E. Aylward, A. Codori, A. Rosenblatt, M. Sherr, J. Brandt et al., Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington's disease, Movement Disorders, vol.44, issue.3, pp.552-60, 2000.
DOI : 10.1002/1531-8257(200005)15:3<552::AID-MDS1020>3.0.CO;2-P

P. Bauer, A. Goswami, H. Wong, M. Okuno, M. Kurosawa et al., Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein, Nature Biotechnology, vol.257, issue.3, pp.256-63, 2010.
DOI : 10.1038/nbt.1608

A. Benchoua, Y. Trioulier, D. Zala, M. Gaillard, N. Lefort et al., Involvement of Mitochondrial Complex II Defects in Neuronal Death Produced by N-Terminus Fragment of Mutated Huntingtin, Molecular Biology of the Cell, vol.17, issue.4, pp.1652-63, 2006.
DOI : 10.1091/mbc.E05-07-0607

J. Bibb, Z. Yan, P. Svenningsson, G. Snyder, V. Pieribone et al., Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6809-6823, 2000.
DOI : 10.1073/pnas.120166397

I. Bjorkhem, D. Lutjohann, O. Breuer, A. Sakinis, and A. Wennmalm, Importance of a Novel Oxidative Mechanism for Elimination of Brain Cholesterol: TURNOVER OF CHOLESTEROL AND 24(S)-HYDROXYCHOLESTEROL IN RAT BRAIN AS MEASURED WITH 18O2TECHNIQUES IN VIVO AND IN VITRO, Journal of Biological Chemistry, vol.272, issue.48, pp.30178-84, 1997.
DOI : 10.1074/jbc.272.48.30178

I. Bjorkhem and S. Meaney, Brain Cholesterol: Long Secret Life Behind a Barrier, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.5, pp.806-821, 2004.
DOI : 10.1161/01.ATV.0000120374.59826.1b

M. Brown and J. Goldstein, The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor, Cell, vol.89, issue.3, pp.331-371, 1997.
DOI : 10.1016/S0092-8674(00)80213-5

D. Charvin, P. Vanhoutte, C. Pages, E. Borrelli, and J. Caboche, Unraveling a role for dopamine in Huntington's disease: The dual role of reactive oxygen species and D2 receptor stimulation, Proceedings of the National Academy of Sciences, vol.102, issue.34, pp.12218-12241, 2005.
DOI : 10.1073/pnas.0502698102

F. Chevy, H. L. Wolf, and C. , Sterol profiling of amniotic fluid: a routine method for the detection of distal cholesterol synthesis deficit, Prenatal Diagnosis, vol.37, issue.11, pp.1000-1006, 2005.
DOI : 10.1002/pd.1254

L. Cui, H. Jeong, F. Borovecki, C. Parkhurst, N. Tanese et al., Transcriptional Repression of PGC-1?? by Mutant Huntingtin Leads to Mitochondrial Dysfunction and Neurodegeneration, Cell, vol.127, issue.1, pp.59-69, 2006.
DOI : 10.1016/j.cell.2006.09.015

S. Davies, M. Turmaine, B. Cozens, M. Difiglia, A. Sharp et al., Formation of Neuronal Intranuclear Inclusions Underlies the Neurological Dysfunction in Mice Transgenic for the HD Mutation, Cell, vol.90, issue.3, pp.537-585, 1997.
DOI : 10.1016/S0092-8674(00)80513-9

D. Del-toro, X. Xifro, A. Pol, S. Humbert, F. Saudou et al., Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington???s disease, Journal of Neurochemistry, vol.60, issue.1, pp.153-67, 2010.
DOI : 10.1111/j.1471-4159.2010.06912.x

C. Deyts, B. Galan-rodriguez, E. Martin, N. Bouveyron, R. E. Charvin et al., Dopamine D2 Receptor Stimulation Potentiates PolyQ-Huntingtin-Induced Mouse Striatal Neuron Dysfunctions via Rho/ROCK-II Activation, PLoS ONE, vol.4, issue.12, p.8287, 2009.
DOI : 10.1371/journal.pone.0008287.g007

