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Abstract

Dimensionality reduction is used to preserve significant properties of data
in a low-dimensional space. In particular, data representation in a lower
dimension is needed in applications, where information comes from multiple
high dimensional sources. Data integration, however, is a challenge in itself.

In this contribution, we consider a general framework to perform dimen-
sionality reduction taking into account that data are heterogeneous. We pro-
pose a novel approach, called Deep Kernel Dimensionality Reduction which
is designed for learning layers of new compact data representations simul-
taneously. The method can be also used to learn shared representations
between modalities. We show by experiments on standard and on real large-
scale biomedical data sets that the proposed method embeds data in a new
compact meaningful representation, and leads to a lower classification error
compared to the state-of-the-art methods.

Keywords: Dimensionality reduction, heterogeneous data integration

1. Introduction

Data integration is a challenging task with an ambitious goal to increase
performance of supervised learning, since various sources of data tend to
contain different parts of information about the problem.

Structure learning and data integration allow to better understand the
properties and content of biological data in general and of “omics” data
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in particular. Combining complementary pieces issued from different data
sources is likely to provide more knowledge, since distinct types of data pro-
vide distinct views of the molecular machinery of cells. Medical and bio-
logical knowledge can be naturally organized into hierarchies: symptoms of
diseases are observed and pathological states on all levels of omics data are
hidden. Hierarchical structures and data integration methods reveal depen-
dencies that exist between cellular components and help to understand the
biological network structure.

Graphical models follow a natural organization and representation of
data, and are a promising method of simultaneous heterogeneous data pro-
cessing. Hidden variables in a graphical hierarchical model can efficiently
agglomerate information of observed instances via dimensionality reduction,
since fewer latent variables are able to summarize multiple features. However,
integration of latent variables is a crucial step of modeling.

Multi-modal learning, heterogeneous data fusion, or data integration, in-
volves relating information of different nature. In biological and medical ap-
plications, data coming from one source are already high-dimensional. Hence,
data integration increases the dimensionality of a problem even more, and
some feature selection or dimensionality reduction procedure is absolutely
needed both to make the computations tractable and to obtain a model
which is compact and easily interpretable.

Our goal is to develop an efficient dimensionality reduction approach
which will design a compact model. The method needs to be scalable, to
fusion heterogeneous data, and be able to reach a better generalizing perfor-
mance compared to a full model and to state-of-the-art methods. Another
important question is whether introducing data of different nature have a
positive effect, and provides additional knowledge.

In this contribution, we propose a deep dimensionality reduction approach
which agglomerates original features from a high-dimensional space and cre-
ates a hierarchy of new representations. To construct the hidden layers of the
proposed deep learning framework, we introduce a deep kernel dimensional-
ity reduction method, and we compare its performance to some standard
clustering and dimensionality reduction methods.

The biomedical problem of our interest is a real problem which is a bi-
nary classification of obese patients. The aim is to stratify patients in or-
der to choose an efficient appropriate personalized medical treatment. The
task is motivated by a recent French study [1] of gene-environment inter-
actions carried out to understand the development of obesity. It was re-
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ported that the gut microbial gene richness can influence the outcome of
a dietary intervention. A quantitative metagenomic analysis stratified pa-
tients into two groups: group with low gene gut flora count (LGC) and
high gene gut flora count (HGC) group. The LGC individuals have a higher
insulin-resistance and low-grade inflammation, and therefore the gene rich-
ness is strongly associated with obesity-driven diseases. The individuals from
a low gene count group seemed to have an increased risk to develop obesity-
related cardiometabolic risk compared to the patients from the high gene
count group. It was shown [1] that a particular diet is able to increase the
gene richness: an increase of genes was observed with the LGC patients af-
ter a 6-weeks energy-restricted diet. A similar study with Dutch individuals
was conducted by [2], and made a similar conclusion: there is a hope that a
diet can be used to induce a permanent change of gut flora, and that treat-
ment should be phenotype-specific. There is therefore a need to go deeper
into these biomedical results and to identify candidate biomarkers associated
with cardiometabolic disease (CMD) risk factors and with different stages of
CMD evolution.

Our contribution is multi-fold:

• we introduce a novel kernel-based deep dimensionality reduction
method which constructs layers of a deep structure simultaneously,

• we illustrate that the proposed framework is efficient on standard data
sets and on a real original rich heterogeneous MicrObese data set [1],
which contains meta-data, i.e., clinical parameters and alimentary pat-
terns of patients, gene expressions of adipose tissue, and gene abun-
dance of gut flora. We efficiently learn new data representations struc-
tured into a multi-level hierarchy. We evaluate the prediction power
of the models with the reduced dimensionality showing that the pro-
posed approach outperforms the state-of-the-art dimensionality reduc-
tion methods.

