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Abstract

In the context of hip fracture risk prediction, measurement of guided waves could improve

the assessment of cortical femoral neck properties. The decomposition of the time reversal

operator (DORT) method was previously shown to be efficient to measure circumferential

guided modes in an empty cortical bone-mimicking tube of circular cross-section. In this

study, an adaptation of the DORT method is proposed to probe the same bone-mimicking

tube but filled with a marrow-mimicking fluid. The contributions to the backscattered field

of waves multiply reflected in the cavity of the tube interfere with those of circumferential

guided waves. The former contributions are eliminated in the backpropagation image using

ad-hoc criterion determined with simulation. Eight portions of different guided modes

were observed from experimental and simulated data. They were identified

by comparison with theoretical predictions. This work confirms the feasibility of

measuring guided waves in a fluid-filled tube of bone-mimicking material with the DORT

method.



I. Introduction

Osteoporosis is a systemic disease characterized by a compromised bone strength im-

plying an increased risk of fracture. The economic and human impact of osteoporosis-related

fractures is significant: in the five largest countries of Europe, 21% of all women aged 50−84

years are estimated to have osteoporosis and the economic burden is approximated at 30.7

billion e.1 The standard method for diagnosis of osteoporosis and prediction of fracture risk

consists in assessing bone mineral density (BMD) using ionizing dual X-ray absorptiometry

(DXA). However, growing evidence indicates that low BMD is not the sole factor account-

ing for fracture risk.2,3 The propagation characteristics of ultrasonic waves in bone being

closely related to its structure and to its elastic properties, quantitative ultrasound (QUS)

techniques have been developped in the past two decades to overcome limitations of DXA.4

Hip fractures are associated with the highest morbidity and mortality.1 The risk of hip frac-

ture is best predicted with DXA measurements performed directly at the femoral neck.5

Similarly, we hypothesize that QUS evaluation at the proximal femur could achieve a more

accurate risk prediction than peripheral QUS measurements. Recent reports have evidenced

the feasibility and the relevance of in vivo QUS measurements at this specific site.6 How-

ever, although the contribution of cortical bone to the strength of the femoral neck has been

evidenced in recent studies,7,8 the specific assessment of cortical bone at the hip remains

highly challenging with currently available DXA or QUS technologies.
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Following the recent developments of the axial transmission technique that exploits the

waveguide character of the cortical envelope of long bones,9 our group has proposed to ex-

tend the guided wave approach to the cortical shell of the femoral neck. A numerical study

has revealed that cortical bone of the neck behaves as a waveguide supporting the propaga-

tion of circumferential guided waves.10 In an ex vivo experimental study, the time-of-flight of

the first arriving circumferential ultrasonic wave transmitted through human femoral neck

specimens was found to be correlated to mechanical strength.11

In the appropriate frequency range (200 kHz-1.5 MHz approximately), the cortical bone shell

is a multi-modal waveguide, which means that different modes coexist in the same waveg-

uide.12 The velocity of each guided mode reflects a specific combination of several bone

parameters, such as bone thickness and elasticity. We hypothesized that the identification

of the different modes and the measurement of their frequency-dependent velocity combined

with an appropriate propagation model should allow estimating cortical bone thickness and

anisotropic elastic properties, which are key factors to predict bone mechanical strength.

Thus, in contrast with our previous studies10,11 that were limited to the measurement of the

first arriving signal, we aim at measuring the full response of the waveguide.

Towards this goal, we demonstrated the feasibility of measuring the circumferential disper-

sion curves of an empty cylindrical bone-mimicking phantom13 in a non-contact configuration

using the DORT method (French acronym standing for Decomposition of the Time Reversal
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Operator) based on the diagonalization of the time reversal operator.14,15

The objective of the present study is to adapt the DORT method in the case where the

cavity delimited by the cortical shell is filled with a marrow-mimicking fluid. In this case,

the circumferential guided wave signals radiated towards the array interfere with waves

transmitted through the fluid-filled cavity and multiply reflected on the cavity walls. A

method is proposed to filter out the contributions of the latter reflections. This adaptation

of the DORT method is used to retrieve portions of the dispersion curves from experimen-

tally recorded backscattered signals from a cylindrical bone-mimicking phantom filled with a

marrow-mimicking fluid. Experimental portions of dispersion curves are compared with por-

tions obtained from simulated backscattered signals and with theoretical dispersion curves.