J. Dietschy and S. Turley, Thematic review series: Brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal, The Journal of Lipid Research, vol.45, issue.8, pp.1375-97, 2004.
DOI : 10.1194/jlr.R400004-JLR200

F. Djelti, J. Braudeau, E. Hudry, M. Dhenain, J. Varin et al., CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer???s disease, Brain, vol.138, issue.8, pp.2383-98, 2015.
DOI : 10.1093/brain/awv166

A. Dunah, H. Jeong, A. Griffin, Y. Kim, D. Standaert et al., Sp1 and TAFII130 Transcriptional Activity Disrupted in Early Huntington's Disease, Science, vol.296, issue.5576, pp.2238-2281, 2002.
DOI : 10.1126/science.1072613

S. Dzeletovic, A. Babiker, E. Lund, and U. Diczfalusy, Time course of oxysterol formation during in vitro oxidation of low density lipoprotein, Chemistry and Physics of Lipids, vol.78, issue.2, pp.119-147, 1995.
DOI : 10.1016/0009-3084(95)02489-6

L. Gauthier, B. Charrin, M. Borrell-pages, J. Dompierre, H. Rangone et al., Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules, Cell, vol.118, issue.1, pp.127-165, 2004.
DOI : 10.1016/j.cell.2004.06.018

S. Gines, E. Ivanova, I. Seong, C. Saura, and M. Macdonald, Enhanced Akt Signaling Is an Early Pro-survival Response That Reflects N-Methyl-D-aspartate Receptor Activation in Huntington's Disease Knock-in Striatal Cells, Journal of Biological Chemistry, vol.278, issue.50, pp.50514-50536, 2003.
DOI : 10.1074/jbc.M309348200

E. Hudry, D. Van-dam, W. Kulik, D. Deyn, P. Stet et al., Adeno-associated Virus Gene Therapy With Cholesterol 24-Hydroxylase Reduces the Amyloid Pathology Before or After the Onset of Amyloid Plaques in Mouse Models of Alzheimer's Disease, Molecular Therapy, vol.18, issue.1, pp.44-53, 2010.
DOI : 10.1038/mt.2009.175

Y. Jiang, H. Lv, M. Liao, X. Xu, S. Huang et al., GRP78 counteracts cell death and protein aggregation caused by mutant huntingtin proteins, Neuroscience Letters, vol.516, issue.2, pp.182-189, 2012.
DOI : 10.1016/j.neulet.2012.03.074

J. Karasinska and M. Hayden, Cholesterol metabolism in Huntington disease, Nature Reviews Neurology, vol.328, issue.10, pp.561-72, 2011.
DOI : 10.1038/nrneurol.2011.132

H. Kempen, J. Glatz, G. Leuven, J. Van-der-voort, H. Katan et al., Serum lathosterol concentration is an indicator of wholebody cholesterol synthesis in humans, J Lipid Res, vol.29, pp.1149-55, 1988.

Z. Korade and A. Kenworthy, Lipid rafts, cholesterol, and the brain, Neuropharmacology, vol.55, issue.8, pp.1265-73, 2008.
DOI : 10.1016/j.neuropharm.2008.02.019

A. Kuhn, D. Goldstein, A. Hodges, A. Strand, T. Sengstag et al., Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage, Human Molecular Genetics, vol.16, issue.15, pp.1845-61, 2007.
DOI : 10.1093/hmg/ddm133

V. Leoni, C. Mariotti, S. Tabrizi, M. Valenza, E. Wild et al., Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington's disease, Brain, vol.131, issue.11, pp.2851-2860, 2008.
DOI : 10.1093/brain/awn212

V. Leoni, J. Long, J. Mills, D. Donato, S. Paulsen et al., Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression, Neurobiology of Disease, vol.55, pp.37-43, 2013.
DOI : 10.1016/j.nbd.2013.03.013

V. Leoni and C. Caccia, The impairment of cholesterol metabolism in Huntington disease, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1851, issue.8, pp.1095-105, 2015.
DOI : 10.1016/j.bbalip.2014.12.018

H. Li, S. Li, Z. Yu, P. Shelbourne, and X. Li, Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice, J Neurosci, vol.21, pp.8473-81, 2001.