The paper is organized as follows. Section 2 considers the related work
and the state-of-the-art data integration and dimensionality reduction meth-
ods. We introduce our approach in Section 3. We show the results of our
experiments in Sections 4 and 5. Concluding remarks and perspectives close
the paper.
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2. Related Work

We tackle a complex problem which consists of a data integration task
and a dimensionality reduction procedure. In this section, we consider some
state-of-the-art data fusion methods, dimensionality reduction approaches,
and some recent attempts to combine both within a hierarchical model. The
literature on clustering and dimensionality reduction is quite rich; publica-
tions on heterogeneous data integration, on the contrary, are not so numer-
ous.

The state-of-the-art data integration methods are traditionally divided
into four categories: functional linkage networks, vector subspace integration,
kernel fusion methods, and ensemble methods. Graphical models (functional
linkage networks) are based on graphical representation of nodes and rela-
tions between variables of interest, e.g., Bayesian networks. Vector space
integration is a method where data from various sources are concatenated in
a vector. Kernel methods for data integration are motivated by the fact that
variables with similar functions share expression patterns. Kernel functions
are used to define similarities between the variables of interest. Recently [3]
reported that ensemble methods, that have been ignored for a long time, are
a competitive data integration approach. Ensemble methods combine out-
puts produced by different classifiers trained on various data sets, or data
views; they are known to be scalable, and data of different formats can be
easily integrated, since the data integration is done at the decision level. Our
framework, introduced in the next section, is a graphical framework and in-
corporates a vector concatenation of heterogeneous data, a similarity matrix
base on a kernel function, and can also embed an ensemble method.

The idea to use a hierarchy for biomedical data is not new. So, Bayesian
networks are still often used in systems biology. They model a joint probabil-
ity distribution, parameterized by a parameter θ over all nodes. More specif-
ically, the Bayesian networks define a joint probability distribution P (x; θ) =∏n

i=1 P (xi|xPAi
), where PA stands for “parent”. E.g., [4] considers a linear

model, where observed and hidden variables follow xi =
∑

j∈PAi
αijhj + εi,

where x are observed and h are hidden. To estimate the vector of parameters
α of the model, the hidden variables are integrated out. The problem that
is typical for Bayesian networks with hidden variables, is the identifiability
problem. It has shown by [4] that the model is identifiable under certain
conditions, and that the discovery of latent layers, i.e. the structure estima-
tion does not result in many models which describe the data. Note that a
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high complexity issue is still an open problem for probabilistic models with
hidden variables.

The problem of hierarchical protein function annotation, where the sim-
plest method is to annotate each instance independently, is considered by [5].
However, the output can be composed of terms which are inconsistent with
one another. An SVM was used for individual predictions. A proposition to
combine the SVM predictions in a naive Bayes network, and to perform a
hierarchical correction of the SVM outputs, comes from [6]. Unfortunately,
the kernel (SVM) data fusion approaches have in general poor scalability
properties, since the method operates with matrices whose size equals to a
squared number of observations which can be very big.

Another recent hierarchical graphical model based on intuition that latent
variables can synthesize the information and can lead to easily interpretable
models, was proposed by [7]. The optimization in the hierarchical model is
done using the Expectation-Maximization (EM) algorithm [8, 9]. The param-
eters estimated by an EM are means and variances of the hidden variables.
A family of hierarchical latent class models, where optimization is also done
with the EM, was introduced in [10]. In such a graphical model, the leaves
are variables of interest, and the latent variables are generalizing or agglom-
erating nodes. The number of layers of latent variables can be unlimited but
it is reported that the higher the generalization level, the less information
the nodes contain. E.g., for genetic association studies, the optimal num-
ber of levels of latent parameters equals two or three. Latent variables are
also used to reduce the dimensionality of a problem. A similar idea is con-
sidered in [11], where edges in a graphical model stand for mutations, and
generalizing hidden layers can be interpreted as ancestral haplotypes.

Another idea is to exploit clustering for dimensionality reduction. A
scheme for clustering simultaneously of rows and columns of contingency ta-
bles was proposed by [12]. The major idea is that if parameters are tied
into clusters of “high quality”, then a better prediction can be obtained. An
intuition behind is that clustering variables can reduce noise. The approach
takes pairwise interactions between variables into consideration, and an ob-
jective function is optimized locally. The clusters are constructed using the
mutual information between variables. A discrete problem was considered by
[12], where clustering is based on mutual information. The mutual informa-

tion can be computed directly I(x, y) =
∑

x,y p(x, y) log
p(x,y)

p(x)p(y)
. To choose a

cluster for a given x, it is proposed to maximize
∑

eij
wijI(xi, xj), where w
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are weights, and e are edges in the considered graph.
Clustering data using kernels and general measures have been discussed

by [13]. Clustering can be seen as a mixture model p =
∑K

k=1 πkPk, where πk

is a cluster weight and Pk is a component distribution. Clusters can be sepa-
rated based on the distance between the clusters means, or clusters variances
which are also distance functions between distributions. Data separation can
be also based on higher-order criteria, and not only on point locations. The
maximum mean discrepancy

