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A robust and passive method for geometric calibration of large arrays

Charles Vanwynsberghea) and Pascal Challande, Jacques Marchal, Régis Marchiano, François Ollivier
Sorbonne Universités, UPMC Univ Paris 06, CNRS,
UMR 7190 Institut Jean Le Rond d’Alembert, F-78210 Saint-Cyr-l’École, France

This paper presents a complete strategy for the geometry estimation of large microphone arrays
of arbitrary shape. Largeness is intended here in both number of microphones (hundreds) and
size (few meters). Such arrays can be used for various applications in open or confined spaces like
acoustical imaging, source identification, or speech processing. For so large array systems, measuring
the geometry by-hand is impractical. Therefore a blind passive method is proposed. It is based
on the analysis of the background acoustic noise, supposed to be a diffuse field. The proposed
strategy is a two-step process. First the pairwise microphone distances are identified by matching
their measured coherence function to the one predicted by the diffuse field theory. Secondly, a
robust MultiDimensional Scaling algorithm is adapted and implemented. It takes advantage of
local characteristics to reduce the set of distances and infer the geometry of the array. This work
is an extension of previous studies and it overcomes unsolved drawbacks. In particular it deals
efficiently with the outliers known to ruin standard MDS algorithms. Experimental proofs of this
ability are presented by treating the case of two arrays. They show that the proposed improvements
manage large spatial arrays. Copyright (2016) Acoustical Society of America

PACS numbers: 43.60.Fg
Preprint version b). The following article appeared in (J. Acoust. Soc. Am. 139, 1252) and may be found at
http://dx.doi.org/10.1121/1.4944566

I. INTRODUCTION

Microphone array systems are involved in a wide range
of applications, such as localization and identification of
sources, acoustic imaging, or speech enhancement1. They
classically make use of spatial filtering techniques which
require an accurate knowledge of the microphones loca-
tion. An important point which determines the efficiency
of these techniques is the largeness of the array. It has
been proven that a large aperture i.e. a wide spatial
range5,25, as well as a large number of microphones1 re-
sult in improved performances. Some projects tackled
the design and fabrication of large arrays, with 51228 or
102034 elements.

But so far increasing the number of microphones was
tricky because of the heavy hardware required, involv-
ing wires and conditioning circuitry for each sensor. The
individual cost of a standard acoustic measurement chan-
nel also makes it difficult to be multiplied at will. The
recent development of numerical microphones based on
the MicroElectroMechanical Systems (MEMS) technol-
ogy is on the verge of revolutionizing acoustic array sens-
ing. Indeed, the most recent MEMS microphone chip so-
lutions embed the signal conditioning circuitry together
with the analog-to-digital conversion, and provide a dig-
ital output of the measured pressure. It makes possible
long range transmissions required by very large arrays
of microphones. Together with their numerical recording
systems, they are not only affordable but also light and

a)Electronic address: charles.vanwynsberghe@upmc.fr
b)This article may be downloaded for personal use only. Any other
use requires prior permission of the author and the Acoustical So-
ciety of America.

relatively easy to deploy (see16 for 300 elements,31 for
128). Moreover the MEMS acoustic sensors present in-
dividual and statistical characteristics perfectly suitable
for acoustic array sensing techniques since it has been
shown that their frequency responses and the directivi-
ties are homogenous31.

Imaging purposes require to know the position of each
microphone with a sufficient accuracy. But as the array
spatially extends, as well as the number of microphones
increases, the measurement of their individual position
becomes awkward using standard metrological means,
especially for 3D or random geometries. Therefore effi-
cient geometric calibration techniques are required, that
should be easy, fast and accurate whatever the applica-
tion and the array shape. The problem has already been
studied, and several methods have been proposed. There
are active methods requiring external sound sources and
passive methods analyzing the ambient sound.

The former methods are mainly based on the estima-
tion of the time difference of arrival between microphones
and involve a soundfield containing sources, with26 or
without9 a priori knowledge of the source signals. These
methods are well suited to an accurate positioning of
microphones, and are usable for large arrays19,26. But
they have drawbacks: they require external sources and
a strict measurement protocol, and their use is limited in
a noisy or reverberant environment.

An alternative strategy based on the use of a diffuse
field for the calibration has been proposed by McCowan
et al.21. They point out that the coherence between two
microphones is a function only of the distance between
the microphones for a chosen frequency. Thus, by record-
ing in a reverberant environment and by fitting the the-
oretical and experimental coherences for all the pairs of
microphones, they obtained the pairwise microphone dis-
tances. To complete the procedure, the coherences are
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measured several times, providing each time an estimate
of the distance for each pair of microphones. In order
to reduce the resulting set to one distance per pair of
microphones, the data are analyzed by K-means cluster-
ing taking the centroid of the cluster as final estimate of
the distance. Then, the positions of the individual mi-
crophones are derived from the set of pairwise distances
by using classic multi-dimensional scaling (MDS). They
applied this methodology to real configurations and were
able to retrieve the position of 8 microphones with a cen-
timetric precision. Despite a very inspiring idea, this
approach suffers several drawbacks. In particular, the
measured coherences are very noisy and the fitting pro-
cedure provides pairwise distance estimates with a large
scattering. The method is not robust due to its sensitiv-
ity to wrong input data. This is especially true in the
case of large arrays (with large extent or large number of
microphones) which are the aim of the presented method.
Different improvements have been suggested. Hennecke
et al.17 propose a hierarchical approach based on local
shape calibration. But their study applies to planar ar-
rays with only 8 microphones. Moreover, the ambient dif-
fuse field requires to be boosted with a controlled white
noise generated by a moving loudspeaker. More recently,
Taghizadeh et al.29 showed that averaging the coherence
drastically improves the fitting and strengthens the input
to the MDS algorithm. Furthermore, they achieved this
task by means of a passive analysis of a natural sound-
field. But they also note that coherence fitting can lead
to highly erroneous estimates of pairwise distances. In
order to enhance the data selection, they successfully
implement a standard 2D histogram clustering method,
but it is supervised and becomes tricky for large arrays.
Finally the main limitation of this method remains in
the estimation of pairwise distances when microphones
are distant29. In this case, coherence fitting becomes im-
practical and is likely to lead to wrong distance estimates
(outliers) which cannot be identified straightforwardly in
the frame of blind geometric calibration of large arrays.
Yet the outliers are unavoidable due to the combination
of a great number of pairs and a large spatial extent.
These limitations restricted the implementation to pla-
nar arrays with small spatial extent (about 25 cm) and
a small number of microphones (8).