L. Lim, V. Jackson-lewis, L. Wong, G. Shui, A. Goh et al., Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson's disease, Cell Death and Differentiation, vol.12, issue.3, pp.416-443, 2012.
DOI : 10.1139/o59-099

E. Lund, J. Guileyardo, and D. Russell, cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain, Proceedings of the National Academy of Sciences, vol.96, issue.13, pp.7238-7281, 1999.
DOI : 10.1073/pnas.96.13.7238

E. Lund, C. Xie, T. Kotti, S. Turley, J. Dietschy et al., Knockout of the Cholesterol 24-Hydroxylase Gene in Mice Reveals a Brain-specific Mechanism of Cholesterol Turnover, Journal of Biological Chemistry, vol.278, issue.25, pp.22980-22988, 2003.
DOI : 10.1074/jbc.M303415200

M. Martin, S. Perga, L. Trovo, A. Rasola, P. Holm et al., Cholesterol Loss Enhances TrkB Signaling in Hippocampal Neurons Aging in Vitro, Molecular Biology of the Cell, vol.19, issue.5, pp.2101-2113, 2008.
DOI : 10.1091/mbc.E07-09-0897

D. Martin, S. Ladha, D. Ehrnhoefer, and M. Hayden, Autophagy in Huntington disease and huntingtin in autophagy, Trends in Neurosciences, vol.38, issue.1, pp.26-35, 2015.
DOI : 10.1016/j.tins.2014.09.003

M. Marullo, M. Valenza, V. Leoni, C. Caccia, C. Scarlatti et al., Pitfalls in the detection of cholesterol in Huntington???s disease models, PLoS Currents, vol.4, pp.505886-505895, 2012.
DOI : 10.1371/505886e9a1968

L. Menalled, B. El-khodor, M. Patry, M. Suá-rez-fariñ-as, S. Orenstein et al., Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models, Neurobiology of Disease, vol.35, issue.3, pp.319-355, 2009.
DOI : 10.1016/j.nbd.2009.05.007

L. Moumné, S. Betuing, and J. Caboche, Multiple Aspects of Gene Dysregulation in Huntington???s Disease, Frontiers in Neurology, vol.4, p.127, 2013.
DOI : 10.3389/fneur.2013.00127

A. Milnerwood and L. Raymond, Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease, Trends in Neurosciences, vol.33, issue.11, pp.513-536, 2010.
DOI : 10.1016/j.tins.2010.08.002

K. Nieweg, H. Schaller, and F. Pfrieger, Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats, Journal of Neurochemistry, vol.281, issue.1, pp.125-159, 2009.
DOI : 10.1111/j.1471-4159.2009.05917.x

URL : https://hal.archives-ouvertes.fr/hal-00400252

M. Nunes, I. Milagre, M. Schnekenburger, M. Gama, M. Diederich et al., gene transcription, Journal of Neurochemistry, vol.63, issue.2, pp.418-449, 2010.
DOI : 10.1111/j.1471-4159.2010.06612.x

B. Paul, J. Sbodio, R. Xu, M. Vandiver, J. Cha et al., Cystathionine ??-lyase deficiency mediates neurodegeneration in Huntington???s disease, Nature, vol.26, issue.7498, pp.96-100, 2014.
DOI : 10.1038/nature13136

S. Palfi, J. Gurruchaga, G. Ralph, H. Lepetit, S. Lavisse et al., Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial, The Lancet, vol.383, issue.9923, pp.1138-1184, 2014.
DOI : 10.1016/S0140-6736(13)61939-X

F. Pfrieger, Role of cholesterol in synapse formation and function, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1610, issue.2, pp.271-80, 2003.
DOI : 10.1016/S0005-2736(03)00024-5