MMD(P1, P2) = MMD(P̂1, P̂2) =
∥∥∥ 1
n

n∑
i=1

K(xi, ·)− 1

m

m∑
j=1

K(xj, ·)
∥∥∥
H

(1)

was introduced by [14] as a more general distance function. It was reported
[13, 14] that maximisation of a criterion based on the regularized MMD
term (eq. 1) provides with a very reasonable clustering. A large MMD
corresponds to a low Bayes risk, in other words, to the situation where the
clusters are well-separated. The disadvantage of the approach is that it deals
with two-sample problems, and a generalisation to more than two clusters is
not obvious.

Dimensionality reduction is crucial not only for the computational issues
but also for data visualization in a two- or three-dimensional space. So, [15]
compares a number of unsupervised dimensionality reduction methods ap-
plied to visualization of microarrays. Below we mention briefly some efficient
standard approaches which we use further in our experiments.

Principal Component Analysis (PCA) [16, 17] is a linear approach to map
high-dimensional data into its low-dimensional representation. PCA chooses
the coordinates which maximize the variance in the data, and, therefore, the
principal components explain most of the variance. Kernel PCA [18] was
developed to suite for nonlinear data, and, being a kernel method, it maps
the data into a higher dimensional space before applying PCA.

A number of extensions of PCA appeared recently. Here we mention some
of them. An assumption that an input signal can be represented by a sparse
linear model is made by [19]. Dimensionality reduction in the case of the
sparse linear model where x ∈ R

n, x = Da + ε, D is a dictionary, takes the
following form:

min
a

1

σ2
‖x−Da‖22 + 1

τ
‖a‖1, (2)
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what is equivalent to the kernel PCA with the kernel DDT . If we denote
y = Lx, where y ∈ R

m, m < n, then for two samples, the model estimation
is minimisation of the expectation

min
Lm×n

Ex1,x2,a1,a2(y
T
1 y2 − aT1 a2)

2, (3)

what can be very computationally expensive. As already mentioned, the
problem burns down to a kernel PCA with a linear kernel. We compare our
approach to the standard PCA and also to a KPCA in the experimental
section.

An efficient extension of PCA which incorporates both sparsity and struc-
ture was introduced by [20]. The approach is based on structured regular-
ization. The structured sparsity integrates higher-order prior information of
data structure, compared to classical L1-based sparse priors which perform
feature selection without taking any structure into consideration.

Isomap [21, 22] is a non-linear method which constructs a neighborhood
graph weighted by shortest distances between nearest neighbors. The low-
dimensional space is constructed by minimization of pairwise distances be-
tween all nodes of the graph. Laplacian Eigenmaps [23, 24] is a local ap-
proach which builds a graph where the edges are weighted by values from
the Gaussian kernel function, and the weighted distances between the nodes
are minimized. The Laplacian eigenmaps incorporate cluster assumption,
and enforce natural clusters in the data. Although a number of linear and
non-linear dimensionality reduction methods have been recently proposed,
it is still not clear how these approaches take the underlying data structure
into consideration.

Finally, approaches that are very close in some sense to our contribution,
are introduced in [25] and [26]. Multimodal deep learning [26] was proposed
to learn features over multiple modalities, where sparse restricted Boltzmann
machines are used to model the probability distribution over observed and
hidden variables. In our work, we also consider shared representation learning
of heterogeneous data, what corresponds to the “mid-level” in [26]. Hinton
in [25] proposes to carry out dimensionality reduction with neural networks.
Both approaches build structures that are similar to ours, however, both [26]
and [25] make use of parametric models, where a distribution over all vari-
ables have to be estimated. In our approach, on the contrary, no effort is
wasted for modeling distributions.

Multiple kernels are of great interest if learning problems involve multiple,
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or heterogeneous data. A multiple kernel learning paradigm, proposed by
[27], states that we are given m matrices Kj ∈ R

n×n. The matrices are
symmetric, positive, and semidefinite. The goal is to find the best linear
combination

∑m
j=1 ηjKj, with ηj ≥ 0 and a constraint

∑m
j=1 ηjtrKj = c,

c > 0. The learning is done with sequential optimisation techniques.
In [28] an idea of hierarchical multiple kernels is explored. A kernel can be

decomposed into a sum of individual basis kernels which can be represented
as a directed acyclic graph. The framework is of particular interest for non
linear variable selection. Both state-of-the-art methods [27] and [28] are quite
efficient, however, the resulting models are hardly interpretable. It is also
important to choose an optimal kernel for a good functioning, and, as we
have seen on our data, in a case where n � p, such complex models tend to
overfit.