Reverberant environments constitute common and
realistic situations: they create complex soundfields,
for which enhanced array applications have been
proposed6,22,33. Thus microphone localization is of in-
terest in reverberant rooms, and only needs the prior
knowledge of the Schroeder frequency to verify the dif-
fuseness. In this paper, we propose to extend the shape
calibration in diffuse field for 2D or 3D microphone ar-
rays with both a large extent (more than 1 m) and a large
number of microphones (more than 100) by introducing
improvements to the aforementioned methods. The ef-
ficiency of the new shape calibration process is assessed
by analyzing its impact on a simulated acoustic imaging
scenario (highly dependent on the individual position of
microphones). The global methodology follows the semi-
nal studies of McCowan et al.21 and Taghizadeh et al.29.
Nevertheless, to achieve the goals, important modifica-

tions are made at each step to improve robustness.
First, the global methodology is recalled in sec-

tion II following the strategies adopted in previous
studies21,17,29. The improvements brought to the estima-
tion of the pairwise distances is presented in section III.
They are mainly modifications to the coherence function
estimator and on the optimization of the spectral analysis
parameters. Even with these improvements, the result-
ing data still contain outliers which are problematic for
the MDS methods. To solve the problem a robust MDS
process is presented in section IV. It has recently been
introduced by Forero et al.13. They propose a generic
Robust MDS (RMDS) method which relies on identify-
ing and inhibiting errors in outliers. However the RMDS
input dataset cannot contain more than a few of these
outliers; this sparsity condition must be guaranteed and
should not depend on the largeness of the array. For this
purpose the paper derives the Local and Robust MDS
(LRMDS): it promotes proximity and disregards the high
pairwise distances. The efficiency of this adaptation is as-
serted experimentally in section V using two arrays with
2D and 3D shape respectively. The considered approach
is fully passive since the measurement protocol is based
on the analysis of the naturally diffuse soundfield. The
results are evaluated in terms of an overall geometrical
error. Finally, in the last section, the suitability of the
calibration process is discussed in a simulated scenario
with regards to a standard acoustical imaging applica-
tion.

II. METHODOLOGY

A. Problem statement

Let an array of M microphones with unknown indi-
vidual positions observe an arbitrary acoustic field. The
m-th microphone records the time-history acoustic pres-
sure pm(t) whose frequency spectrum is denoted p̂m(f).
The unknowns of our geometric calibration problem are
the positions of the microphones denoted x1, x2, ..., xM .
The spatial dimension D of the array though is sup-
posed to be known a priori (D = 1 for linear, D = 2
for two-dimensional array, and D = 3 for a full three-
dimensional). For notation convenience, we define the
unknown matrix X = [x1, ...,xM ] of size D ×M , con-
taining all the unknown microphone positions.

B. Process overview

The goal of the proposed method is to find the posi-
tions of the microphones. Achieving this goal involves
three successive steps. First, the ambient soundfield is
recorded by all the microphones in the array. Then, the
pairwise microphone distances are estimated from those
measurements. This estimation step is a crucial point
of the method. It relies on the modeling of the ambient
acoustic field as a diffuse field. Indeed in this particular
case, the coherence of the field between two locations de-
pends only on the distance. Therefore, the latter can be
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FIG. 1: Functional chart of the geometric calibration
process.

estimated by fitting the coherence measured with 2 mi-
crophones with the theoretical one. The last step derives

the microphones individual locations X̃ = [x̃1, ..., x̃M ] by
computing the redundant information lying in the pair-
wise microphone distances dataset. This is performed
using an enhanced MDS algorithm. The redundancy of
the distances dataset (O(M2)) comes from the fact that
M − 1 couple combinations exist for each microphone.
For large arrays, it is much higher than the number of
array elements (O(M)). The overall process is summa-
rized in figure 1.

III. PAIRWISE MICROPHONE DISTANCE ESTIMATION

A. Pairwise coherence Estimation

1. Theoretical model for the coherence in diffuse field

A well known frequency model exists for the coherence
function between pressures measured at two distinct loca-
tions in a diffuse field. This model considers an isotropic
distribution of uncorrelated plane waves18,23. We sup-
pose that this model holds over a broad frequency band
f ∈ [fmin; fmax]. By definition, the coherence function
between microphones n and m is:

Γnm(f) =
Snm(f)√

Snn(f)Smm(f)
, (1)

where Snm = E {p̂n(f)p̂∗m(f)} is the cross-PSD between
the n-th and m-th pressure signals. With the diffuse

field model hypothesis, the coherence can be written as a
function of only one geometric parameter: dnm = ‖xn −
xm‖, the distance between microphones m and n. This
model writes:

Γnm(f) = sinc

(
2πfdnm
c0

)
, (2)

where c0 is the constant speed of sound. Note that the
considered model leads to a real function, even though
coherence is a complex function according to its defini-
tion.