L. Puglielli, R. Tanzi, and D. Kovacs, Alzheimer's disease: the cholesterol connection, Nature Neuroscience, vol.6, issue.4, pp.345-51, 2003.
DOI : 10.1038/nn0403-345

M. Renner, D. Choquet, and A. Triller, Control of the Postsynaptic Membrane Viscosity, Journal of Neuroscience, vol.29, issue.9, pp.2926-2963, 2009.
DOI : 10.1523/JNEUROSCI.4445-08.2009

C. Ross and M. Poirier, Protein aggregation and neurodegenerative disease, Nature Medicine, vol.99, issue.7, pp.10-17, 2004.
DOI : 10.1038/nm1066

E. Roze, F. Saudou, and J. Caboche, Pathophysiology of Huntington's disease: from huntingtin functions to potential treatments, Curr Opin Neurol, vol.21, pp.497-503, 2008.

E. Roze, S. Betuing, C. Deyts, E. Marcon, K. Brami-cherrier et al., Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death, The FASEB Journal, vol.22, issue.4, pp.1083-93, 2008.
DOI : 10.1096/fj.07-9814

URL : https://hal.archives-ouvertes.fr/hal-00258860

G. Sadri-vakili, B. Bouzou, C. Benn, M. Kim, P. Chawla et al., Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models, Human Molecular Genetics, vol.16, issue.11, pp.1293-306, 2007.
DOI : 10.1093/hmg/ddm078

E. Sapp, K. Kegel, N. Aronin, T. Hashikawa, Y. Uchiyama et al., Early and Progressive Accumulation of Reactive Microglia in the Huntington Disease Brain, Journal of Neuropathology & Experimental Neurology, vol.60, issue.2, pp.161-72, 2001.
DOI : 10.1093/jnen/60.2.161

M. Shafaati, M. Olin, A. Bavner, H. Pettersson, B. Rozell et al., Enhanced production of 24S-hydroxycholesterol is not sufficient to drive liver X receptor target genes in vivo, Journal of Internal Medicine, vol.201, issue.4, pp.377-87, 2011.
DOI : 10.1111/j.1365-2796.2011.02389.x

L. Shobab, G. Hsiung, and H. Feldman, Cholesterol in Alzheimer's disease, The Lancet Neurology, vol.4, issue.12, pp.841-52, 2005.
DOI : 10.1016/S1474-4422(05)70248-9

S. Sipione, D. Rigamonti, M. Valenza, C. Zuccato, L. Conti et al., Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses, Human Molecular Genetics, vol.11, issue.17, pp.1953-65, 2002.
DOI : 10.1093/hmg/11.17.1953

D. Sondhi, N. Hackett, D. Peterson, J. Stratton, M. Baad et al., Enhanced Survival of the LINCL Mouse Following CLN2 Gene Transfer Using the rh.10 Rhesus Macaque-derived Adeno-associated Virus Vector, Molecular Therapy, vol.15, issue.3, pp.481-91, 2007.
DOI : 10.1038/sj.mt.6300049

N. Spann, L. Garmire, J. Mcdonald, D. Myers, S. Milne et al., Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses, Cell, vol.151, issue.1, pp.138-52, 2012.
DOI : 10.1016/j.cell.2012.06.054

E. Stack, J. Kubilus, K. Smith, K. Cormier, D. Signore et al., Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington's disease transgenic mice, The Journal of Comparative Neurology, vol.87, issue.4, pp.354-70, 2005.
DOI : 10.1002/cne.20680

S. Suzuki, K. Kiyosue, S. Hazama, A. Ogura, M. Kashihara et al., Brain-Derived Neurotrophic Factor Regulates Cholesterol Metabolism for Synapse Development, Journal of Neuroscience, vol.27, issue.24, pp.6417-6444, 2007.
DOI : 10.1523/JNEUROSCI.0690-07.2007

