T. Kudoh, S. Wilson, and I. Dawid, Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm, Development, vol.129, pp.4335-4346, 2002.

J. White, Y. Guo, K. Baetz, B. Beckett-jones, J. Bonasoro et al., Identification of the Retinoic Acid-inducible All-trans-retinoic Acid 4-Hydroxylase, Journal of Biological Chemistry, vol.271, issue.47, pp.29922-29927, 1996.
DOI : 10.1074/jbc.271.47.29922

K. Niederreither and P. Dollé, Retinoic acid in development: towards an integrated view, Nature Reviews Genetics, vol.126, issue.7, pp.541-553, 2008.
DOI : 10.1038/nrg2340

URL : https://hal.archives-ouvertes.fr/inserm-00311222

R. Hernandez, A. Putzke, J. Myers, L. Margaretha, and C. Moens, Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development, Development, vol.134, issue.1, pp.177-187, 2007.
DOI : 10.1242/dev.02706

B. Dobbs-mcauliffe, Q. Zhao, and E. Linney, Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo, Mechanisms of Development, vol.121, issue.4, pp.339-350, 2004.
DOI : 10.1016/j.mod.2004.02.008

R. White, Q. Nie, A. Lander, and T. Schilling, Complex Regulation of cyp26a1 Creates a Robust Retinoic Acid Gradient in the Zebrafish Embryo, PLoS Biology, vol.419, issue.11, 2007.
DOI : 10.1371/journal.pbio.0050304.sg003

Y. Emoto, H. Wada, H. Okamoto, A. Kudo, and Y. Imai, Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish, Developmental Biology, vol.278, issue.2, pp.415-427, 2005.
DOI : 10.1016/j.ydbio.2004.11.023

S. Shimozono, T. Iimura, T. Kitaguchi, S. Higashijima, and A. Miyawaki, Visualization of an endogenous retinoic acid gradient across embryonic development, Nature, vol.174, issue.7445, pp.363-366, 2013.
DOI : 10.1016/0167-4838(94)90130-9

S. Abu-abed, P. Dollé, D. Metzger, B. Beckett, P. Chambon et al., The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures, Genes & Development, vol.15, issue.2, pp.226-240, 2001.
DOI : 10.1101/gad.855001

Y. Sakai, C. Meno, H. Fujii, J. Nishino, H. Shiratori et al., The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo, Genes & Development, vol.15, issue.2, pp.213-225, 2001.
DOI : 10.1101/gad.851501

P. Gongal and A. Waskiewicz, Zebrafish model of holoprosencephaly demonstrates a key role for TGIF in regulating retinoic acid metabolism, Human Molecular Genetics, vol.17, issue.4, pp.525-538, 2008.
DOI : 10.1093/hmg/ddm328

D. Maurus and W. Harris, Zic-associated holoprosencephaly: zebrafish Zic1 controls midline formation and forebrain patterning by regulating Nodal, Hedgehog, and retinoic acid signaling, Genes & Development, vol.23, issue.12, pp.1461-1473, 2009.
DOI : 10.1101/gad.517009

Y. Okuda, E. Ogura, H. Kondoh, and Y. Kamachi, B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo, PLoS Genet, vol.6, p.20463883, 2010.

M. Muenke and P. Beachy, Genetics of ventral forebrain development and holoprosencephaly, Current Opinion in Genetics & Development, vol.10, issue.3, pp.262-269, 2000.
DOI : 10.1016/S0959-437X(00)00084-8

P. Navratilova, D. Fredman, T. Hawkins, K. Turner, B. Lenhard et al., Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes, Developmental Biology, vol.327, issue.2, 2009.
DOI : 10.1016/j.ydbio.2008.10.044

Y. Okuda, H. Yoda, M. Uchikawa, M. Furutani-seiki, H. Takeda et al., genes in zebrafish indicates their diversification during vertebrate evolution, Developmental Dynamics, vol.130, issue.3, pp.811-825, 2006.
DOI : 10.1002/dvdy.20678

N. Staudt and C. Houart, The Prethalamus Is Established during Gastrulation and Influences Diencephalic Regionalization, PLoS Biology, vol.121, issue.4, p.17341136, 2007.
DOI : 10.1371/journal.pbio.0050069.sv001

O. Loudig, C. Babichuk, J. White, S. Abu-abed, C. Mueller et al., Cytochrome P450RAI(CYP26) Promoter: A Distinct Composite Retinoic Acid Response Element Underlies the Complex Regulation of Retinoic Acid Metabolism, Molecular Endocrinology, vol.14, issue.9, pp.1483-1497, 2000.
DOI : 10.1210/mend.14.9.0518