3. Deep Dimensionality Reduction

Our goal is to reduce the dimension of the problem, in other words, to
reduce the level of details without degrading predictive performance. In
this section, we introduce a deep data integration framework which performs
dimensionality reduction by constructing a multi-level hierarchy of new, more
compact, data representations.

To learn the hierarchical model, a training algorithm has access to n i.i.d.
labeled pairs (Xi, Yi)1≤i≤n. The input variable or covariate is X ∈ X , and
the class variable is Y ∈ Y . The covariate variables are high-dimensional,
and Xi = (Xi,1, . . . , Xi,d), where d is the dimensionality of the problem. We
are interested, in particular, to perform a dimensionality reduction so that
the dimensionality of our problem becomes r � d, and so that we can carry
out a classification task on a much more compact, and probably less noisy,
feature space.

3.1. Framework

The framework we consider here is a multi-level hierarchical structure.
It is a tree, where the leaves are initial features extracted from a corpus.
Nodes of all other layers (latent layers organized in a hierarchy) are new
data representations, where an upper level is obtained from a lower one. The
dimensionality reduction is done as follows: each hidden layer encodes a new
representation of a layer underneath, and, the higher the level, the higher
the abstraction level.
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As we mentioned above, the graph is a tree which is constructed by a
bottom-up technique. The number of hidden layers can be completely arbi-
trary; intuitively, the bigger dimensionality of an initial problem, the deeper
the structure. However, note that the amount of information can potentially
decrease with each level [10]. We suppose that the number of layers is task-
dependent. We provide some discussion and intuition on it in Sections 4
and 5, where we describe our experimental results. In general, to perform
dimensionality reduction according to the framework proposed, we can ap-
ply any state-of-the-art clustering or any dimensionality reduction approach
which seems to suit well to the data being processed.

We can imagine two scenarios to reduce the dimensionality of the problem
while using variables from all data sources available. We can carry out the
dimensionality reduction separately for each type of data, and then combine
the new compact representations in a new data set which we will use further
for a prediction task. Another possibility is a multimodal fusion, where the
hidden variables of all levels are constructed from instances coming from
various data sources. In our experiments in Section 5 we test both scenarios,
and it turns out that data integration based on the multimodal fusion is more
efficient than learning new representations on separate data sets. However,
we cannot claim that the multimodal fusion is always better, since optimal
data integration can be data dependent. Another point is interpretability of
a hierarchy. The results of the multimodal approach can be more difficult
to interpret, but at the same time, they can provide more insights into new
hypotheses and relations between data sources.

Below, we propose a novel supervised kernel dimensionality reduction
method which constructs the hierarchy and performs dimensionality reduc-
tion on different layers of the hierarchical structure simultaneously.

3.2. Supervised Deep Kernel Dimensionality Reduction

In this section, we introduce our approach which is based on a kernel
dimensionality reduction technique, and which constructs the layers of the
deep framework simultaneously. We start with the method of Fukumizu,
Bach, and Jordan [29, 30] and consider it in details since our approach is
strongly based on it.

The semiparametric method known as Kernel Dimensionality Reduction
(KDR) [29, 30], is based on the estimation and optimization of a particular
class of operators on reproducing kernel Hilbert spaces (RKHS). The idea
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is to relate dimensionality reduction to the problem of conditional indepen-
dence, and to construct an objective function for optimization.

The KDR method assumes that it is possible to find a projection of initial
covariate variables into a lower dimension space. The approach is based on an
assumption that there is a r-dimensional subspace (r � d) which is referred
to as the effective subspace. The dimensionality reduction can be viewed as
a procedure testing conditional independence of variables such that

p(y|x) = p̂(y|θTx), (4)

where θ is an orthonormal projection. The covariance operator on RKHS is
responsible for capturing conditional independence between variables. The
new representation in a more compact feature space is linear combinations
of the components of observations.

