas) was defined in [6].

In the present paper we rederive these results somewhat differently, by a sequence of analytical
continuations, starting with the minimal model 3-point function [7-9].
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The present study does not provide new results but gives some new methods and provides
some unification, hopefully.

2. Analytic continuation of (1, n) operators correlation function towards the general
(n’, n) operators 3-point function

The structure constant of the (1, #) minimal model subalgebra, which is the 3-point function
of (1, n) operators, is of the form [8]:

Vit (0) Vin(DV1m (0)

k . k—1 . . .
:H I'(j, p) X1—[F(l+a+1p)F(1+ﬁ+1p)F(l+y+1p) @)
i Ta=jp) iy Tla—jol(=g—jol(=y —jp)
where V1, Vi, V1+p, are the Coulomb gas vertex operators,
V@ Dim = Vay,, (2, 7) = 0m?@D,
Vl,n(Z7 Z) — Volly,, (Z7 Z) — eidl,n(p(l,z)
1—m 1—n
Alm = Oy, U= ) oy (2.2)
Vlfp is the Coulomb gas conjugate operator:
+ o3 — oy _ i 92
Vip(@d=Vyr (0 =e"tr
1— 1
otfr =2a0—a1p=2(x0—( p)ot+=a,+ +pa+ 2.3)
P ’ 2 2
©(z, 7) is the Coulomb gas field.
Parameters «, 8, y, p in (2.1) are defined as:
oa=2a001,=0-m)p, B=2ara1,=(1—n)p,
1+p
y =2aiaf , =201 Qag —a1,p) =204 (- + ap)==2++pp, p=do}
2.4)
a4, o are the charges of the screening operators
Vi(z,2) = *9@D 0 V_(g,7)e 0D 2.5)
« is the Coulomb gas background charge, 200 = o4 + o, and o4 - = —1.

The parameter & in (2.1) is the number of screening operators V., required by the function on
the L.h.s. of (2.1), to satisfy the neutrality condition:

), o+ @+ kay =2 (2.6)
On finds that
—p—1
kz—’“”z” @7
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If (2.1) is compared with the integral (B.9) in [8], which is the expression for the 3-point
function (V1+p (00) V1,n (1) V1,m(0)) with the parameters «, B, y given in (2.4), it is observed that
we have removed, in (2.1), the factor

k rd—np k
T (——Z 2.8

which the normalisation factor. It could be removed by renormalising the screening operator
constant (4, in the Coulomb gas action for the field ¢(z, z). Its general form is

1
Alg] = f (00 2 — s Vi — V) 2.9

Also, the last product in (B.9), [8], has been expressed slightly differently: multiplying (2.6) by
204 one gets

y+B+a+2pk=2p—-2,
y=—2—a—-B-2pk-1) (2.10)

and the last product in (2.1) takes the form

]ﬁl"(1+y+jp)=1:[1“( l—a—B—Q2k—2—j)p)
iz Ty —Jp) FrQ+a+B+2k—2—jp)

T fCl-—a—B—(k—1+)p) (2.11)
i FRQ+a+B+k—1+j)p) .

which agrees with (B.9), [8].
The general structure constant of the minimal model, which is the 3-point function of the
general (n’, n) operators, is of the form [8]:

<V,,+,,,,(oo)vn/,nu)vmamm»

l k .
—4lk1_[ I(ip' — 1—[ C'(jp)
T —ip +k) T —jp)
ﬁ T —k4o +iphTA—k+p +ip)yy(l—k+y +ip)
; k=o' —ipT'(k =B —ipT'(k —y' —ip’)

i—0

S TA+a+ jpTA+B+ 0T +y + jp)
<[]

it Tea—jor=g—jpl(=y —jp) (2.12)
Here Vi i, Vi s Vp pare the Coulomb gas vertex operators:
Vi m(z,2) = Vg, (2,2) = el m#@2)
Vo n(2,2) = Vo, (2, 2) = ¢l nP@2)
V;?’I,(Z, 7)= ¢4 #@D 013

with
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1—m I—m 1—n' 1—n
U’ sm = 2 a_ + 2 Oy, Opp= ) o+ 2 oy,
1+ p l1+p
+
ap,’p = 2“0 — C(p/’p = 2 o_ + 2 C(+ (214)

The parameters «, 8, y in (2.12) are now different from those in (2.1), (2.4). They are given by:

a=2ar0y m=—1—-m)+A—-—m)p, B=20iay,=—1—n)+1-n)p

y =2ara), =—1+p)+1+p)p, p=a (2.15)
and

o =20 apwu=0-—mp —(1-m), B =2a_ay,=1-n")p —(1—n)

y'=2af =0+p)p'—U+p), p=d (2.16)
It is seen that (ara— = —1, p'ay = atay=—a_):

/ /

o =—pla, B'=—p'B, vy ==py.
a=—pd, B=-pf, y=—py (2.17)

The parameters [, k in (2.12), the numbers of screening operators, they satisfy the Coulomb
gas neutrality condition:

a;’p F oty oy gl +kay =209 (2.18)

By collecting the coefficients of oy and «_, separately, assuming that there is no compensation

between the two (p = a_%_ and p' =a2 = p~are being non-rational), one finds:

~m'+n —p'—1 k_m—i—n—p—l
2 T 2

As compared to the integral (B.10) of [8], which is the expression for the 3-point function

(Vi p (@) Vi (1) Vi 1, (0)), we have removed in (2.12) the normalisation factors

ey LU= 20y DO =)
I'(p" L'(p)
Again, these factors could be removed by renormalising the constants w4, p— in (2.9).

We have also reorganised the last two factors in the products over i and over j, by using the
neutrality condition (2.18): multiplying (2.18) by 2«4, or by 2c_, one gets, respectively,

l (2.19)

)k (2.20)

y+B+a—20+2kp=2p—2 (2.21)

Y+ B +a +2p —2k=-24+2p (2.22)
which gives

y=-—2—a—pB+2 —2k-1)p (2.23)

y==2—a - —2(0—1p +2k (2.24)

By manipulating the products in (2.12), those with y and y’, in a way similar to that in (2.11),
one gets the agreement of (2.12) with the expression in (B.10), [8].

The objective of this section is to show that one gets the general 3-point function (2.12),
for the general degenerate operators of the minimal model (the operators producing degenerate

Please cite this article in press as: V.S. Dotsenko, Analytic continuations of 3-point functions of the conformal field
theory, Nucl. Phys. B (2016), http://dx.doi.org/10.1016/j.nuclphysb.2016.03.037

© 0O N O O A WO N =



© 0O N o o~ WO N =

JID:NUPHB AID:13682 /FLA [m1+; v1.228; Prn:6/04/2016; 15:02] P.5 (1-41)
V.S. Dotsenko / Nuclear Physics B eee (eeee) see—eee 5

representations, saying it properly), by replacing «, B, y in (2.1), (2.4) by «, B, y in (2.15) and
by continuing (2.1) to the fractional value of k:

k—k—p'l (2.25)

Saying it shortly: (2.12) is obtained by the analytic continuation of (2.1).

On general remark is in order.

We are talking in this section about the correlation functions of degenerate operators, in (2.1)
and in (2.12), with &, B, y having special values in (2.4) and in (2.15), to have the objects which
are well defined physically, as minimal model correlation functions. But the demonstration given
below implies in fact that the Coulomb gas integral in (B.10), [8], with general values of «, 8, y,
is obtained from the integral in (B.9) by the analytic continuation in k, by eq. (2.25). This is up
to the normalisation factors (2.8) and (2.20).

More precisely, in (2.1) and (2.12) «, 8, y would not be totally general. They will still be
subjects to one constraint, the neutrality condition: (2.10) for (2.1), with k being integer, and
(2.21) for (2.12), with [, k being integers. As k moves by (2.25), the values of «, 8, y are being
moved also, from the values satisfying (2.10) to the values satisfying (2.21), like in the case of
the degenerate values of the parameters, (2.4) and (2.15).

Going back to our correlation functions, we shall continue the logarithm of the expression
in (2.1), by using the integral representation of the logarithm of I"-functions.

Let us define

gk(p) = ﬁ % (2.26)
j=1

o

G )Zl:[r(l—k+a/+ip/)’ﬁ Tl +a+ jp) (2.29)

Ly Tk—o'=ip) |4 T(=a—jp)

and similarly for g(’s)(,o) & y)(,o) G ’3)(,0) G(y)(p)
With these notations, the function in (2.1), which we shall note as Cn m» takes the form:
(V1,p(0) Vi n (D) Vi (0)) = CF 1 (0)
= 2(mg (g (018 (0) (2.30)

and the function in (2.12), which we shall note as C ((f, ’;S)(m’ > takes the form:

(V;?”,,(OO)Vn/,n(l)Vm/‘m(()» c-p (0)

n’,n)(m’,m)
=G (p)GP (0GP ()G (p) (2.31)

It is shown in the Appendix A that loggi(p), analytically continued in k, k — k — p'l,
eq. (2.25), is given by:

log gx—p1(p) =1og Gi(p) —logp - 2kl +1— p'l — p'I?) (2.32)
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For the analytic continuation of log g,ﬁa)(p) we obtain, Appendix A:

log g,ﬁ“i)p,, (0) =1log G (p) —logp - 2kl — 12’ — p' + 1) — %p') (2.33)
and similar expressions for log g,@ ol (p) and log g,?:) vl (p).
Putting them together, by eq. (2.30), we obtain

(log Crlz),m(p))continued,k—p’l
=1og(G GGGy +1ogp - (—4kl +21(p" = 1)) (2.34)

To get the coefficient of log p, in its form above, we have used the neutrality condition on the
parameters, eq. (2.22).
Finally one obtains:

(Crlz,m(p))continued,k—p’l = C((,f/:np))(m/’m) (p) x :021(/] yv (2.35)
(o (v'.p) (p) has been reconstructed according to its form in (2.31).

n’,n)(m’,m)

The factor p? (#'=1) is an another normalisation factor, being an exponent linear in /, produced
this time in the process of analytic continuation. It could also be “symmetrized”, so that / and k
would appear en equal footing, by using the neutrality condition (2.21) en / and k. We shall do it
later, because one extra factor of this type is still coming, will be obtained in the next section.

For the time being we are dealing with correlation functions of Coulomb gas vertex operators,
which is simpler.

They have their own nontrivial normalisation which will be specified later. Further down we
shall normalise the operators by 1. With that universal normalisation the extra normalisation
factors in our analytic continuation formulas, like the one in (2.35), will disappear, as we shall
see later. But for the time being we shall still stay with vertex operators, like the ones in (2.2),
(2.3), (2.13).

