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The amount of wind energy entering the European electricity transmission system is expected to
increase in next decades. Indeed, Europe is on the path towards a deep transformation of its energy
system, triggered in part by Directive 2009/28/EC (also known as the Renewable Energy Directive), in
which wind energy will play an important role.

Europe is large enough to be impacted by multiple weather systems at any one time and as a con-
sequence, absolute values and time patterns of wind power generation are different in each European
country because of these non-homogeneous meteorological conditions. A future pan-European power
transmission grid aiming to dispatch electricity production throughout the continent will thus have to
face the challenge of balancing in real time differently intermittent and strongly inhomogeneous
resources.

In this study, based on the wind fields provided at daily resolution for the period 1961–2050 by 12
regional climate models involved in the ENSEMBLES climate modelling intercomparison project, we have
evaluated absolute national and European wind power production and its expected changes following
the evolution of climate in Europe. Moreover, we have suggested a methodology to investigate in a
quantitative way the complementarity among wind power patterns in different countries. Results show
that the evolution of climate in Europe as projected by the ENSEMBLES participants, is not expected to
have major impact on absolute wind energy production. Furthermore, the complementarity of wind
energy patterns in different countries can be exploited by better integration of trans-boundary power
exchange in Europe. For this reason, results are also discussed in the light of the design and dimensioning
of the European electricity transmission system, with a special emphasis on the cross-border inter-
connections issues.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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Table 1
On shore wind capacity planned for 2020 in the EU.
Source: National Renewable Energy Action Plans.

Country On-shore wind power – planned
2020 installed capacity (MW)

Belgium 2320
Bulgaria 1440
Czech Republic 573
Germany 35,750
Denmark 2621
Estonia 400
Ireland 4094
Greece 7200
Spain 35,000
France 19,000
Croatia 400
Italy 12,000
Cyprus 300
Latvia 236
Lithuania 500
Luxembourg 131
Hungary 750
Netherlands 6000
Austria 2578
Poland 5600
Portugal 6800
Romania 4000
Slovenia 106
Slovakia 350
Finland 1600
Sweden 4365
Total 169,004
1. Introduction

Wind energy is at the core of the present and future European
energy mix. According to the National Renewable Energy Action
Plans, by 2020, the countries belonging to the European Union
(EU) will have about 169 GW of on-shore wind capacity (see
Table 1 for national capacities) installed which is expected to
provide some 352 TWh of electricity, corresponding to about 10%
of the expected electricity consumption of the EU for the same
year [1].

Given this role of on-shore wind in the EU energy mix, present
and future wind patterns should be studied in order to provide
insights to energy system planners and policy makers regarding
the availability and exploitability of wind resources in the next
decades.

In this study, two main aspects have been investigated. Firstly
we have evaluated the expected changes in absolute national and
European wind power production, under the future climate pro-
jections for Europe produced by the ENSEMBLES project [2]. In this
way we have been able to provide a quantitative vision of how
climatic effects are expected to modify wind power production
across Europe. Secondly, we have focused our attention on
potential interactions between different European countries to
complement national variations in wind energy production and
we have developed and applied a methodology to evaluate the
complementarity among wind power patterns in different coun-
tries and its role in achieving a well balanced European electricity
transmission system.

1.1. Climatic driven wind power changes in Europe

The impact of climate change on wind patterns has been
demonstrated, although not as relevant as for other meteorological
variables, such as temperature. Indeed, future projections of wind
fields at regional scale, derived from the dynamical and statistical
downscaling of Global Climate Models (GCM), suggest only slight
modifications in wind speed mean values and distribution [3–5].
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Specifically, in Europe a slight increase of wind intensity is pro-
jected over northern Europe while a slight negative trend is
expected over southern Europe [6].

In this study we have analysed in detail the climate-driven
evolution of wind patterns and wind energy production in Europe.
Such an analysis is not unknown in the scientific literature as, for
instance, Tobin et al. [7] and Gaetani et al. [8], have used the same
regional ENSEMBLES projections on which the present study is
based, to evaluate the evolution of wind energy production in
Europe in next decades. Nevertheless, by applying the Monte Carlo
approach to capacity allocation developed in [9] to a continental
scale, the results obtained in the present study have a wider
validity and further confirm and generalize the results obtained in
[7] regardless of the actual spatial deployment of wind power
production capacity (see Section 3.2 for more details).