The KDR method aims to minimize the following objective function

det Σ̂Y Y |U =
det Σ̂[Y U ][Y U ]

det Σ̂Y Y det Σ̂UU

, (5)

where

U = θTX, (6)

and

Σ̂[Y U ][Y U ] =

(
Σ̂Y Y Σ̂Y U

Σ̂UY Σ̂UU

)
= (7)

(
(K̂Y + εIn)

2 K̂Y K̂U

K̂UK̂Y (K̂U + εIn)
2

)
, (8)

where ε > 0 is a regularization parameter. K̂Y and K̂U are the centralized
Gram matrices defined as follows:

K̂Y =
(
In − 1

n
1n1

T
n

)
GY

(
In − 1

n
1n1

T
n

)
, (9)

(GY )ij = k(Yi, Yj), (10)

K̂U =
(
In − 1

n
1n1

T
n

)
GU

(
In − 1

n
1n1

T
n

)
, (11)

(GU)ij = k(Ui, Uj). (12)
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The Gaussian kernel

k(a, b) = exp
(−‖a− b‖2

σ2

)
(13)

is used throughout the paper and in our experiments.
To optimize the criterion, a gradient descent with line search can be used.

The matrix of parameters is updated on iteration t according to

θt+1 = θt − γ
∂ log det Σ̂Y Y |U

∂θ
= (14)

θt − γ2εTr[Σ̂−1
Y Y |UK̂Y (K̂U + εIn)

−1∂K̂U

∂θ
(K̂U + εIn)

−2K̂UK̂Y ], (15)

where

Σ̂Y Y |U = (K̂Y + εIn)
2 − K̂Y K̂U(K̂U + εIn)

−2K̂UK̂Y . (16)

Therefore, the KDR approach produces a new reduced representation of the
data X which is θTX.

It was reported that the KDR is an efficient state-of-the art method of
dimensionality reduction on real data [29, 30]. In general, if we want to com-
bine the advantages of the KDR and a hierarchical “smoothing” structure,
we could construct a cascade of KDRs, where an output of one run of the
KDR would be an input for another run. However, in this situation we would
obtain a solution which is approximated, and not exact.

The proposed deep dimensionality reduction technique is as follows. Each
layer of the hierarchical structure is a new data representation X

′′
= θTi X

′ of
a layer underneath X ′, and where X ′, in its turn, is a reduced representation
of some previous layer. The iterative process such as a convex optimiza-
tion algorithm which updates parameters of a model, makes an update for
parameters of all levels of the hierarchy on each iteration, i.e. simultaneously.

We introduce a deep semiparametric model with D layers

p(y|x) = p̂
(
y|θTD(θTD−1 . . . (θ

T
1 (θ

T
0 x︸︷︷︸
x′

)

︸ ︷︷ ︸
x′′︸ ︷︷ ︸

...

))
)
, (17)

where x′, x
′′
, . . . , are the new representations of the deep structure that are

learned simultaneously in one optimization procedure. We clearly see that
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θj+1 depends on θj for all j ∈ {1, . . . D}, and optimization can not be done
separately for each layer. By the implicit function theorem, applying the
chain rule, for each θj, except for θ0, we have

∂�(θ)

∂θj
=

∂�(θ)

∂θj′

(∂�2(θ)
∂θ2j′

)−1 ∂�2(θ)

∂θj∂θj′
, (18)

where � = det Σ̂Y Y |U . In other words, to optimize parameters associated
with a layer, to compute the first derivative with respect to parameters of this
layer, we also need the second derivative of a layer underneath. Using eq. (18)
we update simultaneously all θ in one iteration of a gradient descent, and
new compact representations associated with different levels of generalization
are estimated simultaneously according to

θt+1
j = θtj − γ

∂�(θ)

∂θj
. (19)

3.3. KDR versus DKDR: Discussion

A natural question which arises is why the Deep KDR is better than the
KDR. Although it is currently impossible to provide a theoretical founda-
tion for it, there is an intuition why the deep method is expected to and
actually performs better in practice. Note that real data are always noisy,
and a “good” clustering or dimensionality reduction can significantly reduce
the noise. The major idea is that if features are tied into clusters of “high
quality”, then it is easier to detect a signal from data, and the generalizing
classification performance is higher. The hierarchical dimensionality reduc-
tion plays here the role of a filter, and a filter with multiple layers seems to
perform better than a one-layer filter.

Also note that the DKDR criterion is convex, and we can apply any
gradient-based method to optimize the model parameters.

3.4. Unsupervised Case

The framework discussed above, can also be learned in an unsupervised
manner, without any information about classes. To do it, we can apply stan-
dard dimensionality reduction methods or clustering methods. If we choose
a clustering method, however, we have to decide what new variables will rep-
resent and how to define new variables based on clustering results (centers
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of clusters, medoids, or anything else). In Section 5 where we share the re-
sults of our experiments, we compare performance of a number of standard
clustering and dimensionality reduction methods.

In this section, we consider a heuristic method, a covariance-based clus-
tering, which is both intuitively clear and robust. The idea to exploit the
covariance operators to capture dependence between variables of interest and
conditional independence between them, is the same as in the previous section
and the one exploited by [30, 29]; [31] proposed to use the Hilbert-Schmidt
norm of the normalized conditional cross-covariance operator to reveal the
underlying structure between variables.