3. Analytic continuation to the general, unconstrained values of charges of the vertex
operators in the 3-point function

To start, we shall reinterpret the results of the previous section in the opposite direction. We
shall consider that it has been shown that the general minimal model 3-point correlation function

(V. (00 Vi (1) Vi (0)) = CPP) i equal to the function (VT (00 Vi (V1 m(0)) =

(n',n)(m’,m)
C ,ﬁ m analytically continued, eq. (2.35) read from right to left:

Cl Dy () = (C (D)) continued -1 % p~ =D 3.1

And we shall continue further, the function (C, ,fm (P)) continuea to the values of charges, of the op-

A
. . 1103 1 j . .
erators in it, V.5 p=€ ¥ Vit g = %' Vo = e'%'.m? to the unconstrained, continuous

values, a, b, c: ’
(vl;tp) S Vo= Vo Ve=e, Vi, — Vy=e (3.2)

We remind that in the process of analytic continuation in Section 2, which results in the equality

(3.1), k has been replaced with k — p’l, but also the charges a1, @1 4, oci"p has been replaced

by o m» O s oz;“, > comp. the comment preceding eq. (2.25).
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It is much easier to continue this way, in two steps, the general minimal model correlator
(P'.p)
Cc

(n’,n)(m’',m)>

CP = (Ch ) eontinued = Chq = (Ve(00) V(1) Va(0)) (3.3)

(n',n)(m’,m)
instead of performing the continuation directly
(Vo 5 (00) Vi (D) Vi 1 (0)) = (Ve(00) Vi (1) Va (0)) (3.4)

with a, b, ¢, being unconstrained.
To perform the second step in (3.3), we shall need the detailed expressions for log gk, (o),

log glgoi)p,l (p), log glgﬁ_)p,l (p), log g]?i)p,l (p), obtained in Appendix A. They are as follows:
o
dt / / / —t
loggi—pi(p)= | —{ltk=p k= pl+1) = (k= pDle
0

(- e—(k—p/l)pf)e—pt + (1 — ek=p'Dptyp=t

(= e e 1) } G
o Ood !/ / / —
ozl 0) = [ S 1Cu+ Dk = g+ k= p't = D&~ pple”
0

e*(lJrot)t(l _ e*(kfp/l)pl) + eottfpt(l _ e(kfp/l)pt)

(1—e (1 —erh) (3.6

and similar expressions for log g,i‘i)pl (p) and log g,?:)p,l (p).

For (C,f, m(p)) continued we get the following expression:
log(cnp,m (p))continued
=log gx—p1(p) + log g,‘f_p/l (p) +log g,Eﬁ_)p,, (p) +1log g,?:)p,[ (p)

[e¢]

dt
= [ SHit= o0 =1+ Do = = )
0
+ Qa4+ 1428+ 1+2y + Dk —p'l)+3(k—p'l — D)k — p'lple”"
1 /
_ —k—p'Dpt —pt —(14a)t —(1+8)t —(14+p)t
+(l—e*f)(1—e*l”)[(1 e ) X (e +e +e +e )
+ (1 _e(k—p/l)pt)(e—l +eat—pt +e/3t—pl +eyt—pt)]} (37)

First we shall simplify the “polynomial” part in (3.7), the first part of it, the coefficient of e™".

By using the neutrality conditions (2.21), on a, 8, v, we get (we remind that pp’ = 1):
(k—p' Dk —p'l +1)p—(k—p'l)
+QRa+14+28+142y + D)k —p' D) +3k—p'l — D)k —pDp
=k—pDk—p'l+D)p—142-2p—2+20—2kp)+3+3(k —p'l - 1)p]
=k—p1)-2(p—1) (3.8)
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To continue eventually to the general unconstrained values of charges, of the operators, we have
to express everything in terms of these charges in particular the combination of the numbers of
screenings k — o'l in (3.8). From (2.22):

2k —p'h=d +B +y +2-20 (3.9)
By eq. (2.16)

o =20_a, B =2a_b, y =2a_c (3.10)
where we have replaced o, ., 0y 5, oe;r,’p by a, b, c. For (3.9) we obtain

2k — p'l) =2a_(a+b+c)+2(1—-p) (3.11)

For (3.8) we get:

2k —p'D(p—1)=2a_(a+b+c)p—1D+2(1=p)(p—1)
=2 (a+b+c)—2a_(a+b+c)+2(p—2+p)

= —dap(a+b+c) + 8o} (3.12)
We remind that
p:ai, p=0 ajo_=-1, pa_=—ay (3.13)

For the polynomical part of (3.7) we obtain:

o0

dt 5 _
/ 7[8050 —4apla+b+c)le (3.14)
0

We shall simplify next the “exponential” part in (3.7), its second part. It has to be observed
that, separately, the integrals of the polynomial part and of the exponential part in (3.7), they are
divergent at t+ — 0. To manipulate them separately we should introduce the limit € > 0, in the
integrals, instead of 0, and assume that, finally, we shall take the limit € — O when everything is
put together, as it has been done already in Appendix A.

For the first part we have done no transformations for the integration variable ¢, so we could
keep it as it is in (3.14), although, more properly, we could have assumed that the lower limit of
integration in (3.14) is €.

But for the second part of (3.7) we do intend to transform the integration variable ¢, so that the
explicit introduction of €, for the lower limit of the integration, will be necessary at some point.

In fact, we shall start simplifying (or reorganising) the second part of (3.7) by transforming
the variable ¢:

=o't (3.15)

We shall do all the transformations by ignoring, at first, the divergence at r = 0. But afterward we
shall take specific care of the extra terms, the “anomaly” terms, being produced by this divergent
limit.

With the change of the variable in (3.15), the second, exponential part of (3.7) takes form:

o]

[
J T (1 — eV (1 = eVl

% [(1 — e*(kfp’l)\/ﬁf)(ef\/ﬁf n ef<1+a)\/75+e—(1+ﬂ)\/ﬁf+e—(1+y)\/?f)
(1= kP DTy (VI (o PT=PT BV PT=PT Pl (3.16)
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We shall simplify next the notations and we shall express everything (k — p’l, «, 8, y) in terms
of the charges a, b, c.

The Coulomb gas parameter /o = o, corresponds (is proportional) to the parameter b of the
Liouville model, or to the parameter § in the imaginary Liouville [5,6]. As b and B are already
in use, and the notations ./p = a4, +/p’ = —a— would be slightly heavy, we shall use a single
parameter, as in the Liouville model, but we shall note it 4, so that

_oyta h 1

1
= :h’ /= — = — — = = — < 317
VP =ay Vi=r=—a w=—5—=2-5 (3.17)
Next:
o =20ara=2ha, B=2hb, y=2hc
2
o =20_a= —a B = _Eb’ y' = —c
av/p'=2a. B\p'=2b. yVp =2
o Jp=-2a, B Jp=-2b, y'Jo=-2c (3.18)
and, according to (3.9), or (2.22),
/ + / + /
k—p’lza"%ﬂ—p’ (3.19)
then
1
k=p' D=5+ +y)o+ o =o'
=—(a+b+c)tor+oa_,
(k—p'D)/p=20p— (a+b+c) (3.20)
We shall suppress also the tilde of 7, 7 — ¢. Then the expression in (3.16) takes the form:
o
dt 1
St (I=em (1= et
X [(1 _ e—(2oz0—a—b—c)t)(e—ht _}_e—%—Zat _i_e—%—th +e—}%—26‘1)
+ (1 _ e(20to*£l*bfc)t)(e*% +e*hl+2al +e*hl+2bl +e*hl+2c't)] (321)
Multiplying the numerator and the denominator in (3.21) by exp{ﬁ + %} we get:
o
dt 1
Sl (et e et — oY)
% [(1 _ ef(Zaofafbfc)t)(efaot +ea0t72at +ea0t72bl _i_eotothct)
+ (1 _ 6(2(107(17[17(')[)(60(01 +e*0(0l+2al +€7O{0t+2bl +e*0{0[+2€l)] (322)

Next we obtain, by regrouping the terms:
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00
dt 1
t 4sinh 4 - sinh &
% [eaot + efozot _ e(3a07a7b7c)t _ 67(3a07a7b7c)t
+e(a0—2a)t +e—(ao—2a)t +e(a0—2b)t +e—(a0—2b)t +e(a0—2c)t +e—(a0—20)t
_ e(a0+a—b—c)t _ e—(a0+a—b—c)t _ e(ag—a—i—b—c)t _ e—(ao—a+b—c)t

_ e(ol()—a—b-i-c)t _ e—(ag—a—b+c)t] (323)

It can be presented as:

o

dt 1 [si hz( t)

— % [sinh“(ag=

1 sinh 57 -sinh% 2

.12 t ) t ) t
~+ sinh“ ((ag —2a)§)+smh ((a0—2b)§)~|—smh (((XQ—ZC)E)

t

—sinh2((3a0—a—b—c)§)

t t t
x sinh®((eg +a — b — c)E) —sinh*((wg —a + b — c)i) —sinh*((@p —a — b + c)i)]

(3.24)
For t+ — 0, the above integral takes the asymptotic form:
dr4 1 2 2 2 2 2
—ax Z[(Oto) + (a0 —2a)” + (o0 — 2b)" + (0 —2¢)" = Bap —a —b —¢)
0
—(a0+a—b—c)2—(ao—a+b—c)2—(ao—a—b+c)2]
dt
= / 7[—8&3 +4ag(a+b+c)] (3.25)

0

This divergence, at t — 0, is compensated by the polynomial part (3.14), of the integral (3.7).
But, saying it differently, the equality of the expressions under integrals in (3.14) and (3.25)
implies that the polynomial part (3.14) could be distributed as in (3.25):

o0
dt
—/ T[(ozo)z—i-(oto —2a)% + (g — 2b)* + ap — 2¢)> = 3(ap —a — b — ¢)?
0
—(+a—-b—c’—(—a+b—c)’—(—a—b+c)Y]xe! (3.26)

so that the full integral (3.7), which is the sum of (3.14) = (3.26) and (3.24), takes the form:

— {=l@o)

[d inh* (%) inh? (g — 2a) %)
t Sinh” (g 5 sin oy — 2a)5
f el - — ‘ ?2 ]~ Lo —2a)%e™! = — i - : ht2
) sinh o -smh7 sinh o - sinh 5

sinh? ((atg — 2b)%)] L — 20— — sinh? ((atg — 20) %)

2 —t
— [(ap —2b)"e™" —
sinh 5 - sinh % sinh 5 - sinh %
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sinh?(3a —a —b —c)%)
sinh ﬁ - sinh %’

B sinh?((wg +a — b — %)

+[Bag—a—b—c)e’ — ]

+ g +a—b—c)e! ]

. t . ht
sinh 7 sinh 3

+[(eg—a+b c)ze—l sinh2((ao —a +b—c)%)
0— - _

sinh 57 - sinh %t
sinhz((ozo —a—b+ c)%)

+ (g —a—b+ c)ze_l
sinh 5 - sinh %

1} (3.27)

We find that everything is expressed in terms of the function Y (x, /) [5,6]

o0
dt _, sinh?((ap — x)%)
tog Ty (e, ) = [ Sl —x?er - S0 (3.28)
, t smhﬁ ~smh7

so that log(C ,’Z m)continued, Which is the integral (3.7), takes the form:
1()g(crl:,m)continued = —log Ty Qap, h)
—log Yy (2a, h) —log Yar(2b, h) —log Yy (2c, h)
+logTy(a+b+c—2a9,h)
+logYy(—a+b+c,h)+logYyla—b+c,h)+logYya+b—c,h) (3.29)
and
(le, m )continued
_ Yya+b+c—200,h)Yy(—a+b+c,h)Yyla—b+c,h)Yyla+b—-c,h)
B Y Qaro, ) Yar (2a, )Y (2, h) Y (2¢, )

(3.30)

This is the function in [6], though not completely so.