1.2. Complementarity of wind power production in Europe

The present study further aims to evaluate the com-
plementarity of national wind power productions in Europe. For
this purpose we have investigated the correlation (or the lack of
correlation) between national wind energy production curves, on
daily to yearly time scales. This analysis allows an assessment of
the extent to which above average wind energy production in one
area of Europe could be expected to sustain and/or complement
shortfalls in production in other areas under a common EU elec-
tricity market, in both present and future climates, as described by
ENSEMBLES projections.

Indeed, time complementarity among diverse dispersed inter-
mitting energy resources, has been the subject of literature stu-
dies, generally showing that geographically dispersed wind (or
PhotoVoltaic) generators are more likely to provide a smooth
collective supply profile because of random cancellation of the
variations, this effect is particularly evident in the case of
wind power.

For instance Widen [10] analyses large-scale solar and wind
power for Sweden, using climatic data covering 8 years with an
hourly resolution and finds that solar and wind power are gen-
erally negatively correlated on all time scales, from hourly to
annual, but that the correlation is strongest for monthly totals.
Consequently, a balanced combination of solar and wind power
can reduce total variations. Similar studies have involved various
other geographical areas and time scales [11–13].

Wind is a variable and partly unpredictable energy source and
even if general seasonal cycles can be observed, the precise time
profile of wind power generated is inevitably different in different
countries, depending on local weather patterns and turbines
locations [14]. Such diversity could be both an opportunity and an
issue for the EU energy system as a whole: if peaks and troughs in
wind flows are synchronous throughout the main wind power
production areas, overall EU energy production will be formed of
high peaks alternating with low troughs. Conversely, if high peaks
in some production areas are synchronous with troughs in other
areas, the different intermittency phases complement each other
and the overall production will be smoother, provided that suffi-
cient transmission capacity is available to allow national produc-
tion to balance one another.

In this second case, the European electricity market as a whole
will benefit from a more stable and predictable amount of power
available from wind sources, with an overall smaller need for
energy storage and with a lower risk of energy curtailment needs
(see also the appendix of Monforti et al. [9] for a quantitative
discussion of these concepts).
Until now, the temporal complementarity of wind patterns
have been studied in just a few regions of the world. For instance,
Santos-Alamillos et al. [15] have analysed the potential contribu-
tion of wind energy to the baseload within the Iberian Peninsula
using a method based on principal component analysis (PCA). In
this way, spatiotemporal balancing of wind energy resources is
investigated in order to assess optimal wind farm locations in
order to reduce power fluctuations.

Similarly, Liu et al. [16] investigated wind energy com-
plementarity across China, demonstrating that whereas a combi-
nation of wind and solar resources over a given area reduces the
occurrence of zero-power hours, wind resources alone are suffi-
cient to provide baseline power production, if a large enough area
is considered.

In this study we have analysed for the first time the time
complementarity of wind patterns and potential wind power
production on the whole European continent. As our investigation
was based on decades-long daily time series from ENSEMBLES,
results are robust enough to be of interest for energy system
modellers and planners, in particular in designing appropriate
cross-border transmission capacity.

1.3. Wind energy integration in the European power system and
cross-border transmission capacity

Several literature studies have assessed the consequences of
integrating variable energy sources into the European electricity
system. For instance, Widén et al. [17] summarized the state of
knowledge on the time scales of variability of Renewable Energy
Sources (RES hereafter) – including also tidal and wave power in a
future perspective, on both European and global domains, while in
[18] authors applied a market stochastic model in order to assess
the future deployment of RES up to 2050 following different
techno-economic scenarios. This last study confirmed the crucial
role of transmission capacity in reaching a successful technical and
economic integration of the electricity market, to cope efficiently
with RES time variability. Indeed, an efficient cost optimization
was shown to be possible only by increasing total trans-boundary
power transmission, regardless of the scenario studied. In [19]
authors also assessed the economic benefits of transmission
capacity, showing how additional cross-border transmission
capacity between 2010 and 2025 is expected to reduce annual
dispatch costs. In the same paper, the trade-off between cross
border transmission capacity and energy storage was also inves-
tigated, showing that scenarios providing higher transmission
capacity result in both a reduced need for storage and reduced
wind and solar energy curtailment.