II. Rationale for dispersion curve measurements with the DORT method

The principle of the method, extensively described elsewhere15,16 is summarized here.

A. Scattering of acoustic waves by a cylinder

A transmitter-receiver array composed of N transducers is placed in a water tank to measure

a tube of diameter D. The median axis, parallel to the array, is labelled ∆ in the

following. This object is insonified with a harmonic plane wave emitted by the

array, in the x direction (Fig. 1). At a specific incidence angle θ corresponding
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to two symmetrical points A and B, two circumferential guided waves of phase

velocity cφ(f) are generated. The incidence angle θ is determined by the Snell-

Descartes law:

sin θ(f) =
c0

cφ(f)
, (1)

with c0, the sound velocity in water. The two generated waves propagate being

guided by the shell, the wave generated in A propagating clockwise and the

wave generated in B propagating counterclockwise. During the propagation in

the tube, these circumferential waves radiate into the external medium with the

angle θ. The radiated waves received by the array come from B for the clockwise

propagation and A for the counterclockwise propagation. The propagation path

of the circumferential wave generated in A is depicted in Fig. 1, the path of

the wave generated in B being symmetrical. This observation is only true in

the far field. In fact, the circumferential waves received by the array not only

radiate from a point A or B, but from a small area around these points. It can

be shown using geometrical approximation that the radiated waves come from

two apparent radiation points: two virtual sources A′ and B′. These points are

located on the line ∆ and aligned on x with A and B.17

The distance between A′ and B′ can be related to the diameter of the tube and

the angle θ using trigonometry: dA′B′ = D sin θ. The phase velocity can thus be
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related to the distance between the two virtual sources by

cφ(f) = c0
D

dA′B′(f)
. (2)

The phase velocity being dependent of the frequency, the position of A′ and B′

evolves with the frequency.

Hence, the key point of this guided wave measurement is to locate the virtual sources, the

apparent radiation points A′ and B′ for several modes, at several frequencies.

B. The DORT method

The DORT method applied to backscatter measurements of circumferential guided

waves with a N-element array can be summed up in four steps. (i) The interelement

array response matrix is measured: signals scattered by the tube for N successive

independent emissions are recorded by the N elements of the array. Time-domain Fourier

transform is applied to each signal to obtain the three-dimensional array transfer

matrix of the system of dimensions N×N×Nf , with Nf the number of frequency

samples. (ii) A singular value decomposition is applied to the two-dimensional transfer

matrix, of dimensions N × N , at each frequency. (iii) Singular vectors are selected based

on considerations described below. (iv) These vectors are backpropagated at each
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frequency. Step (iv) which is performed numerically in our experiment, is equiv-

alent to the time-reversal process. It consists in calculating the backpropagated

wavefield, in an area (x, y) containing the object, resulting from the emission of

singular vectors of the time-reversal operator. (v) The distance between virtual

sources is measured on this backpropagation image and is converted into phase

velocity (or wavenumber) using Eq.(2).

More precisely, the backpropagated wavefield is observed on the line ∆ which

corresponds to the theoretical location of apparent radiation points A′ and B′

(Fig. 1). The wavefield amplitude along this line, collected at each frequency

(f) is then displayed in the plane (y, f). Examples of backpropagation images

in (x, y)-plane, at 0.6 and 1 MHz and in (f, y)-plane are presented (Fig. 2). They

have been obtained from the simulation of the backscatter experiment for a steel

tube. This example was chosen because the phenomena are more clearly illus-

trated than in a bone-mimicking material, due to the higher amplitudes of the

backscattered signals.

The criterion for the selection of the singular vectors follows from the analysis

of the invariants of the time-reversal operator. Prada et al. have shown that the

process of generation and reception of the circumferential guided waves in the

backscatter experiment is invariant through the time-reversal process.14,15 For-
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mally, these invariants correspond to the singular vectors of the array transfer

matrix. Thus, a guided mode, i.e. two circumferential guided waves propagat-

ing clockwise and counterclockwise, is associated with a pair of singular vectors.