First, the normalisation of operators used in [6] is different.

Second, we have putted the index “M” for Yy, for “matter” (statistical model) which is
slightly different from Y (x, #) for Liouville, gravity, which has been introduced in [5]. The
difference is in:

h

1 h 1
oy = TR instead of bg = 3 + R for Y (x, h) of Liouville (3.31)

In [6], the function which note Y'j;(x, /) has been used in the form Y (x + % h).

And third, there is one additional factor missing in (3.30), the way we derived it. We haven’t
calculated yet the anomaly term, which is produced because of our manipulations with the sec-
ond, exponential part integral, which is divergent at t — 0 when taken separately. So far, in our
derivation of (3.30), we have ignored this point. We shall take care of it now.

The second, exponential part in (3.7) should have been taken with the lower integration limit €,
instead of 0, before the change of the variable 7 in (3.15). We reproduce this integral somewhat

symbolically:
o0
li /dt ! [z,...] (3.32)
im | — e .
e—0 t (1—e (1 —e P

€
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After the change of the variable in (3.15) we obtain

0
dt 1 -
lim E = R y— W't .. (3.33)
Nrg
The integral can be decomposed as follows:
S ~
dt 1 -

lim : Vo't ...

e—0 ? (1- e_\/ﬁf)(l _ g—ﬁf)

Cai 1 _
- | = _ o', (3.34)
! I (1 —e VPl — e VP P

The first integral in above goes to join the first, polynomial part of (3.7) and gives finally the
function in (3.30). But the second integral in (3.34) gives an additional term, which has been
missed in our derivation of (3.30).

To calculate the second integral in (3.34) we could use all the transformations, for the ex-
pression under the integral, which has been done above. It could be taken in the form in (3.24),
but with the limits of integration (e, € /4/p’) instead of (0, c0). As ¢ stays small, in the limits
(€,€/+/p"), we can replace the expression under the integral by its limiting form, for t — 0,
which has already been obtained in (3.25). In this way we get, for the second integral in (3.34),
the following result:

e/\/?d

t

- / 7[—8a§+4ao(a+b+6)]
€

€
= [8a — 4ap(a + b+ c)] - (log — — loge)
0 NG

=logp - (4o} — 2ap(a + b +¢)) (3.35)
This is our anomaly. It has to be added to (3.29). With it, the formula in (3.30) takes the form:
(le, m )continued
_ Ym@a+b+c—200)Yy(—a+b+c)Yyla—b+c)Yyla+b—c)
Yy (2ao) Y s 2a) Yy (20) T aa (2¢)
x p4a(2)—2ao(a+b+6‘) (336)

We remind that our objective was to continue the general minimal model 3-point function

COL oy =V (00) Vit w (1) Vi (0) (3.37)

n',n)(m’,m) —
towards the function
(Ve(00) V(1) V,4(0)) (3.38)

with a, b, c unconstraint. By (3.1), the result of the first step of continuation, and (3.36), the result
of the second step of continuation, we find so far:
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CED oy =V (00) Vit a (1) Vi (0)
_ TM(a +b+c—200)Yy(—a+b+c)Yyla—b+c)Yyla+b—-c)
- Ym(2a) Ty (2b) Ty (2c)

X p4a§—2a0(a+b+6) X Iozl(l—p/) (3.39)

We have suppressed the factor Ty (2c¢) in the denominator of (3.36), because Yys 2ag) =1,
as can be checked directly using the integral definition of the function Yj;(x) in (3.28). Some
specific values of Yys(x) are listed in Appendix B. With respect to the notations, we suppress
sometimes the dependence of Y, on &, which is implicite, by writing Ys(x) for Y (x, k), as
in (3.36) and in (3.39).

In eq. (3.39), the charges a, b, ¢ in the r.h.s. are still having the discretized values of the
degenerate charges:

a=0m m, b= Ay’ ' n, C= 0[;_/ p (3.40)
The remaining obstacle to fully continue to the continuous values of a, b, c, is the factor

pZI(l—p’) (3.41)

in (3.39). In particular, [ is still given by (2.19).
The total p-factor in (3.39) could be symmetrised. It is easy to check, by using the equation
(3.20) for k — p’l, that

p4a§—2a0(a+b+c)+2l<1—p’) _ (p)zu—p/) > (Io/)k(l—p) (3.42)

Still, in the p-factor in (3.39), or in (3.42), there appear the numbers of screenings, k and /, in
the form which could not be expressed fully by the charges a, b, c.

But it is clear, by the form of the p-factor in (3.42), that it could be removed by the renormal-
isation of the constants w4 and p_ in (2.9).

Specifically, if we give the following values for p4, p—_:

1 T(p) n—(1p) _1 T ~(=p)
T —p) <®) BT ITra= f

then the normalisation factor (2.20) will disappear, from the result for the integral (B.10) in [8],
and the factor

p P (phy R (3.44)

Wy = (3.43)

will appear, in front of the expression for (V+ o (00) Vi n (1) Vi 1, (0)) in (2.12). Then we perform
the transformations of Section 2 and of the present section, to arrive to (3.39), but because of the
extra factor (3.44) always present, unchanged during our transformations, the extra p factor in
(3.39), in its form in (3.42), will be cancelled. We shall get, with the choice (3.43) for the values
of the Coulomb gas constants @, u—, the formula (3.39), without the p-factor. At this point
we could finally continue a, b, ¢ to the continuous values and we obtain, finally, the formula for
3-point function in the form

(Ve(00) Vi (1) V4 (0))
_ Tyla+b+c—2a0)Yu(—a+b+c)Yyla—b+c)Tyla+b—c)
- Yw (2a) Yy (26) Yy (2¢)

with a, b, ¢ taking general, continuous values.

(3.45)
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We summarise that the formula (3.45) has all been obtained by the analytic continuation
from general 3-point function for degenerate operators of the minimal model. Though a specific
normalisation of the Coulomb gas screening operators, or of the constants ., ;_, was required.

The formula (3.45) is that for the vertex operators

Va(z,7) = eia(p(z,i), Vip(z,7) = eib(p(z,i), Vo(z,7) = eicw(Z,Z) (3.46)

with their nontrivial normalisation, N, for V,(z, z), etc., which will be specified in the next
section.

In the next section we shall get a slightly different formula, compared to (3.45), for the 3-point
function (®.(c0)Pp(1)P,(0)) of the normalised operators:

_ 1 _ _ 1 _ _ 1 _
Du(z,2) = N—Va(z, ), Pp(z,20)= Vbe(z, 2, Po(z,2)= ﬁVc(z, 7) (3.47)
a C

In the case of normalised operators (3.47) the p factors get cancelled automatically, indepen-
dently of the choice of normalisation of the screening operators, in the course of our derivation
from the original Coulomb gas formulas.

4. Normalisations. 3-point function of normalised operators

We shall fix the normalisation of Coulomb gas vertex operators, to normalise them finally
as in (3.47), by analysing the values of the correlation functions calculated for a, b, ¢ having
discrete, degenerate values

a=dy m, b=ay, c=ay, “.1)

We shall do it by using the original expression for the correlation functions, in terms of products
of I functions, in its symmetrised form given below, and also by using the new expression, in
terms of products of T functions, which should give the same values, when a, b, ¢ are degenerate,
eq. (4.1).

The fact that we have kept, in Sections 2 and 3, the charge o,/ , always in its conjugate
form

c= ot;r,,p =200 -y, (4.2)
is not actually important for our derivations. We can relax now to the values of ¢ in (4.1).

The case of ¢ = o, will correspond, with the definition of ¢ in (4.1), to a_, _,, instead

of ay ,. Which means that we shall allow for the indices to take also the negative values.
We have kept, in the derivations of Sections 2 and 3, one of the operators, in its conju-
gate form, V; (z,7), in part for historical reasons, to make the transition from the origi-
nal formulas ofp [8] smoother, not to become excessively general from the start, which is not
needed.