Other non isotropic plane waves distributions have
been studied in2. It is shown that when the plane waves
come from a finite solid angle an other analytic model ex-
ists whose variations depend on extra geometric param-
eters: the incoming solid angle aperture and the angle of
arrival of the plane waves. More generally, it means that
an analytic expression of the coherence function can be
derived for other types of scenarios. However it will de-
pend on supplementary geometric parameters, and make
the pairwise distance estimation trickier. Another im-
pact on the coherence can come from the microphones
directivity20. They indeed should be omnidirectional so
as to render properly the isotropy of the diffuse field.

In29, Taghizadeh et al. makes an exhaustive study of
the applicability of the diffuse field model for the geo-
metric calibration of microphone arrays. Although the
diffuse field model is not representative of any realistic
condition, the study investigates its suitability and lim-
its in various situations. The most suitable framework
appears to be a large room containing one or some broad
band sources and where strong reverberation occurs i.e.
where direct paths from the sources towards the micro-
phones are not significant in terms of energy compared
with the total acoustic energy11. Therefore, large rooms
with a high level of reverberation are a very convenient
environment for array calibration in diffuseness. Nev-
ertheless, the proposed isotropic plane wave model can
be met in other situations. In an arbitrary environment
with a great number of uncorrelated broadband sources
surrounding the array at far field, an acoustic field with
the desired properties can also be obtained24. For con-
venience, the experiments to be described hereafter were
performed in a large reverberant hall.

2. Coherence estimator

The coherence is computed using the estimator pro-
posed in29. Let p̂ST bm (f) denoting the Short Time Fourier
Transform (STFT) of the b-th data frame of pressure
measured by the m-th microphone, among B frames. We
consider the the following estimator:

Γ̃nm(f) =
1

B

B∑

b=1

p̂ST bn (f)p̂ST b ∗m (f)

|p̂ST bn (f)||p̂ST bm (f)| . (3)

Indeed rather than using the single-frame coherence,
Taghizadeh et al. show that averaging on several frames
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improves pairwise distance estimation29; however it does
not eliminate the estimator bias. The STFTs p̂ST bn (f)
are computed using a Blackman taper function which
strongly reduces the spectral leakage. Note that our

experimental estimator Γ̃nm(f) is intrinsically complex,
and presents a non zero imaginary part, while according
to the sinc fitting model, it should equal zero for all fre-
quencies of interest. This is due to the imperfect isotropy
of the recorded diffuse field. Nevertheless this does not
prevent the sinc coherence model and the coherence esti-
mate to match well enough to provide reliable estimates
of the pairwise distances. Therefore we choose to discard
the imaginary part of our estimator, retaining only the
real part.

B. Pairwise distance estimation

1. Least square minimization

Considering one pair of microphones, a least square
discrepancy minimization process can be implemented
between the sinc coherence model and the coherence es-
timate Γ̃nm(f). The minimization process providing the
estimated pairwise distances δnm writes:

δnm = argmin
d

∑

fk

∣∣∣∣<
[
Γ̃nm(fk)

]
− sinc

(
2πfkd

c0

)∣∣∣∣
2

. (4)

This non linear regression can be achieved e.g. by a
Nelder-Mead search, for all pairwise combinations of mi-
crophones. Then, the resulting dataset {δnm} contains
M(M − 1)/2 elements.

2. Discussion and limitations of the model

In this section, the limitations of the sinc coherence
model are investigated in order to assess which pairwise
microphone distances are estimated correctly.

The theoretical sinc function is known to hold 97.9 %
of its energy between the origin and the 4-th zero. There-
fore, the quality of the estimation is evaluated only on
this portion. To find criteria on the distances accessible
thanks to this model, one requires that the theoretical
and experimental coherences fit up to the fourth zero of
the sinc function. At this point, the argument of the
sinc function is:

2πfdnm
c0

= 4π. (5)

The pressure field is recorded by finite frames of dura-
tion N/fs, where N denotes the number of samples per
frame and fs the sampling rate. Consequently the set of
frequency bins ranges from 0 to fs/2 with a spectral res-
olution ∆f = fs/N . Considering the sinc model, these
parameters essentially dictate the boundaries of the esti-
mation of dnm.

The smallest accessible distance between two micro-
phones is the distance satisfying (5), when the frequency
is equal to half the sampling rate:

dmin =
4c0
fs
. (6)

At the other bound, for the largest accessible pairwise
distance, we impose at least eight bins to discretize the
first two oscillations of the sinc function:

dmax =
c0N

4fs
. (7)

Note that these bounds for δnm ensue directly from
physical causes. The first one is the distance between
pairwise microphones: a microphone pair is supposed to
listen the same impinging waves coming from all direc-
tions. But a time difference of arrival (TDOA) exists due
to the distance between the microphones. The maximal
value of this TDOA must be negligible i.e. small with
respect to the frame length:

dnm/c0 � N/fs. (8)

This inequality is consistent with the definition (7) of
dmax.