We propose to use the covariance operator as a distance measure for
clustering, since, as mentioned above, the RKHS can provide information
on independence of variables. Let the RKHS be (HX , KX) and (HY , KY ),
and random variables defined on them are ΦX(X) = KX(·, X) and ΦY (Y ) =
KY (·, Y ), where K is positive definite.

The covariance operator on RKHS is defined as:

ΣY X = E[ΦY (Y )〈ΦX(X), ·〉]− E[ΦY (Y )]E[〈ΦX(X), ·〉], (20)

where ΣY X is an operator from HX to HY such that

〈g,ΣY Xf〉 = E[g(Y )f(X)]− E[g(Y )]E[f(X)] = (21)

cov(f(X), g(Y )), for all f ∈ HX , g ∈ HY . (22)

In the Euclidean case, we have the covariance matrix

VY X = E[Y XT ]− E[Y ]E[X]T , and (23)

(b, VY Xa) = cov
(
(b, Y ), (a,X)

)
. (24)

In the experimental section, the approach is referred to as covariance-based
clustering. The covariance operator can be also applied in an unsupervised
dimensionality reduction based on an objective function optimization, as it
is done e.g., in [32].

4. Experiments on Standard Data Sets

In this section we apply the proposed deep approach to two standard
biological data sets, the Golub et al. (1999) data and Alon et al. (1999) set.

We compare the performance of the Deep Kernel Dimensionality Reduc-
tion method to some standard unsupervised dimensionality reduction ap-
proaches such as
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Figure 1: Experiments on Golub Data Set (on the left) and Alon Data (on the right).
Error rate as a function of dimensionality reduction method and dimension in reduced
models.

• Principal Component Analysis (PCA),

• Kernel Principal Component Analysis (KPCA),

• Isomap (ISO),

• Laplacian Eigenmaps (LAPL),

• robust clustering methods, such as the Partitioning Around Medoids
(PAM) which is a robust version of the k-means; the medoids are rep-
resentatives of clusters,

• PAM clustering, where the representatives of clusters are median values
of instances in clusters (M.PAM),

• the heuristic unsupervised covariance-based clustering (COV) de-
scribed in Section 3.4.

We also compare our results to the following supervised dimensionality re-
duction approaches:

• the full model, i.e. the model with the original high-dimensional feature
space,
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• a supervised dimensionality reduction learning procedure KDR.

We use an SVM with an Radial Basis Function kernel to learn models.
We use the cross validation method to adjust parameters of all approaches
being tested.

In Golub [33] data we dispose of 72 patients and about 7000 gene ex-
pressions (Affymetrix probes). Among these patients, 47 subjects have acute
lymphoblastic leukemia, and 25 are diagnosed with acute myeloid leukemia,
therefore, we have a classification problem with 2 classes. Figure 1 on the left
illustrates the results in terms of 5-folds cross validation error rate. Since the
number of observations is 72, we consider the performance of models with
reduced dimensionality. We consider reduced models with 70, 50, 35, and
15 parameters. The choice of the reduced dimensions is due to the number
of observations: for several dimensionality reduction methods (PCA, KPCA,
Isomap) the reduced dimension of parameters has not be bigger than one of
observations. So, in the DKDR case we have a hierarchy of 4 layers (with
dimensions 70, 50, 35, 15). We see quite clearly that the proposed DKDR
approach outperforms all other methods, and the best accuracy is reached
for models with the least number of parameters, i.e., 15 and 35 features.

The Alon data set [34] contains 62 patients and 2000 gene expressions
(Affymerix origonucleaotide array) of colon tissues. The patients are coming
from two classes: 40 patients are diagnosed with a tumor, and 22 patients
have normal colon tissues. The results on the dimensionality reduction exper-
iments are shown on Figure 1 on the right (5-folds cross validation). Taking
into consideration that the number of patients is 62, we reduce the dimen-
sionality to 60, 40, and 20. The results are similar to ones we obtained on
the Golub data, except for the fact that KDR here slightly outperforms the
DKDR (3 layers). However, the best models are the most compact among
tested.

Figure 2 shows the performance of the state-of the art methods on Alon
and Golub data. HKL stands for Hierarchical Kernel Learning [28], SKMsmo
stands for Support Kernel Machine solved by Sequential Minimal optimiza-
tion [27], and SSPCA for Structured Sparsity PCA [20]. We observed that
the HKL and SKMsmo methods have a tendency to overfit. We have run
experiments with Hermite kernel, Polynomial kernel, hermite expansion of
Gaussian kernel, and Anova kernel. The best results were achieved with the
Hermite kernel. The SSPCA method leads to accurate results on the data,
and the error rates are comparable to ones we obtained with the DKDR. The
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Figure 2: Experiments on Golub Data Set (on the left) and Alon Data (on the right).
Error rate as a function of state-of-the art dimensionality reduction approaches.

dimensions chosen for the SSPCA are the same as above, on Figure 1.