We shall go back, in this section, to the normalisation of py, p_:

_L T 1T

aT(=p) - aT(1-p)
which has been taken at the start, in Section 2, with which the correlation function of vertex
operators is of the form:

My 4.3)

T(ip' — k) ﬁ T'(jp)

1
(Ve(00) V() Va(0)) = p~ T | — .
i T —ip" +k) r'da-—jp)

i1
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k=o' —iphT'(k =B —ipT'(k =y’ —ip')

T+« +jo) A+ B8+ jo)l'(A+y+ jp)

4.4)
F(—a—jo)T' (=B —jo)l'(=y — jp)

l—ir‘(l—k—l-a +iphT(1—k+p' +ip)T(i —ky' +ip')

when a, b, c take the degenerate values (4.1). We remind that

o=2ara, B=2a4b, y=2a4c

o =20_a, B =2a_b, y' =2a_c 4.5)
and, by the neutrality condition for a, b, ¢ in (4.1),
/ / /I _ 1 _ 1

I— %’ k— % (4.6)

The expression in (4.4) could additionally be symmetrised by transforming I'’s with —k, as
follows:

k
F(l;(ixi)k) ]l:[l (X—J)2 l“(1;(?)6) @D
This gives:
(Ve (OO)Vb(l)V (0))
1 k .
= H,HI (zp ) E F(Fl(l—pz;@ jH] %
i 1
(@ +ip' — 2B +ip' — DXy +ip' — j)?

i=0;=0

N l:[ Fd+ao +iphTA+p' +iph T +y" +ip")

o L =ip)D(=p = iphT(=y’ —ip")

ST +a+ il +B+jpTA+y + jp)
LC(—a = jo)I'(=B — jo)I'(=y — jp)

(4.8)

Sometimes the formula (4.8) is more convenient to make various check.
We remind also that this same correlation function, expressed in terms of the function Yz (x),
is of the form

(Ve(00) Vi (1) V4 (0))
. Yyla+b+c—200)Yy(—a+b+c)Yyl@—b+c)Yyla+b—c)
- Y (2a) Yar (26) Y s (2¢)
x (p)! 1= 5 (p/yk1=P) (4.9)

— comp. (3.39), with p factor expressed as in (3.42). We remind that we are actually in the
normalisation (4.3) of the screening constants p4, (—.
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Going back to the problem of normalisation of vertex operators V,, Vj, V.., we shall base our
arguments on several simple examples.

It is shown in Appendix B, by using the formulas in (4.8) and (4.9), that we have the following
particular results:

1.

i =7 (4.10)

where

zZ= ﬁy(p’)y(p) =Y (—2a0)p" " (4.11)
I is the identity operator, I = 1. y(p) =T'(p)/ T'(1 — p). Z could be considered as the partition
function of the Coulomb gas, because the function (/II) = (1) is given by the Coulomb gas
functional integral [7,8], without normalisation. So we note it as Z. The result (4.10) is obtained
in Appendix B, both with (4.8), by the analytic continuation of (V.V}, V,) in its charges, a — 0,
b — 0, ¢ — 0, and also with (4.9).

2.
(It =1 4.12)
Here I1(z,2) = Vag, (2, ) is the conjugate identity operator.
3.
=1 (4.13)
7 .
4.
1
+r+ 74y —
It = — (4.14)
5.
(I*Vi2Vio) = (N12)? 4.15)
where
(2p—1)
(N2 =P (4.16)
y(p)
is the “naive” norm squared of the operator V| ». More generally [10, Section 9.1]:
n—1 . .
' —jol(=1+d+ )p)
(Ny.)2 = 1—[ 'JP : J)p
L2 — 1+ j)p)
1 -1
HJ/(( +)p—-D @.17)
il v (jp)
6.
(IVi2Vi2) = Z(N1,2) 4.18)
7.
(v, Vig)=1 (4.19)
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8.
(Itvihvigy=z"" (4.20)
9.
(ITVELVE) =272 (N1p) 2 4.21)

By comparing (/II) in (4.10) and (I 1I) in (4.12) we have to conclude that

1
IT=—1 4.22
Z (4.22)
Similarly, by comparing (4.18) for (IV12Vi2) and (4.19) for (IVBVLZ) we have to conclude
that

Vit :

=—=Vi2 (4.23)
127 Z(N1 2)?

The identifications in (4.22) and (4.23) are not in the sense of the Coulomb gas theory, where
these operators are different, but in the sense of the corresponding statistical model (matter)
theory, where we assume that V and V' represent the same statistical model operator, like spin
in the g — component Pots model, for general, real values of g. In the sense that the two operators,
in the equalities (4.22), (4.23), should give the same correlation functions.

Next, if we assume, naturally, that the result in (4.10) for (ZII) is in fact the partition function
of the Coulomb gas, then (4.10) could be rewritten as:

()
=2z - — = Z - (1) (4.24)
where
iy = 40 4.25
() = Z (4.25)

is the properly normalised correlation function. Then the result in (4.10) for (/II) implies that
iy =1 (4.26)
which assumes that / = 1 is the properly normalised identity operator,
N(I)=1 (4.27)
In this case, by (4.22),

NI = 1 (4.28)
= .
This is consistent with (4.12), (4.13), (4.14). For instance:
(I rrirty=z.-(rrtrty
1 1
=7 ((?III)) = (4.29)
Next, the result in (4.15) could be interpreted as:

. 1
(I™Vi2Vip) = 5(1V1,2V1,2>
= {{IVi2Vi2) = {V12V1,2)) (4.30)
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since [ = 1. By (4.15)

(ViaVia) = N7, 4.31)
so that the “naive” norm of Vi is in fact its actual norm:

N(Vi2) =Ni2 (4.32)

(N1.2)? given by (4.16).
Again, because of the relation (4.23), the norm of the conjugate operator is given by:

NV =——— N2
P Z (N
NV = 433
Vi =75 (4.33)
The consistency with (4.18)—(4.21) could readily be verified.
Now, in general,
1
N(V,)=N,, NV = 4.34
(V=N N = (4.34)
where (N,)? is given by:
(Na)> = (I Vo) (4.35)

The “naive” norms of vertex operators V,, Va+ have been defined in [10, Section 9.1]. They
differ from the actual norms in (4.34) by the absence of the partition function Z, of the Coulomb
gas, in the norm of V;*, N(V;M)naive = 1/Nq.

By the formula (4.9) we obtain:

IV, Vy)
~ Tm2a) Yy 2oo) Yy (Lao) Yy (2a — 200)
B Y1 (2a) Y (2a) Y o (4eto)
% p(n/—l)(l—p/) % (p/)(ﬂ—l)(l—,v) (4.36)

Here we assume that @ = a,y ,, and then, by (4.6) I =n" — 1, k =n — 1. Since Ty Qo) = 1,
Ty (x) = Tay ey — x), Appendix B, we obtain:

_ TM (261 — 2(1())
T (2a) Yy (—200)
Consistency could readily be checked (Appendix B) that:

(N,)? > p(n’fl)(lfp’) x (p')=D=p) (4.37)

1
~ Z2(N,)?

— consistent with (4.34). We could conclude that the formula (4.37), for the norm squared of
the Coulomb gas vertex operator V,, is perfectly general. Though still limited to the degenerate
values of a, a = «,y ,,, as we are still working with the formula (4.9) which contains the p factors,
in which the numbers [, k are still present.

We shall now define the correlation function, properly normalised by %, and which is defined
for the normalised operators (3.47). We find:

(N(Va+))2 = (Na+)2 = <I+Va+ Vor) = <I+V2a0—a Voag—a) (4.38)
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(P (00) Py (1) D4 (0)))

= %(VC(OO)Vb(l)Va(On AA
_ p " Tyatbtc—2e0)Tu(—a+b+)Yyla=b+)Tyla+b—o)
 Yw(—2a0) Ty (2a) Yy (26) Yo (20)
Ty Qa)Y(=2e0)  Tar(2b)Yp (—2e00)
Yu(2a — 2) Y1 (2b — 2a0)

% pl(l—p’)(p/)k(l—ﬂ)[

Ty (2e) Yy (—2ap)

_m’+r/+p’—3

Ty e —2agp) ]1/2 x (0 T(I_P/)(p’)_%(l_p) (4-39)
We have assumed that a = &/ 1, b = @, ¢ = )y ,. We obtain:
Yy@+b+c—2a0)Yy(—a+b+c)Yyla—b+c)Yyla+b—c)
Y QRa) Yy 2a — 2a0) x Yy (2b) Y (2b — 200) X Ypr 2c) Y 2c — 20)
T 20) x 071 10 ()10
x (p)~1A=P+1=p") ()~ (1=p)+(1=p) (4.40)

We have used the formulas (4.6) for [ and k. We observe that all the p-factors get cancelled and
we find, finally, the normalised 3-point function for the normalised operators in the form:

(Pc(00)Pp (1) D4 (0)))
Ty@+b+c—2a0)Yy(—a+b+c)Yya—b+c)Yyla+b—c)/Tyu(—2ap)
Y QRa) Yy 2a — 2ap) x Yy 2D) Y pr (2b — 200) x Ypr 2c) Y 2c — 209)
(4.41)

In this formula everything is expressed, analytically, in terms of charges a, b, ¢, so that we can
continue the formula to the general, continuous values of charges.

The expression (4.41) is the formula (5.1) of [6], obtained there differently. Our point is that
we have derived everything, by a series of analytic continuations, from the general 3-point func-
tion of the minimal model [8].

5. Analytic continuation of the function ((®.®,®,)) towards the 3-point function of
Liouville

The 3-point function ((®.P,P,)), which have been defined in Section 4, could further be
analytically continued to give the 3-point function of the Liouville model. We have to continue
the charges

a— —ia, b— —ib, c¢— —ic (5.1

so that the vertex operators V, = elae | v, =bv v, = elc®, eventually normalised, V, — &, =
Ni Vg, etc., would go to the Liouville model vertex operators e?, eP? . % The central charge
parameter /(= «4) of the corresponding conformal theory, has also to be continued:

h— —ih (5.2)

Since the function (&P, P,)) is expressed as a product of Yy (x, k) functions, eq. (4.41),
we have to continue first the function Y (x, 1), towards Y3s(—ix, —ih), and then we shall have
to construct with it the analytic continuation of the 3-point function (®.®;,P,)).
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I / Poles of %
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./ \ / sinh (the‘e )
*
bt *

Fig. 1. The start of the analytic continuation of the function Yps: Yps(x, h) — YTy ()"ce*"e, l;e*i(’). The plane of the
figure is the complex plane of ¢.

5.1. Analytic continuation of the function Y ps(x, h)

For convenience, we reproduce here the integral definition of log Yys(x, &), eq. (3.28):

o0
dt . sinh?[(o — x) 5]
1ogTM(x,h)=/—{<ao—x>2e - —————1),
t smh7~smhﬁ
0
h 1 (5.1.1)
oy)y=—— — .
=2 2
We shall put
x=ie®  h=he it 9:0—>% (5.1.2)

where X, h are considered to be real, positives, for the moment. Eq. (5.1.1) takes the form:

log TM()?ef"e, fze*ie)

o0 ~
— / %ng—i& _ %eie _ie—i9)2e—l
0
sinh[(ée_ie — Leif — FeTi0)L]
- 2 2h 2 (5.1.3)

(R o—i0Y ginh( L oi®
sinh(5 e )smh(2he)

In Fig. 1 are shown the poles of the expression under the integral in (5.1.3) considered as a
function in the complex plane of r. We observe that there are no poles at r = 0.
The poles are due to the factors

1 1

e=iey s ' (5.1.4)
sinh(%2 e~ie) sinh(-e'®)
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Fig. 2. The Fig. 1 when 6 becomes equal to 77 /2, TM()?e_ie, he™10) - Yy (—i%, —ih).