For example, if three modes are expected for the studied waveguide, six singular

vectors will be selected at the step (iii).

III. Material and methods

A. Bone phantom

The model considered in this study consists of a cortical bone-mimicking tube filled with

a marrow-mimicking fluid. The cortical part of the phantom is a hollow cylinder made

of a commercial cortical bone-mimicking material (Sawbones, Pacific Research Laboratory

Inc., Vashon, WA). This material consists of short glass fibers embedded in an epoxy resin.

The fibers of the manufactured tube are aligned with the axis of the cylinder. Thus, this

composite presents a transverse isotropy, the plane of symmetry being perpendicular to the

tube axis. In this study, we are interested in circumferential waves propagating in the plane

of isotropy. Material properties of this mock bone were previously measured9 and found

to be representative of the mean properties generally reported for human cortical bone18,19

(Table 1). The diameter and the wall thickness of the tube are 26 mm and 2.1 mm, which
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Table 1: Comparison of longitudinal, transverse velocities, mass densities9,18 and at-

tenuations9,19 of cortical bone-mimicking material and human cortical bone (mid-diaphysis

of the femur), in the plane of isotropy. L and T stand for longitudinal and transverse com-

ponents.

Mock bone Human bone

cL(m.s−1 ) 2870 3205

cT (m.s−1 ) 1520 1495

ρ(kg.m−3 ) 1640 1879

αL(dB.cm
−1.MHz−1 ) 2.63 2.56

αT (dB.cm
−1.MHz−1 ) 8.40 Unknown

are relatively close to standard geometrical properties of femoral neck.20

The presence of bone marrow was simulated by adding a fluid in the tube. There seems

to be no consensus in literature on a marrow-mimicking fluid. We decided to use glycerol

whose properties (velocity of 1900 m · s−1 and density of 1260 kg ·m−3) results in

a slightly higher acoustical impedance compared to that of marrow21 (2.39 vs.

1.39 MPa ·m · s−1). However the attenuation coefficient is similar (0.2 vs. 0.15 dB · cm−1 at

1 MHz).

B. Experimental acquisition
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The measurement of the transfer matrix was performed with a linear array of 128 cylindrically

focused elements (Imasonic, Besançon, France). Its main characteristics are a focal length

of 160 mm, an array pitch of 1.1 mm, a −6 dB beam width of 4 mm, a center frequency of

1 MHz and a −6 dB bandwidth of 0.6 MHz. The probe was used in a reflection mode: 128

excitations are performed successively, each followed by the recording of scattered signals

by each of the 128 array elements. The center of the phantom is placed at the focal

length of the probe, i.e. 160 mm. The water tank containing the probe and the

phantom was large enough (volume 1.40 m × 1 m × 0.50 m), so that reflections on

the tank walls do not disturb the measurements of circumferential waves.

The excitation signals have been chosen carefully to overcome the strong attenuation of the

cortical bone-mimicking material. A classical emission of short pulses in a canonical basis

(each element takes turns to emit a pulse) does not excite the phantom with a sufficient

energy to record radiated contributions of circumferential waves. In order to increase the

signal-to-noise ratio, Hadamard-Walsh basis was preferred to the canonical basis. In this

basis, all elements emit simultaneously for each of the 128 excitations: some

elements emit the excitation signal and the other ones emit its opposite according

to the Hadamard-Walsh matrix (composed of 1 and −1). The excitation signal

was a chirp, i.e. a pulse compression by linear frequency modulation was used to emit

signals with sufficient energy without degrading resolution. The emitted chirp swept a
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frequency range of [0.4− 1.6] MHz in 20 µs. A multi-channel electronic device (Lecoeur

Electronique, Chuelles, France) was used to manage the 128 elements of the probe.

The signals reflected after each excitation were recorded during 100 µs by the 128 elements

and digitized at a rate of 20 MHz. To increase the signal-to-noise ratio, the recorded signals

were averaged 20 times. Finally, the interelement response matrix was Fourier transformed

to obtain the transfer matrix of the system. Data were stored on a computer for off-line

analysis.