In conclusion, once intermittent RES are fed into a homo-
geneous European grid, the beneficial effect of averaging different
intermittency patterns, partially complementing each other, into a
smoother production profile has been demonstrated from both the
technical and economic point of view. For this reason, the detailed
knowledge of the typical potential wind power supply time pro-
files for each EU country and their complementarity, offered by
our study is crucial for a proper assessment of present and future
electricity transmission flows across the European grid and inform
its proper dimensioning, including setting consistent cross-
border lines.

1.4. Summary of the paper

In summary, Section 2 presents the methodology and data
sources: data sets from the ENSEMBLE project are briefly pre-
sented in Section 2.1 while in Section 2.2 the methodology used



Table 2
Institutions participating to the ENSEMBLES project, regional climate models and
driving global models. Short names have been used in figures.

Institution RCM Driving GCM Short name

Community Climate Change Con-
sortium for Ireland (C4I)

RCA3 HadCM3 RC3_HAD

Meteo France, Centre National de
Recherches Meteorologiques
(CNRM)

RM5.1 ARPEGE RM5_ARP

Danish Meteorological Institute
(DMI)

HIRHAM5 ARPEGE HIR_ARP
ECHAM5 HIR_ECH
BCM HIR_BCM

Swiss Federal Institute of Technology
Zurich (ETHZ)

CLM HadCM3 CLM_HAD

Royal Netherlands Meteorological RACMO2 ECHAM5 RAC_ECH
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for assessing wind power production at the country level is
introduced. Section 2.3 introduces the indicators used to evaluate
wind power profiles complementarity at the country-to-country
and country-to-EU level and the synchronicity indicator to be
applied to the whole EU area. Section 3 shows results obtained for
Wind Power Density (WPD) analysis and potential wind energy
production by country (Section 3.1) and in the EU (Section 3.2).
Results of the complementarity studies are discussed in Section
3.3 while in Section 4 results are summarized and their implica-
tions for the future dimensioning of the European power system
discussed. Appendix A provides a detailed quantitative evaluation
of actual climate impact on both wind power potential and spatial
wind complementarity in the EU while Appendix B investigates
the relation between complementarity and modelling scale.
Institute (KNMI)
Met-Office, Hadley Centre for Climate
Prediction and Research (METO-
HC)

HadRM3 HadCM3 HAD_HAD

Max-Planck Institut für Meteorologie
(MPI-M)

REMO ECHAM5 REM_ECH

Swedish Meteorological and Hydro-
logical Institute (SMHI)

RCA BCM RCA_BCM
ECHAM5 RCA_ECH
HadCM3 RCA_HAD

2 According to IEA [24] the capacity factor is the measure of the productivity of
a wind plant. i.e., the amount of energy the plant produces over a set time period
(one year in the present study), divided by the amount of energy that would have
been produced if the plant had been running at the full nominal capacity during
that same time interval.
2. Materials and methods

2.1. The ENSEMBLES project

The ENSEMBLES project, funded under the European Commis-
sion’s Sixth Framework Programme from 2004 to 2009, aimed to
provide probabilistic estimates of climatic risk through climate
model simulations. The project developed an ensemble climate
forecast system to construct integrated projections of future cli-
mate change across a range of time (seasonal, decadal and mul-
tidecadal) and spatial scales (global, regional and local) [2].

The ENSEMBLES 21st century simulations have been set up
following the recommendations made by the IPCC for the AR4
[20], to assess different sources of uncertainty in climate change
projections. An ensemble of different climate models, a so-called
multi-model ensemble, is used to sample uncertainties in model
formulation and isolate model errors [21]. Moreover, three differ-
ent emission scenarios, namely SRES A2, A1B and B1 [22], each
following different storylines for the economic and cultural
development of the world, are used to sample possible develop-
ments of greenhouse gases (GHG) emissions in the future. A set of
high-resolution climate change projections has been made by
state-of-the-art global and regional climate models (GCM and
RCM, respectively). RCM are used for the dynamical downscaling
[23] of the GCM outputs to a finer resolution over Europe.