Fig. 3. Successive deformations of the integration contour over ¢, in the integral for log Yy (—i %, —ih).

As 6 — 7, the poles approach the real axes, the integration line of ¢. For 6 = 7 the poles put
themselves on the real axes and the integration line, over ¢, gets deformed accordingly, to avoid
poles, Fig. 2.

Next, the contour of integration could be deformed as shown in Fig. 3.

Accordingly, the integration breaks into two part: the sum of integrals around poles, the first

part, and the integral along the line /, Fig. 3, the second part. We shall calculate them successively.

© g sinh?[(E - L 1if)h)

Poles = Z ; ( 2

— (5.1.5)
n=1g sinh(—%5*) - sinh(izLﬁ)

C, is a small closed contour around #, = 27/ - n, the pole due to the factor 1/ sinh(é—%). We get:
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(—&—L-ﬁ—ii)Znﬂn
dt 2 2k +c.c.—2
Poles = E —(— - ¢ - ec )

—ihn T ihn 7. ~
il b 2(e B o 22y 1y Lt — 2min)
n 2h
Sl i —inh?*n—izn+2mihin +cc.—2
= —(D”%X .
ot 27Thi’l (e—lﬂh n _ gimh n)

St 1 e—inﬁzn+2m'f1)?n + eiﬂflzn—Znifz,\?n —2. (="

- = ; . (e—inﬁzn _ eizrfzzn) (5.1.6)
2niﬁin 2n  ,—2mihin n n
+q” - —2(=1)"-q
Hmm_—E:— e (5.1.7)
with
g =eh (5.1.8)
The series in (5.1.7) is almost that for the log of ratio of two -functions:
o0 2iun 2n ,—2iun n,n
1 —2(-1 1 0 (u,
_y - Hde DM L ogg—i(E =) +10g 20D (54 9)
il I—q" 4 2 93(0, )

This formula is obtained in Appendix C. Using (5.1.9), the result (5.1.7), for Poles, could be
given as:

1 - 01 (Thi, 7
IW%:—f%q—M%—nM%H%—g%%?y g =" (5.1.10)

The second part of (5.1.3) (with @ = %) is given by the integral along the line /, Fig. 3:

o0 ~
1= P ) lx) e
0
mﬁgﬂ—4+mq
- ) (5.1.11)
smh( t) sinh( ~t)
We shall break it into pieces as:
dt h
b_M{/—h ——WW
-2 12
dt (2 + ¥4 _x) vy
+/ t ﬁ 1
& P
00 s 12 h 1 i
di sinh“[(5 + == — X) 5]
+/T A e A (5.1.12)

! sinh(%;) - sinh( %)

In the above, we have introduced the lower limit of integration €, with the limit ¢ — 0, because
the integrals in (5.1.12), taking separately, are divergent at + — 0. Then we kept the integration
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Fig. 4. Final deformation of the integration contour along the line /, in the integral /;.

contour as it is, t : € — 00, in the first integral. For this part, there are no poles and the integration
line /, Fig. 3, could be put back on the real axes. While for the integral of the second term in
(5.1.11), the part which contains poles in the vicinity of /, Fig. 3, we have turned the contour of
integration, the line /, towards the imaginary axes, as is shown in Fig. 4.

This contour then break in two, the small contour C, around the origin, and the integral along
the imaginary axes, for which we have changed the variable ¢ = i, Fig. 4. This last integral is the
third one in (5.1.12). We shall drop the tildes, of 7, in third term of (5.1.12), in the following. In
the second integral, over C¢ in (5.1.12), we have already developed the sinh’s in the numerator
and in the denominator. This integral is equal to

i%(ﬂo—i)z (5.1.13)
where
hoo1
po= L (5.1.14)
27" 2

The first and the third integrals could be put together and the limit € — O could be lifted. Alto-
gether, we get

Ilzig(ﬁo—i)z—logn(i,ﬁ) (5.1.15)

Here Yy (x, ﬁ) is the Y function for the Liouville model, which was introduced in [5]:
o0
~ 7 dt ~\2 —t
log Y (x, h) = 7{(/‘50 —X)e " —
0
Bo is given by (5.1.14).
Now, putting together the two parts of (5.1.3) (with 6 = %), the Poles, eq. (5.1.10), and I;,
eq. (5.1.15), we obtain:

sinh2[(Bo — %) 11 \

- (5.1.16)
sinh(%) - sinh(;—ﬁ)
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/ F2// ////
7 L |

/s

—ih

~ ~ )
Fig. 5. Domains in the complex planes of 72 and of i where the functions P (x,q), withg = eth , are well defined.

log Ya(—i%, —ih)

1 4 -~ ﬁ](nﬁi,q)
=——1 —i(= —7h log —— 17
) ogq 1(2 mhx) +log 530.9)
+i%(/30—i)2—logTL(i,fz) (5.1.17)
or
1 01 (Th,
Y (=i %, i)Y (F, ) = —p el T 5 vihy, q) (5.1.18)
q'/ 13(0, q)
‘We remind that
Bl o1 7
0 ==— —, =—4+—, g=¢7h (5.1.19)
Y Bo Y q

When passing from (5.1.17) to (5.1.18) we have grouped together two terms in (5.1.17):

i%(ﬂo —5)?— i(% _nhk) = iz(ﬁg —2BoF + 72— 1+ 2hx)

= zh—2+1+ 4 DF+P— 14200
2 2" ap2 2

= z(h——lJréqL(iz—i))wmﬂ)=i£(oﬂ+20zo;z+)22)=i1(ozo+)z)2
2°4 2 4p2 A 20 2

(5.1.20)

The relation (5.1.18) is the formula (6.2) of [6], derived there by different methods.
One comment is in order, with respect to our derivation of the formula (5.1.18).
imh?

The ¥ functions in (5.1.18) are not defined for g = e with / real. We need to have

Imh?> >0 (5.1.21)

and then £ ought be in the sector §, Fig. 5.
Also the argument —ih of Ty(—ix, —lh) in (5.1.18) will, in this case, be in the sector below,
Fig. 5, such that the poles of the factors

1

: (5.1.22)
sinh(= ””) sinh({F)
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0 e -~ t Instead of Fig.2
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Tk

Instead of Fig.3

Fig. 6. Modifications of Figs. 2 and 3 when his complex, i.e. h = he=i0

continuation, and 0 < arg i < 77/2.

is complex initially, at the start of the analytic

in the integral form of log s (—ix, —ih), would stay away, still, from the integration line over
t (real axes): —ih should stay away, to the right, from the lower part of the imaginary axes, for
the integral representation of log Y37 (—i X, —ifz) were well defined.

In summary, & should be in the sector S, Fig. 5, of its complex plane, for our analytic contin-
uation had to make sense.

This implies that, at the start of our analytic continuation, & = h (eq. (5.1.2) for 6 =0) had to
have a “small” imaginary part, positive. This implies in turn that our figures should slightly be
deformed, as is indicated in Fig. 6, Fig. 7. Otherwise, the derivation stays as has been presented
above, though in a somewhat (artificially) simplified context.

By the way, the fact that log Vs (—ix, —ifz), in (5.1.18), is well defined, by its integral, as
was discussed above, is seen by the first figure in Fig. 6: the poles stay away from the initial
integration line, the real axes of 7.

5.2. Analytic continuation of the function {(®.®,P,))

The properly normalised 3-point function (&P, P, )) in (4.41) is all expressed in terms of
the function Yy (x, h). To continue it to the Liouville sector we just have to replace Yy (x, h)
by its analytically continued form, given by the formula (5.1.18):

o Feotn? o D1y, 4)

N B
A e ) 930, q)

(5.2.1)
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Instead of Fig.4

Fig. 7. The final deformation of the contour of integration along the line /, in the case when his complex.

g=¢e" "’ We have suppressed the “tildes” of X and h, which served us in subsection 5.1 for the
presentation purposes of the analytic continuation.

As was discussed above, at the end of subsection 5.1, for the formula (5.2.1) to be valid, &
have to be complex, with

0<argh < % (5.2.2)

— h have to be in the Sector S, Fig. 5, h=hin (5.2.1) and in Fig. 5.
Replacing every Yy in (4.41) by its analytically continued form, eq. (5.2.1), we obtain:
(@ (00) Py (1) P (0)) continued
=V Yu(—i(=2B0). —ih) x [Tar(—i(a+b+c—2Bo). —ih)
x Ty (—i(—a+b+c), —ih)Yy(—i(a—b+c),—ih) Yy (—i(a+b—c), —ih)]
J[(Xp(=2ia, —ih) Yy (—i(Ra — 2B0), —ih) Yy (—i2b, —ih)
X Yar (=i (2b —20), —ih) Ypr (—i2¢, —ih) Yar(—i (2c — 2Bo), —ih)]"/?

1
T B0 VY (=i (=2p0). —ih)

T
><exp{iE[(ao—i—a—|—b+c—2,30)2+(oto—a+b+c)2+(ozo—i—a—b+c)2

1 1 1
+ (@ +a+b—c)P— 5 (@ +2a)% — 5@ +2b)% — 5 (@ +2¢)?

1 2 1 2 1 2
— 5@+ 2a = 2p0)" — S (@ +2b = 260)" — (0 + 2¢ = 2f0)°]}

VYL Qa, )Y 2a —2B, )Y (2b, k)Y (2b — 2By, h) Y1 (2c, h) YL (2c —2Bo, h)
VO (h2a)D (wh(Qa — 2B0)) 1 (Th2b) 3 (wh(2b — 2B0)) 01 (;wh2c) 0 (mh(2c — 20))
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M (wh(a+b+c—2B0)(th(—a+b+c))v1(wh(a —b+c))d(mh(a+b—c))
Yoa@a+b+c—280,W)Y(—a+b+c,h)Yr(a—b+c,h)Yp(a+b—c,h)
(5.2.3)

We have suppressed the argument ¢ in the functions ¢ (¢4 (wrh2a,q) — ¥1(wh2a), etc.) to
compactify the expression a little bit.
With some simple algebra one can reduce exp{i % [...]1} in the r.h.s. of (5.2.3) to

expli %[—2/33 + 20080 + g1} (5.2.4)

and one can check, with some manipulations for Ypy(—i(=28p),—ih), that
VY (—=i(=2po), —ih) is equal to

! ! e~ i2meofo (5.2.5)
4aofo\ Yy (=20, h)

Finally, the whole expression, in the r.h.s. of (5.2.3), preceding the part with Y functions, could
be reduced to:

P2
617a0

q3/493(0, )40 Bov/Tp (—2ag, h)

We obtain:

(5.2.6)

(P (00) Py (1) D4 (0)) continued
= VY (=i(=2B0), —ih) x [Yy(—i(a + b+ c — 2B0), —ih)
X Yy (—i(—a+b+c), —ih)Yy(—i(a —b+c), —ih) Yy (—i(a+b—c), —ih)]
JICar(=2ia, —ih) Yar(—i(2a — 2B0), —ih) Yy (—i2b, —ih)
X Yar(—i(2b — 2Bo), —ih) Yar(—i2¢, —ih) Yy (—i 2c — 2Bo), —ih)]'/?