C. Simulation of the acquisition

Numerical simulations are a useful tool to evaluate the potential of the method in ideal

conditions. Simulations are also appropriate to gain a better insight into the experiment and

to develop adapted signal processing, see section .

The simulation consists in analytical calculations of the signals scattered by the phantom

and recorded by the array, in a 2D approximation. These signals are computed from

the normal mode expansion method.22,23 The Fourier transform, Sij(f), of the signal

received by the j-th element of the array after an excitation of the tube by the i-th element can

be written as the sum of a certain number,m+1, of cylindrical normal modes of vibrations

for a large elastic tube. The number m, is chosen to ensure the sum convergence.24

Each normal mode is weighted by a scattering coefficient, Rn(f), which depends on the
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frequency, the elastic properties of the scatterer and the inner and surrounding fluids.

Sij(f) =
m∑

n=0

ϵnRn(f)H
(1)
n (k0ri)H

(1)
n (k0rj) cos(nαij), (3)

with 1 < i, j < 128. The time-domain signals, sij(t) are calculated as the inverse

Fourier transform of Sij(f).

sij(t) = Re(

Nf∑
f=1

e−i2πftB(f)OiOjSij(f)). (4)

In the normal modes expansion, the cylindrical Hankel functions of the first kind, H
(1)
n ,

depend on the wavenumber, k0, in the surrounding fluid and on the distance between the

emitter (respectively the receiver) and the tube, ri (resp. rj). The n-th cylindrical normal

mode depends on the angle αij formed by the lines between the tube and the emitter, on

the one hand and the tube and the receiver, on the other hand. The Neumann coefficient ϵn

verifies ϵ0 = 1 and ϵn = 2 for n ≥ 1. The characteristics of the array, frequency bandwidth

B(f) and emission and reception aperture functions Oi and Oj are also taken into account.

The simulated signals are combined according to the Hadamard-Walsh basis to obtain a

transfer matrix of the system similar to the experimental one. The same signal processing

(described in section ) is applied to simulated and experimental transfer matrices.

D. Calculation of theoretical dispersion curves
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The software Disperse (Imperial College, London, UK) was used to calculate the theoretical

dispersion curves. This software is based on the global matrix method, which involves the

construction of a single matrix describing wave propagation and boundary conditions for each

layer. The points of the dispersion curves are obtained by finding the values of the parameters

k and f for which the determinant of the global matrix is zero.25 This software also provides

attenuation, phase and group velocities and shapes of the modes at each frequency.

Disperse does not provide the dispersion curves for the particular waveguide investigated

here: a tube loaded by two different fluids. As a proxy, we calculated with Disperse the

dispersion curves of a plate loaded with infinite layers of water on one side and glycerol on

the other side. Disperse was fed with the material properties of cortical bone-mimicking

and marrow-mimicking materials mentionned in section . Loading the plate by glycerol

and water significantly affects the dispersion curve appearance. When compared with the

free plate modes, the dispersion curves of the loaded plate are slightly modified and two

additional fluid-born modes, labelled A and S, appear. Labelling of the different modes is

performed by comparing, at each frequency, the deformation patterns of the free plate and

of the immersed plate. The additional modes A and S, being non-attenuated,26 can be easily

identified. Lamb modes are numbered according to their cut-off frequency.

E. Signal processing
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In this experiment with a fluid-filled phantom, a major contribution to the re-

ceived signals comes from multiple reflections on the walls of the fluid-filled cav-

ity. Custom made MatLab programs (The Mathworks Inc., Natick, MA) were

developed for processing the recorded signals following the algorithm presented

in section . When this processing is applied to these signals, the overlapping

of circumferential and reflections waveforms makes the identification of relevant

focal spots in the backpropagation image (f, y, like Fig. 2, Right) difficult, if not

impossible. The cavity wall reflection contributions must be filtered out of the

backpropagation images.

In this article, we propose a filtering criterion to extract the contributions of

circumferential guided waves, in the backpropagation images. This criterion is:

if the focal spot converges towards the central axis with increasing frequencies,

then this focal spot is related to cavity wall reflections and should not be kept

for the next processing step; otherwise, the focal spot is associated with circum-

ferential guided waves and can be used for the calculation of dispersion curves.