Another matter is the validity of the hypothesis on the
diffuse nature of the field. In order to assess diffuseness,
the Schroeder frequency can be computed. It provides
a rough threshold between modal and diffuse behaviors
of the ambient acoustic field. It depends on the room
volume V and on the reverberation time T60 and writes27:
fc = 2000

√
T60/V . It provides another definition of the

largest accessible distance with the equation (5):

dmax =
2c0
fc
. (9)

To be consistent with the previous result, the upper
bound is now defined by both physical and signal pro-
cessing considerations:

dmax = min

(
c0N

4fs
;

2c0
fc

)
. (10)

Note that the bandwidth of microphones has not been
considered as a limitation so far. One should make sure
of the proper choice of microphones to obtain the mea-
sured coherences within the frequency range of interest
to estimate the dnm ∈ [dmin, dmax].

These bounds give an approximate order of magnitude
of the limits; yet they show that estimations δnm will be
awkward for large pairwise distances, and this will be ev-
idenced by experiments in V.B. Moreover, experimental
data exhibit noise and spoil the estimation. This is why
a straightforward solution to extract the positions of the
microphones from the pairwise distances is not applica-
ble. An intermediary MDS step is required in order to
deal with redundant and potentially false data.
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IV. MICROPHONES LOCATION ESTIMATION

The unknown microphone positions x1, ...,xM are of
dimension D. They can be extracted from the set of dis-
tance estimates {δnm} found previously, whose cardinal
is M(M−1)/2. However this set lies in a M -dimensional
space. Therefore the last calibration step consists in find-
ing a projection of the M -dimensional input data onto a
D-dimensional space. This is feasible using MultiDimen-
sional Scaling methods8.

We previously noted that estimating δnm between dis-
tant microphones of the array is statistically impractical
beyond a physical limit dmax. In wireless sensor network
localization, a similar issue arises: the time of arrival
measurements are prone to deteriorating when the pair-
wise devices are too distant. However some MDS meth-
ods are of good interest when the M -dimensional input
dataset is incomplete10,30,32. These MDS algorithms are
interesting for practical applications because they rely on
the pairwise distances of the closest neighbors. Thus, us-
ing the same approach as in sensor localization problems
seems appropriate.

However, the error in times of arrival between wireless
distant devices usually follows a statistics model. This
can be formulated and used efficiently to reduce the cali-
bration error up to the Cramer-Rao bound7. In our case
establishing an error model seems inconsistent. Indeed,
we will see in the experimental section V that the wrong
data are random outliers, i.e. data with a very large er-
ror and that they are due to failures in solving the least
square minimization problem (4). This is problematic
since standard MDS methods are known to be strongly
sensitive to outliers12, deteriorating the calibration re-
sult.

In the following we propose an enhanced MDS method
to overcome the outliers problem. It relies on two key
points: first it acts locally, secondly, it implements a step
to detect and cleanse outliers.

A. The Local and Robust MDS method

Forero et al.13 propose a Robust MDS (RMDS)
method whose data model is outlier-aware, i.e. the out-
lying estimation errors in {δnm} are extended parts of the
natural data noise. This brings a threefold expression:

δnm = dnm + εnm + onm (11)

where {εnm} is a subset of zero-mean independent ran-
dom variables, and {onm} the set of outlying errors.
If the {onm} set is sparse i.e. if the outliers are few
compared with the cardinal of the whole dataset {δnm},
Forero et al. show that it is possible to obtain a consis-

tent estimate X̃ by properly detecting and inhibiting the
errors in outliers.

The analysis of an experimental dataset {δnm} is de-
tailed in section V.B. It shows that a number of outliers
occur for large distances. Most of them can be rejected
by dropping the values higher than a threshold called

δmax. Thus, if some outliers remain in the selected local
set of {δnm}, there should be few, which would guarantee
the sparsity hypothesis on {onm}.

For this purpose, we propose a Local and Robust MDS
(LRMDS) procedure, based on the RMDS and taking ad-
vantage of local considerations. Following the previous
rejection step the LRMDS algorithm optimally performs
the geometric calibration, by removing the outlying er-
rors to retrieve the best input dataset and optimize the
estimation of X. This step of the LRMDS algorithm
consists in minimizing the following cost function:

f(O,X) =
∑

n<m

wnm[δnm − dnm(X)− onm]2

+ ν
∑

n<m

wnm|onm| (12)

• The first term is the quadratic error between
{δnm}, and {dnm(X)} (the set of distances derived
from the geometric parameter X). Its minimization
leads to the best fit of the measured data {δnm} into
the euclidean space comprising the array. Elim-
inating onm, this term corresponds to the usual
stress function. Various MDS methods (the Sma-
cof method10 for instance) are based on minimizing
the stress function.

• The second term involves the `1 norm of {onm}
which constraints the sparsity of the outliers. ν is
the constant regularization parameter of the mini-
mization problem, and controls the sparsity of the
solution of {onm}.

Function f is similar to the original RMDS cost func-
tion, but it is weighted by the wnm coefficients. Our local
approach being the total rejection of data higher than the
threshold δmax whose tuning is described in section V.C.
The weighting strategy follows:

wnm = 1 if δnm < δmax

= 0 otherwise
(13)

The cost function (12) has two unknowns: the array
geometry X and the sparse matrix of outlying errors O
such that O[n,m] = onm. And finally retrieving the ge-
ometry of our microphone array results in solving the
following problem:

(Õ, X̃) = argmin
O∈SMh ,X

f(O,X) (14)

where SMh denotes the set of symmetric and hollow
matrices of size M ×M .

B. Solving the LRMDS problem

A Majorization-Minimization (MM) approach is ca-
pable to overcome the minimization complexity of the
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cost function (12) which is both non-convex and non-
differentiable. The MM approach consists in using a sur-
rogate function with better convergence properties for
minimization. The algorithm is iterative: at each itera-
tion k, a new surrogate function is defined according to
the current state of (O(k),X(k)), and is minimized, lead-
ing to an updated solution (O(k+1),X(k+1)). Iteration
stops when convergence is verified by a chosen criterion.