I )
17%

e
q3/%93(0, q)4ao fo/ T (=20, )
YL Qa, )Y 2a —2By, )Y 2b, )Y (2b — 2By, h) Y1 2c, h) Y1 2c — 2Bo, h)
V1 (Th2a)0 (hQa — 2B0)) 01 (T h2b)D (mh(2b — 2B0))H (wh2c)D (mh(2c — 2By))
« P1(mh(a+b+c—2B8p)01(Th(—a+b+c)01(mwh(a — b+ )t (mh(a+b —c))
Yr(a+b+c—2B0, )Y (—a+b+c,h)Yr(a—b+c,h)Yr(a+b—c,h)
5.2.7)

Now we shall rewrite the equation (5.2.7) as follows:

(W (00) Wy (1) Wa (0)) continued
/[P ha+b+c—2By),q)01(th(—a +b+c) <q)
X H(m@h(a—b+c), ) (mh(a+b—c),h)]
x [91(h2a, q)91(Th(2a — 2Bo), )01 (wh2b, )91 (wh(2b — 2B0), q)
x 91(rh2e, )91 (th(2c — 2B0). ¢)1'/
= VY (=i (=2B0), —im)[ s (=i(a+ b+ c — 2a0) Yy (—i(—a+b+c), —ih)
X Yy(—i(a—b+c),—ih)Yy(—i(a+b—c),—ih)]
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/[D1(h(a+b+c—2B),q)01(th(—a+b+c).q)
X M (mh(a—b+c),q)(mh(a+b—c),q)]
X [P (wh2a, q)01 (whQa — 2bg), q)V1 (Th2b, g)0 (th(2b — 2B0), q)
x 91(h2e, )91 (h(2e — 2B0). ¢)1'/
JIYm(—i2a, —ih) Yy (—i(2a —2Bo), —ih) Ypr(—i2b, —ih) Yar (—i (2b — 2Bo), —ih)
x Yy (—i2c, —ih) Yy (—i(2c — 2By), —ih)]'/?
e 3
 43493(0, )4aoBon/ Tw (—2a0, )
5 (YL Qa, )Y a — 2By, h) YL 2b, )Y (2b — 2P0, h) Y1 (2c, b)Y (2¢c — 2Boh)]'/?

Yra+b+c—2B0, W)Y (—a+b+c,h)Yr(a—b+c,h)Yr(a+b—c,h)
(5.2.8)

The idea to organise, in this way, the analytically continued expression for (P, D)) is the
following.

Passing from the 3-point function, for statistical models, to the 3-point function of Liouville,
is delicate. The final test, or the definition, for the 3-point functions is, in fact, given by the 4 point
functions, by their decomposition, or factorisation, into a product of two 3-point functions, with
the sum over the states in the intermediate channel. As the spectrum, of the intermediate channel,
is discrete, in the minimal model (and equally in the generalised minimal model), while the spec-
trum of the Liouville theory is expected to be continuous [12,13], to pass from the sum, over the
intermediate states, to the integral, in the decomposition of the 4-point functions, could be organ-
ised by representing the initial sum as a sum over the residues, by adding an appropriate function
which produce poles. And then the sum of the residues could be expressed by the appropriate
integral.

The role of ¢ functions in the denominator of (5.2.8), in the L.h.s., might be that of providing
the necessary poles.

Saying it differently, the appearance of these ¥ functions, the ones involving interactions
(like 91(wrh(a + b + ¢ — 2P0), q), etc.), in the analytic continuation from minimal models to
Liouville, might be interpreted as a sign, or a proof, that in fact the intermediate states spectrum
of the Liouville is going to be continuous.

We are, actually, starting talking of the possibility to obtain the 4 point functions of Liouville
by the analytic continuation of the well defined 4 point functions of minimal models. If realised,
the associativity, in particular, will not need to be proved, will be automatic.

The task should be more complicated than that of continuing the 3-point functions. The pos-
sibility is to be attempted. For the moment we haven’t yet much progressed in that direction.

The appearance of a product of “local” ¥ functions, under the square root, in the L.h.s. of
(5.2.8), like 91 (h2a, q), 9 (wh(2a — 2Po), q), etc., is related to the question of the appropri-
ate normalisation, of the individual operators. We have putted them to the l.h.s., in (5.2.8), so
that they complete the product of Y,(—i2a, —ih), etc., which are also the normalisation fac-
tors, analytically continued. In particular in this way the common zeros, of Yy(—i2a, —ih) and
P1(wh2a, q), etc., will be cancelled. But we would not insist on this point for the moment. It
is the question of the appropriate normalisation of the Liouville vertex operators. The factor
in front, in the r.h.s. of (5.2.8), is also related to the question of normalisation, of the 3-point
function of Liouville. Might also to be decided by the proper definition of the 4-point function.

Please cite this article in press as: V.S. Dotsenko, Analytic continuations of 3-point functions of the conformal field
theory, Nucl. Phys. B (2016), http://dx.doi.org/10.1016/j.nuclphysb.2016.03.037

© 0O N O O A WO N =



© 0O N o o~ WO N =

JID:NUPHB AID:13682 /FLA [m1+; v1.228; Prn:6/04/2016; 15:02] P.29 (1-41)
V.S. Dotsenko / Nuclear Physics B eee (eeee) see—eee 29

6. Discussions

Historically, the first step of the analytical continuation, from the (1, n) operators 3-point
functions to the general (n’, n) minimal model operators 3-point functions, the continuation pre-
sented in Section 2, it was realised long ago [14], as a by product of the curiosity, during my work
on 3-point amplitudes of minimal models coupled to gravity [15]. At that time I have also de-
fined the “naive” norms of vertex operators, V,(z, Z) and V, ' (z, Z), the analyses described in [ 10,
Section 9.1]. This last curiosity was better justified, because in 3-point amplitudes of minimal
models coupled to gravity, after cancellations, remain only products of norms of the operators.

At the end of the previous section we have started arguing that the final precisions for the
definition of 3-point functions should be given by the 4-point ones, in which the 3-point functions
participate “dynamically”, in the sum over the states in the intermediate channel.

For instance, the question was raised in [6] with respect to apparent non-decoupling of some
states from the outside of the minimal model (finite) Kac table of primary operators (the actual
minimal model, not the generalised one). The problem that the 3-point functions (or operator
algebra constants) with particular operators from outside the Kac table, do not vanish, the way
they are defined analytically by the direct calculation of the 3-point functions. This breaks the
“fusion rules” of minimal models. So that some decouplings have to be added by hand.

We have seen the answer to this question in our work of [7-9], where the operator algebra
constants (3-point functions) have been derived from the structure of the 4-point functions of
minimal models, which were the principal objects of [7-9]. We have seen that in the sum over
the intermediate states, in the case of actual minimal models, it happens that for a particular
the primary operator, which is placed outside of the Kac table, its contribution to the sum over
the intermediate states gets cancelled by the contribution of a descendent operator of the nearby
channel of another primary operator, positioned inside the table. And in this way the “fusion
rules” get restored, analytically, not by hand. One example of such “delicate decoupling”, which
could be seen only on the level of 4-point functions, is described in Section 9.2 of [10].

Above mentioned is just an example. But in general, we wish to stress again that, most likely,
the proper, definite definition of 3-point functions should be provided by the 4-point ones. In
particular, for the Liouville model.

Acknowledgements
I grateful to Marco Picco and Raoul Santachiara for numerous useful discussions.

Appendix A. Formulas needed for the analytic continuation of C,I,’, m(p) in Section 2

In Section 2 we have defined the factors gx(0), Gk (p), 8% (0), G\ (p), in (2.26)~(2.29), s0
that the functions C2 ,,,(p) and C (p.p) were given by the products in (2.30) and (2.31). To

prove the formula (2.35), the ﬁrsénsi’é)fgmo’fmt)lle analytic continuation, we have used the formulas
(2.32), (2.33). We shall prove these relations now.
8k(p), Gik(p).
Taking log of (2.26) we get:
k
log gi(p) = Z(IOgF(jP) —log'(1 — jp)) (A.D)
j=1
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Next we use the integral representation of I"(x):

o0
dl -t __ ,—xt
logT'(x) = f =t = —¢ (A2)
t 1—e!
0
T dr o=t _ g (=x)t
1ogr(x)—1ogr(1—x)=/7[(2x—1)e*’+ T A= ] (A.3)
— €
0
One finds:
00 k . .
dt ) 3 e—irt _ o—(=jp)t
togg(o) = [ Dol — et 4 S
t 4 1—e
o /=1
o0
dt _
= | Lk +Dp—kye
0
1 e PI(1 — e kpty  omlePl(] — kPt
~ Ad
+ l—e"( 1—e—r! 1 —ert )l (A4)
o0
dt / 4
log gk (p) = 7[(k(k +1Dp —k)e
0
L] (e—m(l — ket N e (11— ekpf))] A5
1—et 1—ert 1 —ert '
In a similar way, by taking log of (2.27) we find:
rd
t
log G (p) = / T[(l(l +1)p =2kl —1+k(k+1)p —k)e™"
0
rd 1
! kt—p't —Ip't —(1+k)t Io't
Ca | —elp [ —elP
+/ t (l—e‘t)(l—e‘/’/’)(e (Imeme (=™
0
0
+/ B : € (1—e™)+e(1=e")]  (A6)
t (1—e)(1—erh) '
0
Next, replacing k by k — ol in (A.5), we get:
o0
dt / / / —t
log gk—p1(p) = 7[((k —pDk—pl+Dp—(k—=pl)e
0

1

AT a e © A T ke A= )

(A7)

Our purpose is to compare log Gy (p), (A.6), and log gx— (o), the expression above.
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For the polynomial part, the coefficient of e~ in (A.7), one finds:

(k—p' Dk —p'l+1)p — (k—p'l)
=k(k+1)p—1Qk+ 1)+ p'I> —k+p'l
=k(k+1)p—2kl =1+ p' 10+ 1) —k (A.8)

This agrees with the polynomial part in (A.6).