This criterion is based on the one hand, on the analysis of a simulation performed

with the tool presented in section . This simulation represents the acquisition of

the signals backscattered by a tube filled with glycerol but made of a fictitious

highly attenuating material. The high attenuation implies that the circumferen-
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tial waves are rapidly attenuated: the backscattered wavefield is only constituted

by the reflections from the tube walls. The singular value decomposition was

applied to the transfer matrix of this simulation and the backpropagation images

of each of the first four singular vectors are observed (Fig. 3). These images

show the specific behavior of the focal spots related to reflections: they converge

towards the central axis when frequency increases. This particular evolution results

from the decrease of the lateral resolution with increasing frequency. Indeed, the width

of the focal spot, L, is inversely proportional to the frequency f : L =
c0
f
.
F

D
, with

c0, the wave velocity in water, F the focal length and D the length of the array.

The first singular vector clearly follows this tendency (top panel of Fig. 3) and the focal

spots of the subsequent singular vectors align on both sides of the first central spot, seeming

to converge towards the central axis (images 2, 3 and 4 of Fig. 3).

On the other hand, we know from the theory of guided waves that, on the probed

frequency bandwidth and for the modes we are interested in, the phase velocity

of the different modes either decreases with frequency (e.g. modes A1, S1 etc.)

or is almost constant (e.g. modes A0, S0). As the phase velocity decreases, the

distance between the pair of focal spots increases (Eq. (2)). Thus, the focal

spots associated with circumferential waves diverge from the central axis or do

not evolve with increasing frequency.
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Therefore, the proposed algorithm to calculate the dispersion curves is the following: (i) the

interelement response matrix is measured and Fourier transformed to obtain the transfer ma-

trix; (ii) the transfer matrix is decomposed with singular value decomposition; (iii) singular

vectors are backpropagated by groups of 4 vectors to avoid a saturation of the backpropa-

gation images with reflection contributions; (iv) on the backpropagation images, focal spots

associated to circumferential guided waves are selected according to the proposed criterion,

i.e. according to their evolution with frequency. The superimposition of the backpropaga-

tion image associated with the reflections on the cavity walls (obtained with simulation of

the highly attenuating material) to the backpropagation images associated with simulated or

experimental signals helps the operator in the selection; (v) the coordinates of the selected

spots are then processed to obtain portions of dispersion curves using Eq.(2).

IV. Results & discussion

We proposed in this study to measure dispersion curves of circumferential waves guided

by a fluid-filled bone-mimicking tube. The presence of a fluid in the cavity enables the

acoustic waves to propagate and to reflect on the walls of the cavity. The con-

tribution of these reflections on the walls of the fluid-filled cavity interfere with

the contribution of circumferential guided waves we are interested in. Signals

received by each array element after excitation with a plane wave of an empty
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tube, of a fluid-filled tube and of a fluid-filled tube of highly attenuating material

were simulated (Fig. 4). Due to the multiple reflection echoes, the circumfer-

ential wave contributions can hardly be seen in the case of the fluid-filled tube.

The last image of the figure 4 indicates that, in the case of the fluid-filled highly

attenuating tube, the only contribution to the backscattered wavefield actually

comes from the reflections on the cavity walls.

The backpropagation images obtained with the first four singular vectors of the

transfer matrix of the fluid-filled tube measured and simulated depict the super-

position of the cavity reflection and the circumferential wave contributions (Fig.

5). The characteristic pattern of the reflections (observed with the simulation

of the highly attenuating tube, Fig. 3) can be recognized, modified in some

areas by the contributions of the circumferential guided waves. The comparison

of the singular vector amplitudes of the fluid-filled tube and of the fluid-filled

highly attenuating tube, at one frequency (Fig. 6) illustrates the fact that the

singular value decomposition does not enable to separate the cavity reflection

and the circumferential waves contributions. In the simulation of a fluid-filled

tube of a highly damping material the singular vector amplitudes corresponds to

typical patterns (intermediate case between Gaussian and Legendre polynomi-

als) associated with specular reflections.23,27 In the simulation of the fluid-filled
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bone-mimicking tube, the singular vectors present the same type of motif but

distorted by the contribution of circumferential waves: each singular vector con-

veys information about both circumferential waves and cavity reflections.