One iteration of the algorithm processes in two steps:

it updates Õ first, and X̃ second. Thanks to the out-
liers’ sparsity hypothesis, the first step can be solved by
a standard LASSO method4; indeed the cost function
(12) is equal to a sum of M(M−1)/2 scalar LASSO sub-
problems on the onm variables. Updating the latter is
possible by using the soft-thresholding operator such as:

o(k+1)
nm = Sν

(
δnm − dnm(X(k))

)
(15)

with:

Sν(u) = sign(u) max {|u| − ν/2, 0} (16)

Note that the effect of the regularization parameter ν
from the cost function (12) applies here, in solving the
LASSO problem on onm variables. Applying this update
for all pairs (n,m) gives the updated matrix O(k+1).

The second step updating X̃, demonstrated in13, de-
rives from:

X(k+1) = X(k)L1(O(k+1)),X(k))L† (17)

Our contribution in the process relies in introducing the
weighting coefficient wnm. In the present case of the
weighted cost function, L1(O,X) writes:

L1(O,X) = diag(A1(O,X)1M )−A1(O,X) (18)

with, 1M the column vector ofM ones, diag(v) the square
diagonal matrix containing the elements of v in the diag-
onal, and:

[A1(O,X)]nm = wnm
δnm − onm
dnm(X)

if δnm > onm

and dnm(X) > 0

= 0 otherwise

(19)

Jointly, L† is the pseudo-inverse matrix of L such that:

L =
∑

n<m

wnm(en − em)T (en − em) (20)

with en the row vector of M elements, defined as [en]m =
1 if m = n , and 0 otherwise.

Equations (15)-(20) describe the computations of one
iteration of the LRMDS. The algorithm iterates as long as
convergence is not guaranteed; for that the following ratio
is computed13: ‖X(k+1)−X(k)‖F /‖X(k)‖F , with ‖.‖F the
Frobenius norm. If it is lower than a certain threshold

e.g. 10−6, then the algorithm stops. The last computed

couple (O(k),X(k)) gives the final estimate (Õ, X̃).

To conclude, the overall proposed LRMDS method can
be summarized by the following key points:

1. From the {δnm} set, only the local values are se-
lected, so that δnm < δmax. It leads to the subset
{δnm}<δmax

.

2. From {δnm}<δmax
, the LRMDS algorithm solves the

calibration problem, and detects the existing out-
liers in {δnm}<δmax

. The corresponding outlying
errors are collected in the {onm} set.

3. The final estimate X̃ results from the best fit, into
the euclidean space comprising the array, of the
{δnm}<δmax

subsets, having cleansed the large er-
rors in {onm}.

V. EXPERIMENTS

In order to validate the overall process of figure 1, we
perform a two step investigation. First a global analy-
sis of a raw pairwise distance set is achieved, in order to
investigate the limitations of the fitting process of exper-
imental coherences as stated in section III.B.2. Second,
the implementation of the LRMDS algorithm is described
for a real case, and its performances are studied consid-
ering two different microphone arrays.

A. Experimental setup

1. Measuring the soundfield

The acoustic acquisition system enables to set up an
array containing up to 128 digital microphones. The lat-
ter are made up by implementing the ADMP441 com-
ponent from Analog Device which is based on a MEMS
architecture, and straightforwardly delivers digital sam-
ples of the measured acoustic pressure in output. The
acquisition system is fully digital which is convenient for
the robust data transfer over long distances, and thus for
the spatial extent of the array. The MEMS components
development are mainly meant for massive integration in
mobile phones. However their performances are sufficient
for standard microphone array applications. An acoustic
characterization of these sensors, as well as the hardware
architecture of the apparatus, are exhaustively described
in31.

In our experiments, the sampling frequency of the
acoustic signals is set to fs = 50 kHz allowing the cover-
age of the audible domain and the working bandwidth of
the microphones as well.

All the experiments are achieved in a large hall (10 ×
8×20 m3); based on the measured reverberation time, its
Schroeder frequency is fc = 77 Hz. The soundfield comes
from different natural sources (speeches, machines, and
so on ...). The coherences are computed using frames of
N = 2048 samples at fs = 50 kHz. According to section
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III.B.2, this choice theoretically limits the pairwise dis-
tances estimation to the interval dnm ∈ [2.7 cm; 3.5 m].
The total acquisition duration is set to 1 minute; with
the chosen frame length N , the coherences are computed
by averaging B = 1464 frames. A longer acquisition time
does not improve the estimated dataset {δnm} (and does
not degrade the result either).

2. Antenna geometries

The overall performances of the method are investi-
gated through two scenarios. They keep an identical
experimental background, but implement two different
arrays:

• Array 1 is a circular array of 128 MEMS micro-
phones (Fig. 2), typically used for acoustic imag-
ing. It is made up of 16 bars of 8 microphones.
Each bar is a radius of a disk, 2.5 m wide in diam-
eter, as shown in figure 2. These dimensions imply
relatively large pairwise distances up to 2.5 m. This
2D configuration is therefore very interesting to in-
vestigate the efficiency of both the local and the
outlier-aware steps of the LRMDS method.

• Array 2 is a square pyramid (Fig. 2). Each edge is
1.5 m long and holds 8 microphones regularly set,
resulting in a 3D array of 64 microphones. This ge-
ometry ensures an accurate knowledge of the real
position of the microphones, down to the millime-
ter.