To give the exponential parts of (A.6) and (A.7) a similar appearance, we shall change the
variable of integration ¢ in the first integral of the exponential part in (A.6) as t — pt, i.e. t = pf,
and shall we drop the tilde afterwards.

We ignore for the moment the fact that the integral, of the exponential part taken alone, is
divergent at t — 0. We shall take care of the extra terms, the “anomaly” terms, which are due to
this divergence, a little bit later.

After the change r — pf in the first integral of the exponential part in (A.6), the whole expo-
nential part of (A.6) takes the form:

o0
dt 1 .
— pI—t (] _ =it =(I+k)pt (1 _ Hlt
/t(l—eﬂot(l_e—t)[e (I—-e")+e (I—¢€)]
0
d ! —pt —kpt —t kpt
+ T(I_e—r)(l_e_p,)[e (I —e™™) +e (1 —e"")] + anomaly
0
dt 1 B L B B
= — [ekpl l_ekpt t 1t+e (1+k)pt_e (1+k) pt+It
t (1—e (1 —ert)
0

e Pl — e PIRO 4 o7t _ o TIHKOT) 4 anomaly

o
dt 1
- / T (=Dl —er) [e™#(1 — kP11 4 671 — &*'~!1)] + anomaly (A.9)

Apart from the “anomaly”, the expression above agrees with the exponential part of (A.7). The
agreement for the polynomial parts of (A.6) and (A.7) has been established earlier, (A.8). So that
we find the relation:

log G (p) =log gk—p1(p) + anomaly (A.10)

Anomaly.

With respect to the divergence at ¢+ — 0, the integral in (A.6) for which we have changed the
variable of integration, t — pt, this integral should have been taken, more properly, in the form:

e%(){/ t (1—e t)(l e t)[ kt—p/;(l _ e—lp/r) —i—e_(l""k)’(l B e[p/’)]}

After the change t — pt, (t = pt, and we drop the tilde afterwards) we obtain:

E—>0{/ t (1—e m)(l -y~ N i e
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o0
. dt 1
= lim{

e~0') t (I—er)(1—e")
€
€

+/ % (1— efptia ey " [P (1 — ey eI — D]y (ALD

X [epkt—l(l _ e—l[) +e—(1+k)pl(1 _ ell)]

»
The first integral in the expression above goes to joint the rest, the polynomial part and the second
integral of the exponential part in (A.6), which also should have been treated properly with the
limit € — O for the lower limit of integration.

But the second integral in (A.11) above gives the additional term, which we have called
“anomaly”. We find (the limit € — 0 is assumed):

€
dr 1 1 1
anomaly = / TW[(I + pkt — t)(It — E12z2) + (1= (1+k)pt)(—It — E12t2)]

5
; dr 1 r d
t t
= / 7?[(2/([ +Dpt> =11+ D’ = / 7[2k1 +1—p 1+ 1]
0
5 5
=logp- 2kl +1—p'I(I + 1)) (A.12)
Finally, we get, by (A.10) and (A.12),
log Gk i (p) =log gk—pi(p) +1ogp - 2kl +1— p'I(1 + 1)) (A.13)

which is the relation (2.32).
The second relation, eq. (2.33), is derived in the same way, by starting with the log’s of

products for g,ga)(,o) and Gl(,f)(,o) in (2.28) and (2.29).

Translation relations of Y (x, h).

Just for completeness, we shall show how the discrete translation relations for the function
Y (x, h) [5,6], the relations in (B.1), (B.2), could be derived.
We shall show it with the relation (B.1). We get:

o0

dt sinh2[(ag — x — h)%
logTM(x+h)=/—{(ao—x—h)ze”— I¢ 2 )2
t sinh 5 - sinh 5
0
[d inh2[( 4l
t . sinh’[(ag—x —h) %
=/—{[(ao—X)z—Zh(ao—X)Jrhz]e e
4 t smhj-smhﬂ
(A.14)
As ag = % — ﬁ, one gets:
T dr sinh®[(ap — x — h)L]
logTM(x—i-h)=/—{[(ao—x)2+2hx+l]eft— —— 2 (A.15)
) t sinh 5 - sinh 5

‘We consider
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logy (—hx) =logI'(—hx) —logI'(1 + hx)

o0
dt hxt _ ,—(1+hx)t
= / Do —net 4+ & —¢ 7 (A.16)
t 1—e?
0

— to compensate the extra terms in the polynomial part of (A.15). We have used the integral
representation in (A.3).
For the sum of (A.15) and (A.16) we obtain:

log Yy (x + h) +logy (—hx)

o
dt ehit — g~ (ot sinh?[(ag — x — h) 4]
=/_{(a0—x)2e—’+ — (A.17)
t l1—e smh?-smhﬁ
0
The first term in the integral above is already that of
[d inh2[(ap — x)4]
t sinh“[(ag — x) 5
tog Ty (e ) = [ St —xer - B 08 (A18)
t sinh 5 - sinh
0
We shall transform, separately, the second and the third terms in (A.17).
By transforming t — % in the integral of the second term in (A.17), we obtain:
Ood xt L_xt
te —e
= * (A.19)
I 1—eh
0
and we continue its transformation as follows:
0o t 00 ht |t t
_f dt (ext —E_F_XI)(I _e—ht) J dt €7+E(€Xt —e_ﬁ_)”)(l _e—ht)
St a—eha—eny S 4sinh o - sinh &
o0 bt 1t ht_ 1 _hty _ht_ 1 _
dt e2 o™X _ o7 =¥ _ o= ot ¥ 4 o= T o N (A20)
I 4sinh - - sinh 2 '
Now we shall transform, a little bit, the third term in the integral of (A.17):
oodt e(ao—x—h)l 4 e—((xo—x—h)t -2
—{- 1
t 4sinh 2 - sinh o
0
oodt e—%t—ﬁ—xt_i_e%-%ﬁﬁ-xt_z
:/7{_ — (A.21)
4 4 sinh 5 sinh o

For the sum of (A.20) and (A.21), which is the sum of the second and the third terms in (A.17),
we obtain:

o h h
dt{ e%fifﬂ —{—e77t+ﬁ+” — 2}
- - th 1 ot
t 4smh7~s1nhﬂ

0
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00
dt eotol—xt + e—aot+xt )

: th : t
t 4smh7-s1nhﬁ

0
T dt sinh[(ap — x)%]
=— [ —— t2 (A.22)
? sinh 3 - sinh 5
Together with he first term in (A.17) this gives
log Ty (x + h) + logy (—hx) =log Yps(x) + anomaly (A.23)

Here “anomaly” stands for the term which we have disregarded so far, by ignoring the divergence,

at t — 0, of the second integral in (A.17), while transforming ¢ — %

Properly, we should have defined it as

dt hxt _ —(1+hx)t
Jim { / ¢ ¢ (A.24)
e—0 1—e—
With ¢t = %, we obtain:
dt xt ———xt
lim / ¢ ety (A.25)
€—>

We drop the tildes and we rewrite (A.25) as follows:

© t € t
) dt ext _ e*ﬁfxt dl ext y e*ﬁfxt
lim{)| — V/——+ [ —— i — (A.26)
e—0 t l—e n t 1l—e
€ he
The first integral goes to join our derivation of the relation (A.23), with the exception of the

anomaly in it, while the second integral in (A.26) gives the anomaly.

We get:
dt e¥ — =i~ txt+ + xt
anomaly = hm{/ & ¢ —}= hm{/ 1
e—0 1—e™ h e—0

€

. dt

=lim{[ —Qxh+1)}=—Q2xh+1) -logh (A.27)

e—0 t

he

Finally, the relation (A.23) takes the form:

log Ty (x +h) =—logy(—hx) +log Yy (x) — 2xh + 1)logh (A.28)

Yy(x +h)= e )h 2h=ly(x) (A.29)

This is the relation (B.1).
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Appendix B. The function Yy (x, 2) and the list of some of its values. The list of results
for particular 3-point functions which are used in Section 4

We shall remind here certain properties of the function Y, (x) [5,6]. We shall list some partic-
ular values of this function. And use shall also derive several expressions for the 3-point functions
which are used in Section 4.

The function Yy (x) = YTps(x, h), defined in (3.28), satisfies the following “quasi-periodicity”
relations, with respect to translations by 4 and by 1/ h:

Yy(x +h)= Ly Y (x) (B.1)
v (=hx)
y(x)=Tx)/T(1 —x).
1 _ 1_2x
Yo (x — Z) = y(%)h o Y (x) (B.2)
Yur =y (=hx)h'" T2 x Yy (x + h) (B.3)
RN -4 1
Y () =y IR X Tur(x = ) (B.4)
Tar(x —h) =y (=h(x — k)R FED 5oy, (x) (B.5)
Tor(x + %) = y(%(x + %))h*”%“*%) X Y (x) (B.6)

We have listed these properties in various forms, which are useful in actual calculations, though,
evidently, (B.3)—(B.6) follow directly from (B.1), (B.2). The derivation of (B.1) is given in Ap-
pendix A.

The obvious property, by (3.28), is that

Ty oy —x) =Ty (x) (B.7)

Next, one finds directly, from the integral form of log Y (x) in (3.28), that
l.

1 1
TM(x):x—i-Z, x—>—E
TM(—%) =0 (B.8)
2.
Yyx)~h—x, x—h
Tyu(h)=0 (B.9)

The integral in (3.28), which defines Yy (x, k), is convergent for —% < x < h. Outside, the
function is defined by the analytic continuation: by the translations (B.1)—(B.6). For x — —%,
from above, and for x — h, from below, the integral in (3.28) is logarithmically divergent at
t — 00, which results, when evaluated, in the asymptotics in (B.8), (B.9).

3. In general, the zeros of Yy (x), which we denote as x,(f,‘,/,?, are located at
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1
x(M):—E(n—i—])—hm, and at

n,m
1
x,ﬁ{l:’n) = Zn +h(m+1) (B.10)
n,m=0,1,2,3,....