C. Tourette, F. Farina, R. Vazquez-manrique, A. Orfila, J. Voisin et al., The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity, PLoS Biology, vol.11, issue.19, p.1001895, 2014.
DOI : 10.1371/journal.pbio.1001895.s020

URL : https://hal.archives-ouvertes.fr/hal-01076146

F. Trettel, D. Rigamonti, P. Hilditch-maguire, V. Wheeler, A. Sharp et al., Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells, Human Molecular Genetics, vol.9, issue.19, pp.2799-809, 2000.
DOI : 10.1093/hmg/9.19.2799

E. Trushina, R. Singh, R. Dyer, S. Cao, V. Shah et al., Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo, Human Molecular Genetics, vol.15, issue.24, pp.3578-91, 2006.
DOI : 10.1093/hmg/ddl434

E. Trushina, C. Canaria, D. Lee, and C. Mcmurray, Loss of caveolin-1 expression in knock-in mouse model of Huntington's disease suppresses pathophysiology in vivo, Human Molecular Genetics, vol.23, issue.1, pp.129-173, 2014.
DOI : 10.1093/hmg/ddt406

T. Tsunemi, T. Ashe, B. Morrison, K. Soriano, J. Au et al., PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function, Sci Transl Med, vol.4, pp.142-97, 2012.

Y. Urano, S. Ochiai, and N. Noguchi, Suppression of amyloid-?? production by 24S-hydroxycholesterol via inhibition of intracellular amyloid precursor protein trafficking, The FASEB Journal, vol.27, issue.10, pp.4305-4320, 2013.
DOI : 10.1096/fj.13-231456

M. Valenza, D. Rigamonti, D. Goffredo, C. Zuccato, S. Fenu et al., Dysfunction of the Cholesterol Biosynthetic Pathway in Huntington's Disease, Journal of Neuroscience, vol.25, issue.43, pp.9932-9941, 2005.
DOI : 10.1523/JNEUROSCI.3355-05.2005

M. Valenza, J. Carroll, V. Leoni, L. Bertram, I. Bjorkhem et al., Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation, Human Molecular Genetics, vol.16, issue.18, pp.2187-98, 2007.
DOI : 10.1093/hmg/ddm170

M. Valenza, V. Leoni, A. Tarditi, C. Mariotti, I. Bjorkhem et al., Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington???s disease, Neurobiology of Disease, vol.28, issue.1, pp.133-175, 2007.
DOI : 10.1016/j.nbd.2007.07.004

M. Valenza, V. Leoni, J. Karasinska, L. Petricca, J. Fan et al., Cholesterol Defect Is Marked across Multiple Rodent Models of Huntington's Disease and Is Manifest in Astrocytes, Journal of Neuroscience, vol.30, issue.32, pp.10844-50, 2010.
DOI : 10.1523/JNEUROSCI.0917-10.2010

M. Valenza and E. Cattaneo, Emerging roles for cholesterol in Huntington's disease, Trends in Neurosciences, vol.34, issue.9, pp.474-86, 2011.
DOI : 10.1016/j.tins.2011.06.005

J. Vonsattel, R. Myers, T. Stevens, R. Ferrante, E. Bird et al., Neuropathological Classification of Huntington??s Disease, Journal of Neuropathology and Experimental Neurology, vol.44, issue.6, pp.559-77, 1985.
DOI : 10.1097/00005072-198511000-00003

Z. Xiang, M. Valenza, L. Cui, V. Leoni, H. Jeong et al., Peroxisome-Proliferator-Activated Receptor Gamma Coactivator 1 ?? Contributes to Dysmyelination in Experimental Models of Huntington's Disease, Journal of Neuroscience, vol.31, issue.26, pp.9544-53, 2011.
DOI : 10.1523/JNEUROSCI.1291-11.2011

C. Zuccato, A. Ciammola, D. Rigamonti, B. Leavitt, D. Goffredo et al., Loss of Huntingtin-Mediated BDNF Gene Transcription in Huntington's Disease, Science, vol.293, issue.5529, pp.493-501, 2001.
DOI : 10.1126/science.1059581