B. Experimental estimation of the pairwise distances

In this section we describe the experimental process
that leads to the dataset of estimated pairwise micro-
phone distances. This dataset is to be the input to the
final calibration step providing the geometry. Its relia-
bility must therefore be assessed. The limitations of this
step are compared with the statements in section III.B.2.

The estimation error of the δnm derived from the first
scenario (circular array) is presented in figure 3. It plots
the δnm versus the dnm of the set of 8128 distances, by a
2D-histogram. The error |δnm − dnm| is then illustrated
by the distance between the histogram bins and the line
dnm = δnm. The results evidence three points:

• The bins with the highest counts exist for |δnm −
dnm| < 2 cm. This interval counts 77.9% of the set
{δnm}. It shows that most distances are correctly
estimated. But the other estimated distances have
absolute errors strongly and randomly scattered.
These can be considered outliers.

• The presence of outliers correlates with the value
of δnm, and increases together with δnm. Indeed,
a sharp increase of outliers is observable at δnm =
1.5 m.

(a) Array 1

(b) Array 2

FIG. 2: Arrays for the validation experiments. In 2a:
circular array, in 2b: pyramid array.

• The probability of outliers strongly depends on the
value of dnm: it increases together with dnm. In-
deed, distances such that |δnm − dnm| > 2 cm rep-
resents 22.1% of the total data; for dnm < 1 m, it
represents 8.4%.

The second observation is in agreement with the state-
ments of section III.B: estimation of high pairwise dis-
tances is critical. It is actually translated into failures of
the coherence fitting step, leading to high errors in dis-
tance estimation. Consequently estimation of large dis-
tances is poorly reliable because of the high probability of
outliers. Moreover, a few outliers still remain for smaller
distances. This confirms the need, in the final calibra-
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FIG. 3: 2D-histogram of dnm vs δnm for array 1; the absolute error on the estimation |δnm − dnm| is the distance of
bins to the line dnm = δnm. 8128 pairwise distance estimates. Bin size: 3 cm × 3 cm. (color online)

tion step, to set up a strategy capable of enhancing the
robustness. Finally the third observation validates the
interest of using a local method in LRMDS: truncating
large values of δnm enables to remove the largest part of
outliers.

C. Tuning the LRMDS parameters

In this section the LRMDS method is applied com-
pletely considering only the pyramid array (array 2). It
can be described by functional features: the input data

is {δnm}, the output data is the estimated X̃. Besides,
three parameters D, δmax and ν drive the algorithm. The
first one, generally known a priori, is the space dimension
of the array (D = 1, 2 or 3). The geometrical interpreta-
tion of the second and third parameters is possible rea-
soning from figure 4; this Shepard diagram3 is a scatter
plot of the input distances δnm versus the distances out-

put from the estimated geometry X̃: d̃nm = ‖x̃n − x̃m‖.
Therefore this diagram is observable in a blind calibra-
tion process, and is rich in information to assess the re-
sult of the LRMDS. It shows the relationship between
the MDS input data and its final projection found by the
algorithm. Its purpose is to evaluate how the MDS es-
timated geometry matches the input distance set: in an
ideal calibration process with faultless input data, all the

points would be located on the line d̃nm = δnm. With
real data though, most of the scatter points are expected
to be close to this line when the geometric calibration
process succeeds. The points located far from this line
reflect a distortion between the input and output data.
This can be due to two reasons:

• the d̃nm output by the MDS process is uncorrelated

with the input data.

• the measured δnm contains a large error.

Here, the latter reason is relevant to understand the
outlier detection in the proposed LRMDS strategy: the

algorithm detects the δnm located far from the d̃nm =
δnm line. In figure 4, the points detected as outliers and
rejected for calibration are circled. The dataset retained

for calibration is located between the lines d̃nm − ν/2 <
δnm < d̃nm + ν/2. This shows the effect of the soft-
thresholding operator in the algorithm, given in equation
(16). Then the regularization parameter ν, in meters,
sets the limit of the acceptable error in the estimated
pairwise distances.

The objective choice of ν is achievable by processing
multiple LRMDS with different values. This results in
the plot of figure 5, showing the cardinal of {onm} i.e.
the number of detected outliers, function of ν. Reducing
ν loosens the constraint and increases the outlier detec-
tion sensitivity. So we observe that the cardinal of {onm}
increases when ν decreases. The curve appears to show
an L-shape, on which two distinct parts can be inter-
preted. On the right of the knee, ν has relatively high
values, which entails a strong constraint on the outliers
sparsity. Consequently only a few samples are detected as
outliers. On the left of the knee, the number of detected
outliers strongly increases when ν decreases: according
to equation (11), δnm also contains an error εnm which
can lead to the false detection of an outlier if ν is too
small. Therefore, the correct choice for ν should lie be-
tween these two areas (i.e. at the knee of the L-curve),
where the maximum of actual outliers can be detected.

Lastly, the local selection process of LRMDS rejects
all the δnm greater than δmax (gray dots in figure 4)
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FIG. 5: Geometric calibration of pyramid array 2:
tuning the regularization parameter ν in LRMDS, for

δmax = 1 m.

which are not involved in the minimization process of
function 12. Unlike the selection of the ν parameter, no
adequate parametric study enables an optimum choice
of δmax. But it should be judicious to take into account
that:

• the sparsity of outliers in the local subset
{δnm}<δmax

must be guaranteed for the success of
the LRMDS. In practice, too much outliers results
in an algorithm convergence failure. On the first
hand, a necessary condition was evidenced: pair-
wise distances cannot be estimated over a physical
limit dmax = 3.5 m. On the other hand, in experi-
mental section V.B we evidenced that the presence
of outliers in {δnm}<δmax

is significantly reduced

compared with {δnm}, by choosing δmax ≈ 1.5 m.