They could be obtained, with some care, from (B.8), (B.9) by the translations (B.1)—(B.6).
4. Next, it is evident from (3.28) that

T (o) =1 (B.11)
5. One also finds that
Ty (0) =Ty Rap) =1 (B.12)

In fact, by (B.5) and (B.9), for x — h, one finds:
Tr(x —h) =y (=h(x = B)R T2 oy, (x)
1
~—hx(h—x)=1,
T =D
Ty =1 (B.13)
Y1 (2eg) = 1 follow by the property (B.7).

The next several values of Y7 (x) are obtained by translations (B.1)—(B.6). One finds:
6.

Yy (2h — %) — Yo (h +2a0) = Yo (=h) =y (h?) - K12 =y (p) - p2=° (B.14)
7.
1 1 l_l ’ r_ 1
TM(E) = y(ﬁ)hh2 =y(p)p’ 2 (B.15)
8.
Tu(—h) =y (p)p> " (B.16)
9.

1
T (=200) =Yy (—h+ )

=y(p—Dy(p)p'=F**
=~ Ry @ e (B.17)
10.

1
Tm(=2h+ E) =Ty (=h —2a)

1 ,
=Tt Dy (0)y (p)p3 =30 +0 (B.18)

11.

2 1
Ty(=h+2)="Tu(; —2x0)

1 ,
== 2 Dy @y (e (B.19)
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12.
T (—4a0) =y 2p — Dy 2o = D)p' 227" x Ty (~200) (B.20)
‘We shall derive now several results for the correlation functions, the results listed in Section 4.

().
I=Vi1.a=b=c=0.By4.6),l=k=1.
By the formula (4.9),

Yt (—220) (Y1 (0))°
(Tp(0))3
. o
=Ty (—209) x pF = —WV(P)V(P/) (B.21)
— if we use the value (B.17) for Ty (—2ap).
By the formula (4.8), if we put a =0, b =0, ¢ = 0 directly, we shall get a problem, the
expression will not be defined. But the integral, which gives (4.8), is defined, in fact, with a
single condition,

(ry = x p! = x (p))!=°

a+b+c+la_ +ka_ =2 (B.22)

with [, k being integers. Separately, a, b, ¢ do not have to be degenerate, to make the expression
(4.8) valid. This allows to define the function (/IT), with (4.8), as a limita — 0, b — 0, ¢ — 0,
while keeping a + b + ¢ = 0 to make the condition (B.22) satisfied, withl =k = 1.

In this way, for o, B, ¥, &', B/, v’ being small, and [ = k = 1, we get, by (4.8):

1 L)  T(p) 1
X
(P =D TA=p) T —=p)  (@)2(B)2()?
FrA+eHTA+HrA+y") o rd+o)Frd+pra+y)
F(=a)I'(=BOT(=y") F(=a) (=P (=y)

(VeVpVa) =p~* x

1 / I _ /
~p* o 1)2)’(,0 )V(P)W(—Ol)( BHY(=7")
X (—a)(=B)(=y) (B.23)
Since @ = —pa’, o’ = —p(a)?, etc., we get
,0_4 1 3
(VeVp Vo) >~ =12 xy(E)y(p) x (=p”)
= —pi_ly(p’)y(p) =L (o) (B.24)
(A =pP-(p)? (1= p7?
In the limita — 0, b — 0, c — 0 we get
(VoVoVo) = (1) = ——F—y (v (p) (B.25)
(I—p)
which agrees with (B.21).
(It1n.
(ITI1) = (Vay VoVo) = (Vo1,-1 Vi1 Vi1) (B.26)
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By (4.6), 1 =k = 0. Then, by (4.8), one gets (I T1I) = 1 immediately, as

0 —1
[[c.o=[]¢-r=1
i=1 i=0

By (4.9),
() = Y1 (0)Y 1 (2000) Yar 2et0) Y (—2x0)
T (0) Y7 (0)Y (4exg)
Since T(0) = T (2ap) = 1, T (4ag) = YT (—2ap) by (B.7), we get equally
It =1

(ITVi2Vi2).
For this function / =0, k = 1. By (4.8):

(o) y rd+oa, « ra+y
L' —p) I'(—a) L(=y)

o
o =20 p04 = 2(—%)a+ =—p,

(ITVi2Vio) =

y =220 -0y =2(04 +o_)oy =2p —2,
L)  Fd=p), T@p—1)
r'ad-p I'(p) I'2—2p)
_Td=p) T@p=1) _y@p—1
T TEe=20 vy
— which agrees with (4.16).
By (4.9),a=0b= —O‘%, ¢ =2y,
Yy (—oy ) Vg 2eeg) Yoy 2000) Y (—ery — 2a0)
Ty (=) Yy (—aq)Y (4oo)
Ty(—ay —200) 1y,  Ty(=h—2a)

(ITVi2Vio) =

(ITVi2Vio) =

x (o) F

T Y (=) Yar(—2a0) T Y (=) Yo (—2)

By (B.5),

Y (—h —209) = y (—h(—h — 2a0)) ' THH=220) 5 7 (—2arg)
=y (—h(=2h+ %))h”z’“*z’”%) X Yt (—2000)
=y (2p — Dh*™* x Ty (—200)

Putting it into (B.31), we get

1+p

3_ _
(I"V12V12) xyQ2p—1)-p2"% xp

1
© Ywm(—h)
We take now the value for Y'3;(—#%) in (B.16). We obtain:
1
(IHViaVig) = ——p T x y2p — D3 % x p~1+7 =

This agrees with (B.30) and with (4.15), (4.16).

yQ2p—1)
v(p) v (0)

[m1+; v1.228; Prn:6/04/2016; 15:02] P.38 (1-41)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)
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{Vi2Vi2) = (ViaVi2Vi2).
We shall calculate it with (4.9), which is simpler.
Inthiscasea=b=—%,c=0;1=1,k=2.

Ty (—oy —200) Ty ()T (0) Y pg (—ory) ,Ol_p, (p/)z(l_p)
Yy (—ap) Yy (—ay) Y (0)
_ Ym(oy — 2a00) 1=p p=242p
Ty (—o4)
_ YTy(—oy —200) X p~
Ty (—aq) x Ty (—2ap)
The first factor is (I+V1,2 Vip)= (N1,2)2, according to (B.31), and the second factor is Z = (III),
according to (B.21). So that we get
(IVy2Vi2) = Z(N1 2)? (B.36)
which confirms (4.18).

(1+V1T2V1,2> =(Vo1,-1Vor,2Vi2).

Inthiscasea = —%,b=3a; +a_,c =20/ =(—1—-1+1-1)/2=—1k=(-1-2+
2—-1)/2=—1. Withl = —1, k = —1, the use of the formula (4.8) is blocked. We shall calculate
this function with (4.9).

Y (2000) Yy (—a) Yy (dorg + ) Yr (0)

TmGBog +20-) Yy (—a4) Yy (4ao)

(IV12Vi2) =

14p

Y (—2a0)p " +P (B.35)

(ITViH Vi) = —(=p")(py=(1=p)

N TM(3O[++2067) _H_p/pl_p
Yy Bog + 20 )Yy (—20)
_ 1 /! (B.37)
C Ym(2ap)pP P Z '
— according to (B.21). This agrees with (4.20).
‘We shall derive still one more result, which is claimed in (4.38).
(ITVIVEY = IV, V).
Here
1 y 1
at =200 —a,, = —;n ot + —;na_, ¢ =2ap;
(I Var Var) = (Vor 1 Vo o Vow ),
—1-2n" -1
1272” =—n'—1, k=-n—1 (B.38)
We get:
<I+Va+ V;_) > TM(40[0 — ZG)TM(ZC(Q)TM(z(X())TM (20(0 — 2(1)
Yy (dag —2a) Yy (dag — 2a) Yy (dag)
x p—(n’+1)(1—p’) % (p/)—(n-‘rl)(l—p)
_ Ty (2a) w p= ==
Ty (2a — 200) Y pr (—2a0)
% (p/)—(n—l)(l—P) % p—2(1—/)’) % (,0/)_2(1_’0) (B.39)
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We have used the property (B.7) for Yy oo — a), Yy (4o — 2a) and Yy (4ag). We find:
Y (2a) Yy (—2aq) pf(n/—l)(l—p’)

I+v+v+ n—(m—1)(1—p)
( )= Y3y (O — o) x (")
! ! (B.40)
X = .
(Ta (—220)p=P+P)2  (Ng)? x 22
— according to (4.37) and (B.21). This result agrees with (4.38).
Appendix C. Series for log[#(u)/73(0)]
¥ functions, ¥ (1) and 93(u), could be represented by infinite products [11]:
o0
M) = 2q1/4 -sinu - 1_[ (1 - 2q2m -cos2u +q4’”)(1 — qz’")
m=1
e . .
_2q1/4 . Sinu . 1_[ (1 _ q2m . ezlLl)(l _ qu . e—2lu)(1 _ q2m) (Cl)
m=1
o0
930 = [ A +247"7" - cos2u + g7V (1 — ")
m=1
0 . .
— l_[(l +q2m—l . eZlLI)(l +q2m—1 '6_2“4)(1 _qQJ’n) (Cz)
m=1
In particular,
o0
930) =[] +¢> (1 —¢*) (C3)
m=1
For the ratio v (1)/193(0) we obtain:
N 14 i 1°—°[ (1—g*e*) (1 —g*"e") ©4)
3(0) 2 (I+¢>"1)?
Taking log of (C.4) we get:
04 1 . )
) 1w _ logg + log(i(e™" — ')

£950) 4

o0
+ 3 Mog(1 — g e¥™) 4 log(1 — ¢*" e~ ") — 2log(1 +¢*" )]

m=1

— Diogq 4%~ iu+log(1 — 2
= Jlogg +i5 — iu+log(l - ¢**)

+ i i %qun . e2inu + i i (_nqumn . e*2inu

m=1n=1 m=1n=1

Ly y I,

m=1n=1
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1 T (=1 o
= logg +i(5 —w) +2;Te2””‘
n=

2n e2inu 2n | ,—2inu —n

— 1.4 q* e q* -q
=) - + —2(-)—"—
2ot o T )

1 .
=—]0gCI+l(5—M)

4
o] 1 eZinu (1= q2n) _I_an . eZinu +q2n . e—2inu _ 2(_1)nqn
_ Z;{ g } (C.5)
n=1
Finally, we obtain:
9 (u) 1 o [ee) 1 eZinu +q2n . e—2inu _ 2(_1)nqn
_L T St C.6
850 =~ g osd TG W ;n = (C.6)

This is the relation in (5.1.9).
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