The criterion proposed in the former section is applied: if a focal spot does

not converge towards the central axis with increasing frequency, then this focal

spot is associated with circumferential guided waves. This criterion is applied

to the backpropagation images obtained with the singular vectors 2 to 5 of the

simulated and measured transfer matrix (Fig. 7 and 8): the focal spots kept

for the next step of the processing are indicated by a solid line while the focal

spots assumed to correspond to cavity reflection contributions are represented

by a dashed line. The backpropagation images of the singular vectors 6 to 9 and

10 to 13 were also processed to obtain the location of circumferential wave focal

spots.

The distances between chosen focal spots were converted into dispersion curves using Eq.(2).

Portions of circumferential wave dispersion curves obtained from experimentally recorded

signals are compared with those obtained from simulated signals (Fig. 9). Most of the simu-

lated portions are experimentally observed, indicating the quality of our experimental set-up.

However, some portions are obtained only in the experiment or only in the simulation. This

discrepancy can be explained by differences of signal amplitudes: the singular value decom-
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position is slightly different between experiment and simulation. Hence, the backpropagation

image of the highest singular vectors obtained from simulation is not strictly identical to the

corresponding image calculated from experiment (Fig. 7 and 8). Specifically, the focal spots

of the backpropagation image of the experiment, for some frequencies, are not collocated with

those obtained from simulation. Thus, in some areas of the backpropagation images,

the focal spots from experiment (respectively simulation) are eliminated because they are

superimposed with reflection focal spots whereas focal spots from simulation (respectively

experiment), being slightly different are not superimposed and not eliminated. However,

these portions obtained only in simulation or experiment seem nevertheless to be reliable:

they are aligned with points or portions obtained in both experiment and simulation.

The comparison between experimental points and theoretical dispersion curves of a doubly

fluid-loaded plate enables to identify the observed portions with modes A, S, A0, S0, A1, S1

and A3 (Fig. 9). Points near the cut-off frequency of S2 are also observed. We can notice

that, compared to our previous results on an empty tube,13 the portions of the modes of the

fluid-filled tube are experimentally observed on smaller bandwidths. This is a consequence

of the proposed filtering method. Actually, this criterion only enables distinguishing the con-

tributions of the circumferential waves when the corresponding focal spots are distinct from

the reflection focal spots. If the focal spots are collocated, the reflection contributions being

of a larger amplitude, these spots will not be taken into account to calculate the dispersion
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curves. Attenuation may also play a role. When the tube is filled with a fluid, attenuation

of the circumferential guided waves by leakage in both the external medium and the cavity

increases. We have checked using Disperse that areas of the (f , k) plane where no dispersion

branch is obtained actually correspond to high values of attenuation (Fig. 10).

The selection and matching of the focal spots in the backpropagation images (Fig. 7, 8)

were performed manually for this study. However, these operations could be automated.

Indeed, the tasks involved in these operations are identification, matching of alignment of

focal spots and then comparison of two sets of aligned focal spots obtained from the two

backpropagation images.

Differences between the cortical bone-mimicking phantom filled with glycerol considered

in this study and a human femoral neck should be acknowledged. First, the acoustical

impedance of glycerol being higher than that of marrow, the acoustical impedance mismatch

is smaller than the actual mismatch between cortical bone and marrow. Thus, for the fe-

mur neck, it is expected that less energy would be transmitted to the medullary cavity and

that the circumferential waves would be less attenuated by radiation leakage in the cavity.

Second, the presence of trabecular bone on the endosteal cortical side is not considered in

the study. Because trabecular bone strongly attenuates (by absorption and scattering) the

waves that are transmitted in the cavity, the reflections should be a less critical issue in

real life. Finally, the soft tissues surrounding the neck were not taken into account. The
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soft tissues, unlike the medium used in our study (water), are heterogeneous.

The influence of this heterogeneity on the applicability of the method must be

studied before considering in vivo application.