• However reducing δmax means, by the equation
(13), weighting more terms to zero in the minimized
cost function f . This degrades the convexity prop-
erty, and results in a minimization process more
sensitive to local minima. Then the algorithm can

converge to an inconsistent solution X̃.

Finally, the proper value for δmax is the highest for
which the algorithm succeeds to converge. The param-
eters chosen in the case of the two arrays are listed in
table I, together with the resulting size of the subset
{δnm}<δmax

and the number of outliers which is detected
there. It shows that the experimental geometric calibra-
tions succeeds with a range capping of large distances
beyond δmax = 1 m or 1.5 m.

TABLE I: Parameters for the two geometrical
calibration experiments. The resulting size of the local
subset {δnm}<δmax

and the number of detected outliers
are given in %.

Array M D δmax (m) ν (m)
#{δnm}<δmax

#{δnm}
#{onm}

#{δnm}<δmax

1 128 2 1 0.043 45.1% 6.6%

2 64 3 1 0.039 54.8% 6.7%

D. Results and discussion

In order to quantify the efficiency of the calibration
procedure, the microphone positioning error is calcu-
lated. The proposed method is compared with the
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Taghizadeh et al. one29 by the results, to evidence the
differences of both approaches. Afterwards the impact of
the geometry error is evaluated in the frame of a simu-
lated acoustic imaging scenario.

1. Geometry estimation performance

The estimated geometry is aligned onto the real one by
means of a Procrustes analysis14. This geometrical tech-
nique consists of removing the existing translations, rota-

tions, and scale discrepancies between X̃ and X15. Trans-
lations and rotations inevitably exist since the LRMDS

algorithm results in an estimated geometry X̃ that de-
pends only on the relative positions of the microphones.
Besides, a scale ratio would de facto issue from an error
on the value of the speed of sound c0 used to estimate the
δnm, even though the impact on the positioning error is
negligible. Following the Procrustes transformation, fig-
ure 6 exhibits the final result for the two arrays.

The error per microphone is chosen to be the euclidean
distance between the actual and the estimated micro-
phone position: εn = ‖x̃n − xn‖. The results for the
two configurations are given in table II in term of global,
minimal, and maximal errors, as well as the standard
deviations.

TABLE II: Overall geometry error for the two arrays.
Average, minimum, maximum, and standard deviation

in cm.

Array εn min(εn) max(εn) std(εn)

1 0.94 0.08 2.8 0.50

2 2.2 0.85 4.6 0.87

For the same experimental background, the calibra-
tion process performs better on the circular array than
on the pyramidal array. Although the former is larger
and wider than the latter, its microphones lie on a 2D
shape, and their distribution is denser: the microphones
are more surrounded by close neighbors. Moreover, the
microphones directivity could explain the difference of
results; let us remind that the microphones should be
omnidirectional so as to properly render the isotropy of
the diffuse field. In the case of the used MEMS micro-
phones however, the directivity is guaranteed uniform
on the 180◦ front angle31, while the rear directivity is
unknown. However, the microphones of array 1 are all
oriented in the same direction, unlike those of array 2
(cf. fig. 2). Then the impact of the potential directivity
would be higher for array 2.

2. Method comparison

The state of the art methods21,29 and the proposed one
differ in the strategy to handle the outliers. Taghizadeh
et al. propose to build the pairwise distances set {δnm},
by means of a clustering method, prior to processing

the MDS. For each microphone pair, coherence computa-
tion and fitting are achieved on successive frames of the
recording (≈ 400 times). The clustering relies on a 2d-
histogram of the pairwise distances versus the final fitting
minimization error (eq. (4)). The bin with the highest
count is the selected pairwise distance value added to
{δnm}. The final geometry estimation is achieved on this
set by classic MDS. The experimental work shows good
results for a 20 cm circular array of 9 microphones29, but
does not exhibit the applicability to large arrays. In the
present study, this approach is implemented to assess the
geometric calibration performance for two arrays:

• a small array with M = 8 elements within a disc
whose diameter is 15 cm.

• a large array: the Array 2 (fig. 2a) used in the
previous experiment (M = 128, diameter 3 m).

Note that the small array consists of the 8 central mi-
crophones of the large one. For the two arrays, the 2d-
histograms are built by computing and fitting 452 coher-
ences for each microphone pair. The computational cost
for this method is high, growing as M2. The estimated
geometries are plotted in figure 7. The 8-microphones
array is recovered with an average error εn = 1.1 mm,
which confirms the efficiency of the approach for small
arrays. However, the geometry estimation for array 2 is
obtained with an average error of εn = 18.4 cm, which
is 20 times larger than the one obtained with the Local
RMDS proposed in this paper. This is due to the in-
efficiency of the 2d-histogram clustering which does not
discard all the outliers when dealing with large pairwise
distances. Yet classic MDS is very sensitive to outliers
resulting in a larger estimation error. In comparison, the
proposed method proves to need far less computation and
to be robust to outliers. Indeed only one coherence com-
putation and fitting per microphone pair is needed to get
{δnm}. Instead of a prior clustering step, it explicitly
identifies and efficiently removes the outliers from {δnm}
and finally provides good estimated geometries even for
large arrays.