O. Loudig, G. Maclean, N. Dore, L. Luu, and M. Petkovich, inducibility, Biochemical Journal, vol.392, issue.1, pp.241-248, 2005.
DOI : 10.1042/BJ20050874

P. Hu, M. Tian, J. Bao, G. Xing, X. Gu et al., promoter, Developmental Dynamics, vol.5, issue.12, pp.3798-3808, 2008.
DOI : 10.1002/dvdy.21801

J. Li, P. Hu, K. Li, and Q. Zhao, Identification and Characterization of a Novel Retinoic Acid Response Element in Zebrafish cyp26a1 Promoter, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, vol.80, issue.2, pp.268-277, 2012.
DOI : 10.1002/ar.21520

H. Fujii, T. Sato, S. Kaneko, O. Gotoh, Y. Fujii-kuriyama et al., Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos, The EMBO Journal, vol.16, issue.14, pp.4163-4173, 1997.
DOI : 10.1093/emboj/16.14.4163

I. Sirbu, L. Gresh, J. Barra, and G. Duester, Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression, Development, vol.132, issue.11, pp.2611-2622, 2005.
DOI : 10.1242/dev.01845

URL : https://hal.archives-ouvertes.fr/hal-00016355

J. Gómez-skarmeta, B. Lenhard, and T. Becker, New technologies, new findings, and new concepts in the study of vertebratecis-regulatory sequences, Developmental Dynamics, vol.18, issue.4, pp.870-885, 2006.
DOI : 10.1002/dvdy.20659

J. Collignon, S. Sockanathan, A. Hacker, M. Cohen-tannoudji, D. Norris et al., A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2, Development, vol.122, pp.509-520, 1996.

K. Mizuseki, M. Kishi, M. Matsui, S. Nakanishi, and Y. Sasai, Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction, Development, vol.125, pp.579-587, 1998.

M. Kishi, K. Mizuseki, N. Sasai, H. Yamazaki, K. Shiota et al., Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm, Development, vol.127, pp.791-800, 2000.

F. Müller, P. Blader, and U. Strähle, regulatory elements, BioEssays, vol.2, issue.6, pp.564-572, 2002.
DOI : 10.1002/bies.10096

S. Fisher, E. Grice, R. Vinton, S. Bessling, and A. Mccallion, Conservation of RET Regulatory Function from Human to Zebrafish Without Sequence Similarity, Science, vol.312, issue.5771, pp.276-279, 2006.
DOI : 10.1126/science.1124070

O. Vakhrusheva, G. Bazykin, and A. Kondrashov, Genome-Level Analysis of Selective Constraint without Apparent Sequence Conservation, Genome Biology and Evolution, vol.5, issue.3, pp.532-541, 2013.
DOI : 10.1093/gbe/evt023

K. Cartharius, K. Frech, K. Grote, B. Klocke, M. Haltmeier et al., MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, vol.21, issue.13, pp.2933-2942, 2005.
DOI : 10.1093/bioinformatics/bti473

A. Mathelier, X. Zhao, A. Zhang, F. Parcy, R. Worsley-hunt et al., JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles, Nucleic Acids Research, vol.42, issue.D1, pp.142-149, 2014.
DOI : 10.1093/nar/gkt997

URL : https://hal.archives-ouvertes.fr/hal-00943558

X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss et al., Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells, Cell, vol.133, issue.6, pp.1106-1117, 2008.
DOI : 10.1016/j.cell.2008.04.043

M. Leichsenring, J. Maes, R. Mössner, W. Driever, and D. Onichtchouk, Pou5f1 Transcription Factor Controls Zygotic Gene Activation In Vertebrates, Science, vol.341, issue.6149, pp.1005-1009, 2013.
DOI : 10.1126/science.1242527

K. Kawakami, H. Takeda, N. Kawakami, M. Kobayashi, N. Matsuda et al., A Transposon-Mediated Gene Trap Approach Identifies Developmentally Regulated Genes in Zebrafish, Developmental Cell, vol.7, issue.1, pp.133-144, 2004.
DOI : 10.1016/j.devcel.2004.06.005

C. Kimmel, W. Ballard, S. Kimmel, B. Ullmann, and T. Schilling, Stages of embryonic development of the zebrafish, Developmental Dynamics, vol.102, issue.3, p.8589427, 1995.
DOI : 10.1002/aja.1002030302

A. Stedman, V. Lecaudey, E. Havis, I. Anselme, M. Wassef et al., A functional interaction between Irx and Meis patterns the anterior hindbrain and activates krox20 expression in rhombomere 3, Developmental Biology, vol.327, issue.2, pp.566-577, 2009.
DOI : 10.1016/j.ydbio.2008.12.018

A. Mccurley and G. Callard, Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment, BMC Molecular Biology, vol.9, issue.1, 2008.
DOI : 10.1186/1471-2199-9-102