A limitation of the study is that the femoral neck geometry was approximated by a tube of

circular cross-section. The method proposed in this article will serve as a basis to undertake

studies with more realistic geometries.

V. Conclusion

An adaptation of the DORT method was proposed to measure the wavenumbers of circum-

ferential guided waves in a fluid-filled cylindrical cortical bone-mimicking phantom. Eight

guided modes of the bone-mimicking phantom obtained from experimental and simu-

lated data were identified and their dispersion curves were in good agreement with theory.

This study represents a step towards the ultrasonic characterization of cortical shell of the

femoral neck. However, it is of more general interest. It may for instance find applications

for the ultrasonic inspection of immersed composite pipes.
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Figure Captions

Figure 1. A tube of diameter D immersed in water is excited with an array of transducers.

A circumferential wave of velocity cφ is generated in A. This wave propagates in the shell

and radiates into the external medium. The radiated wave recorded by the array appears

to come from a virtual source B′, located on the median axis ∆ of the tube. Reciprocally,

a circumferential wave is generated in B, and the radiated wave is seen coming from A′ for

the array.

Figure 2. (Top) Backpropagation images x, y at 0.6 and 1 MHz. Several virtual sources can

be identified (A′
1, A

′
2, A

′
3 and B′

1, B
′
2, B

′
3). (Bottom) Backpropagation image observed on the

line ∆ (x = 0), at several frequencies. The distance between the virtual sources A′
i and B′

i

is measured on this image and converted into phase velocity using Eq.(2).

Figure 3. Backpropagation images of the first four singular vectors of the simulated transfer

matrix of a phantom filled with glycerol made of a fictitious highly attenuating material. A

specific behavior of focal spots related with reflections can be noticed: they converge towards

the central axis as the frequency increases.

Figure 4. Simulated signals scattered by three phantoms : an empty phantom (a) previously

studied13, the fluid-filled phantom studied here (b) and a highly attenuating phantom filled

with the same fluid (c). Each line of these images represents, with a color map, the signals re-

ceived by one of the 128 transducers after a plane wave emission. Two kinds of contributions
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can be distinguished : radiated circumferential waves [(a) and (b)] and multiple reflections

on the cavity walls, labeled R. [(b) and (c)]. By comparison of the three images, we can no-

tice that the radiated circumferential waves overlap with the multiply reflected waves. Bold

black lines delineate the part of signals containing information on circumferential waves used

for the processing.

Figure 5. Backpropagation images of the first four singular vectors of experimental (Left)

and simulated (Right) transfer matrices of a fluid-filled bone-mimicking tube.

Figure 6. The first four singular vectors (SV) at the central frequency (1 MHz) corresponding

to the simulated transfer matrix of the studied phantom, a cortical bone-mimicking tube

filled with glycerol (solid line) and a phantom filled with glycerol made of a fictitious highly

attenuating material (dashed line). The typical pattern of reflections23,27 can be observed

for the second phantom.

Figure 7. Backpropagation image of the singular vectors 2 to 5 of the simulated transfer

matrix of the studied bone-mimicking phantom filled with glycerol. On this image, series

of focal spots associated with circumferential waves which do not converge towards the

central axis (solid line) are selected. The other focal spots corresponding to reflections are

excluded(dashed line).

Figure 8. Backpropagation image of the singular vectors 2 to 5 of the measured transfer

matrix of the studied phantom. Similarly to Fig. 7, the solid line corresponds to focal
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spots identified as circumferential wave contributions by the operator and the dashed line

corresponds to focal spots identified as reflection contributions.

Figure 9. Identification of dispersion curves portions obtained, in the fluid-filled case [ Fig.

4(b)], from experimentally recorded signals (◦) and simulated signals (+) with theoretical

predictions from a doubly fluid-loaded plate (•). Portions of A, S, A0, S0, A1, S1 and A3 as

well as cut-off frequency of S2 are measured. Areas where no points are obtained have been

found to correspond to high values of attenuation (Fig.10).

Figure 10. Attenuation due to radiation in the external media calculated by Disperse for a

plate loaded with water one side and glycerol on the other side. High values of attenuation

in some areas explain why no portions of dispersion curves are observed.
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