5. Experiments on Real MicrObese Data

In this section, we show that the framework introduced above in Sec-
tion 3, can be efficiently applied to a real high-dimensional heterogeneous
data integration problem.

We describe our results on the MicrObese data [1], and we compare the
performance of the deep kernel dimensionality reduction (DKDR) to state-
of-the-art dimensionality reduction methods.

The MicroObese cohort consists of data coming from different sources,
including clinical data of patients, abundance of gut flora genes, and gene
expressions of adipose tissue. In our experiments, we consider models which
integrate these heterogeneous sources pairwise and altogether. Our primary
goal is to illustrate that the DKDR is an efficient dimensionality reduction
method. Another question is which data source or a combination of data
sources is more informative for the patients classification.

5.1. Brief MicrObese Data Description

The MicrObese corpus contains meta-data, genes of adipose tissue, and
gut flora metagenomic data. For each patient, we have the information to
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Figure 3: Scheme of deep data representation learning, where latent variables are “mixed”.
The blueish nodes are variables coming from different data sources. The upper layers are
therefore also mixed.

which class he or she belongs. There are two classes, high gene count (HGC)
and low gene count (LGC) classes. Therefore, our problem is a binary pre-
diction task from heterogeneous data.

In general, 49 patients have been hired and examined at the Pitié-
Salpêtrière hospital, Paris, France [1], but as to the genes of the adipose
tissue, we dispose data for less patients, and not for all patients their class,
LGC or HGC is provided. Therefore, in our experiments we have access to 35
observations (patients). To get rid of important noise, we run a significance
test (Kruskal-Wallis), and we keep those variables for which the raw (not
adjusted for the multiple hypothesis testing) p-values < 0.05.

Initially, we have 135 meta-parameters which can be divided into clinical
parameters and alimentary patterns reflecting nourishing habits of the pa-
tients. The data set contains more than 42,000 genes of the adipose tissue,
and the gut flora data contains counts for more than 3 million genes. The
metagenomic matrix is quite sparse, and not all of the genes are significant.
We have pre-selected about 24,000 genes of gut flora and about 350 genes of
the adipose tissue for our further experiments. As to the clinical parameters,
only 7 of them are significant enough (with respect to the LGC and HGC
classes) to be considered in our experiments. Although we reduced some
important noise in data with significance tests, and, therefore, reduced the
dimensionality of the task, the problem is still a perfect illustration of n � p
problem, i.e., where the number of observations is much smaller than the
number of parameters.

5.2. Deep Dimensionality Reduction on MicrObese Data

We compare the results of DKDR on the MicrObese data set to the state-
of-the-art dimensionality reduction methods mentioned above, in Section 4.
Note that ”ALL” method stands for the result without any feature selection
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Figure 4: MicrObese Cohort. On the left: error rate as a function of dimensionality
reduction method and data integrated into the model. On the right: error rate as a
function of data integrated and level in the hierarchy.

or dimensionality reduction. To train models with and without dimension-
ality reduction, we use an SVM with an RBF kernel [35], since a non-linear
separator is more efficient on our data. We show the results in terms of the 5-
folds cross validation error rate. As mentioned before, we have three sources
of data, and we test various combinations of them to explore the data. We
test the following combinations of data sources

• Gut Flora metagenomics (GF abbreviation on Figure 4)

• gene expressions of Adipose Tissue (AT)

• Clinical parameters, Gut Flora abundance, and gene expressions of
Adipose Tissue (C/GF/AT)

• Clinical parameters and Gut Flora metagenomics (C/GF)

• Clinical parameters and gene expressions of Adipose Tissue (C/AT)

• Gut Flora metagenomics and gene expressions of Adipose Tissue
(GF/AT)

We decided not to run tests with clinical parameters only, since there are
too few of them. Optimal parameters for all tested methods are chosen by
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cross validation. Figure 3 provides some intuition on data integration in the
proposed hierarchical model.