3. Applicability to acoustical imaging

Whether these errors are acceptable or not depends
on the application of the array. We choose to eval-
uate their impact in the frame of a simulated acous-
tic imaging scenario. Previous simulation studies have
proven that the classic beamformer degrades if a zero
mean Gaussian-distributed random error is added on the
microphone positions26. This degradation also increases
towards higher frequencies. For our assessment step, we
propose to simulate a beamformer using the estimated
geometries, in comparison with the actual ones. A source
is located 5 m from the centroid of both antennas. Its
signal, whose spectrum is uniform over the band of inter-
est, is measured by the microphones located according
to geometry X. Then the beamforming in geometrical
Near-Field is computed in the frequency domain, by us-
ing (a) the actual geometry X, (b) the geometry provided
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FIG. 6: Geometric calibration results, with the proposed method: comparison of the actual and estimated
geometries.

−0.2 −0.1 0 0.1 0.2
m

−0.2

−0.1

0

0.1

0.2

m

Actual geometry Estimated Geometry

(a) 8 microphones at the center of Array 2

−1.5 −1 −0.5 0 0.5 1 1.5
m

−1.5

−1

−0.5

0

0.5

1

1.5

m

Actual geometry Estimated Geometry

(b) Array 2

FIG. 7: Geometric calibration results, with 2D-histogram method29: comparison of the actual and estimated
geometries.

by the calibration process X̃.

The results are plotted as a function of frequency, in
figures 8 and 9. The relative error is also plotted. Ac-
cording to a discrepancy threshold set arbitrarily to 3 dB,
the beamforming shows to perform correctly up to 12 kHz
for the circular array, and 6 kHz for the pyramid array.

These results are consistent with the mean calibration
error values of table II:

• for array 1, εn = 0.94 cm; 12 kHz corresponds to a
2.8 cm wavelength

• for array 2, εn = 2.05 cm; 6 kHz corresponds to a
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(a) Beamforming reconstructed with the real antenna
geometry X, in dB.

(b) Beamforming reconstructed with the calibrated

antenna geometry X̃, in dB.

(c) Error on beamforming between 8a and 8b, in dB.
−3 dB isocontour in white dashed line.
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(d) Slice of figures 8a and 8b for f = 6 kHz (actual
geometry in solid line, calibrated geometry in dashed

line).

FIG. 8: Beamforming in geometrical Near-Field with array 1, with a broadband point source at 5 m from the array
centroid. Computation with actual (8a) and estimated (8b) geometries.

5.6 cm wavelength

Thus, here the beamformer is globally efficient for
wavelengths decreasing to three times the mean error εn.
For instance, in the frame of speech localization, both
antennas would be usable. Array 2 (pyramid) though
would be unfit at high frequencies for localizing common
broadband noise sources. Finally, to quantify the effect
of the geometry error at one frequency, figure 8d shows
the slice of figures 8a and 8b, i.e. it plots the beam-
formed pressure at frequency f = 6 kHz for array 1, with
the actual and estimated geometries. It shows a 2 dB
decrease of the main lobe, and the maximum position is
biased of 2.6 cm. Also, the highest grating lobe level is
−19 dB with the actual geometry, and −17 dB with the
estimated one. Thus the dynamic range, theoretically
of 19 dB, has degraded to 15 dB. So the localization of
the source remains effective at 6 kHz, but increasing fre-
quency degrades the dynamic range until the main lobe
reaches the same magnitude as the grating lobes.

VI. CONCLUSION

The present study proposes a robust geometric cali-
bration method microphone arrays of arbitrary shape,
in passive diffuse sound field. It is specifically designed
for large and wide arrays, i.e. having a great number
of microphones and an extended spatial range. It relies
on the estimation of pairwise distances between micro-
phones, extracted from the measured coherence. Because
of the large number of microphones and the spatial ex-
tent, the pairwise distances are contaminated by outlying
errors. The paper introduces the LRMDS algorithm: it
relies both on the knowledge of pairwise distances be-
tween close neighbors, and on the unsupervised removal
of the outlying errors.

Two experiments were set to validate the process.
They show its applicability for 2D and 3D arrays. The
measurements were performed in an uncontrolled sound-
field. It proves that this calibration method is completely
passive, without the need of a specific experimental pro-
tocol. The studied soundfield type was in agreement with
the isotropic diffuse field model. In further studies, more
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(a) Beamforming reconstructed with the real antenna
geometry X, in dB.

(b) Beamforming reconstructed with the calibrated

antenna geometry X̃, in dB.

(c) Error on beamforming between 9a and 9b, in dB.
−3 dB isocontour in white dashed line.

FIG. 9: Beamforming in geometrical Near-Field with array 2, with a broadband point source at 5 m from the array
centroid. Computation with actual (9a) and estimated (9b) geometries.

complex soundfields could be investigated, such as non-
isotropic wave fields, so as to extend the method toward
more diversified environments.

From this frame, the geometry can be known in a
few minutes for a further multi-channel process, such
as localization or separation of sources, even in three-
dimensional scenarios. The present study showed the
usability of the method for a Beamforming imaging in
geometrical Near-Field: it was evidenced that the local-
ization error is directly linked to a degradation of imag-
ing at high frequencies. The presented results showed an
acceptable limit for speech or community noise.

It opens to new possibilities in array applications: very
large arrays can be deployed in environments where the
diffuse property of the soundfield can be guaranteed. As
long as all microphones are connected to several others
in a close range, the method remains applicable what-
ever the total number in the array. In addition to the
possibilities offered by MEMS microphones, very large
arrays containing more than a thousand of elements can
be properly used. Also, further experiments can be inves-
tigated beyond an experimental room: it can be deployed

for example in an urban environment, where the sound-
field comes from spatially scattered uncorrelated sources.
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