We construct the deep framework DKDR as follows. Although the choice
of the number of layers in the hierarchy is a delicate matter, here, without
loss of generality, we fix the dimension of each level to be 2 times smaller
than the dimensionality of its lower level. The number of genes of gut flora
is about 24,000, and all models including this data source contain more than
24,000 parameters. So, for all the models with gut flora, i.e., Gut Flora
(GF), Clinical parameters, metagenomics of Gut Flora, and gene expressions
of Adipose Tissue (C/GF/AT), Clinical parameters and Gut Flora metage-
nomics (C/GF), and Gut Flora metagenomics, gene expressions of Adipose
Tissue (GF/AT), we construct a hierarchy with 6 levels. The models with
gene expressions of Adipose Tissue (AT) and Clinical parameters and gene
expressions of Adipose Tissue (C/AT) have 3 levels only, since we consider
about 350 genes of adipose tissue.

Figure 4 on the left shows the error rate as a function of a dimensionality
reduction method and the data being used for the classification task. We
have observed that data integration has a positive effect: integrating all data
sources leads to a lower error on a test data set (5-folds cross validation error
rate). It is also easy to see that the proposed DKDR approach reaches a
higher accuracy than other state-of-the-art methods.

We would also like to understand the impact of the number of layers
in a hierarchy. Figure 4 on the right illustrates our observations on the
MicrObese data. The highest layer (the most compact models) is 6 for the
models including the Gut Flora genes (GF, C/GF, GF/AT, C/GF/AT), and
level 3 for all other models (C/AT, AT). Dimensionality of level 1 of models
with gut flora is about 12,000 (initial dimension 24,000 is divided by 2 for
level 1), and the dimensionality of level 6 is about 30, since the number of
patients is limited to 35. The number of features in models without gut flora
genes is 150 for level 1, and about 30 for level 3 which is the highest for
these models. We notice that the worst performance is obtained by models
with most features. It is also possible that performance of several levels is
the same, and that further dimensionality reduction does not ameliorate the
accuracy anymore. Note, however, that models with 6 levels (for ones with
gut flora) and 3 levels (for all the rest) are the most compact ones, and also
the most efficient in terms of prediction.

Figure 5 demonstrates the performance we get with the state-of-the art
Hierarchical Kernel Learning, Multiple Kernel Learning, and Sparse Struc-
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Figure 5: Results on MicroObese Data. Error rate as a function of data sources and of
state-of-the-art methods.

tured PCA methods. The accuracies are consistent with our previous results,
showing that SSPCA is a very competitive method, and that genes of gut
flora and clinical parameters are the best predictors of the gene richness.

Figure 6 illustrates a hierarchy of clinical parameters and alimentary pat-
terns of MicrObese data set, and Table 1 provides a brief description of the
parameters. In the deep structure on Figure 6, each level is a generalization
of its lower level. E.g., if we look at the leftmost branch of the tree, we
will see that for a reasonable patients classification it is sufficient to measure
walking index and particular bacteria (the yellow node), and spending efforts
on measuring total cholesterol, ratio of total cholesterol to HDL cholesterol,
non-HDL cholesterol, and triglycerides does not bring any additional infor-
mation. Note that the predictive power of the upper level (the yellow one,
with a quite small number of parameters) is not worse than of the lowest
level of the tree.

A particular interest is to consider mixed signatures, i.e. feature selection
where parameters come from more than one data source. Figure 7 shows a
signature (the highest layer of a hierarchy) based on both clinical parameters
and genes of adipose tissue. It is quite interesting that some bacteria are
strongly associated with specific genes and probably share the same biological
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Figure 6: A hierarchy of clinical parameters of MicrObese data constructed by a discrete
approach.

WI ap Walking index based on physical activity
ecoli log (norm) bact Escherichia coli in log scale and normalized

Chol meta Total cholesterol
TC HDL, NHDL Ratio of cholesterol, non-HDL cholesterol

TG meta Triglycerides
Tartes salees Pizzas Savory pies and pizza

Disse meta, Mccauley meta Insuline sensitivity
Sugar alim Sugar intake

produits aquatiques poissons Fish and fish products
dietary pattern, Fiber alim Diatary quality clusters

fruits et legumes, fruits, fruits crus Fruit and vegetables intake

Table 1: Description of clinical parameters of MicrObese data.
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Figure 7: A signature based on clinical parameters and genes of adipose tissue.

function.

6. Conclusion

Data integration is a delicate problem, especially in applications where
data are high-dimensional (metagenomics) and the number of observations
is small. We have proposed to reduce dimensionality by a deep kernel-based
approach which learns new representations of data simultaneously in a hierar-
chical way, and which do not waste any effort on modeling data distributions,
as the state-of-the-art methods do. We have considered supervised and un-
supervised dimensionality reduction, as well as we considered a real data
integration challenge. We show that the novel deep kernel dimensionality
reduction is efficient on standard data sets, and on a real medical complex
data set, and significantly outperforms modern state-of-the-art approaches.
Moreover, the multi-level hierarchy can provide new scientific hypotheses for
biologists doing pre-clinical research and help to develop methods of person-
alized medicine.
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