RCM climate simulations use the A1B scenario for GHG con-
centration, and cover the period 1950–2050 (some of them reach
2100), on a common domain over Europe (from South Medi-
terranean coast to Cape North), at 25 km horizontal resolution. The
A1B scenario assumes a world of very rapid economic growth,
with a global population peak in mid-century. In this study the
climate evolution from 1961 to 2050, simulated by 12 RCM, is
analysed. Details on RCM and their driving GCM are summarized
in Table 2.

In the ENSEMBLES datasets, wind data are available with daily
resolution at 10 m height all along the simulations time spans.
ENSEMBLES wind data are known to be biased when compared
with observations [7] but methodologies for bias corrections for
wind data usually require quite a large amount of work and are at
the moment much less robust than for temperature and pre-
cipitation. Moreover, the scope of this study is not the precise
assessment of the absolute values of point-by-point wind poten-
tial, but the investigation of the main features of its temporal and
spatial patterns and how wind power patterns are expected to
respond to climatic signals. Thus the raw data have not been
corrected and analysis has been focussed on relative changes
rather than on absolute values.

Wind pattern evolution and the related WPD changes in
ENSEMBLES projections have been analysed by Tobin et al. [7] and
Gaetani et al. [8] and results will be reported whenever relevant
for the power potential production evaluation.

2.2. Wind power production in Europe – a country based analysis

The wind power potential production in European countries, as
seen by the ENSEMBLES models, was assessed following a two-
step process: in the first step the theoretical loading factor for a
reference wind turbine was calculated for each model in each grid
of the domain, while in the second step power production from
the whole country was obtained, given the projected geographical
distribution of turbines.

2.2.1. Capacity factors
Theoretical capacity factors2 based on ENSEMBLES daily 10 m

winds were computed by means of the following procedure:

1. w10(x,y) daily wind speed data at 10 m height in the (x,y)
location were extrapolated to 80 m on the basis of the loga-
rithmic profile

w80 x; yð Þ ¼w10 x; yð Þ � log 80=r x; yð Þ� �
=log 10=r x; yð Þ� � ð1Þ

with r(x,y) being the roughness length in (x,y) as given by KNMI
model data in metres. As in some cases this extrapolation
method has been shown to result into unrealistic excessively
high wind speed values, an alternative approach was also
developed based on the ECMWF operational analyses fields. The
a and b coefficients for the linear relationship

w80 x; yð Þ ¼ a x; yð Þ �w10 x; yð Þþb x; yð Þ ð2Þ
were best-fitted on the basis of 10 years (2002–2011) of ECMWF
analyses model fields for wind speeds at 10 m and 80 m heights,
regridded to the KNMI standard grid and used to extrapolate
ENSEMBLES wind speeds from 10 m to 80 m height.
For each (x,y) location the daily average wind speed at 80m
height w80(x,y) was then defined as the minimum between its
two estimates obtained through formulas (1) and (2).
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Fig. 1. Power produced per power installed in Vesta 90 generator as a function of
the wind speed (adapted from [27]).
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2. Given w80(x,y), 24 hourly values for wind speed were randomly
generated following a Weibull distribution with mean equal to
w80(x,y) and a shape factor equal to 2 [25,26]. Hourly wind
speed data were then used to estimate the hourly wind power
production per MW installed (normalized power production) by
means of the wind-power curve shown in Fig. 1, reproducing
the power production curve of a typical wind turbine available
on the European market (namely Vesta V90).

Hourly production values were then summed over the day to
obtain 32,850 (or 32,400)3 daily production over 90 years and
along each year to obtain 90 (1961–2050) values of annual theo-
retical capacity factors at each grid point for each of the 12 model
runs. Additional capacity decreasing factors such as actual avail-
ability or power losses were not included in the present theore-
tical analysis.

2.2.2. Countries power production: A Monte Carlo assessment
Once theoretical loading factors are computed, the actual

power production in a given country depends on the location of
installed turbines and their capacity [28]. Details of turbines
installed in European are at least partially available from several
commercial and open source databases (see again [28] for a
summary) each offering different data quality as far as key para-
meters such as coverage, updating frequency and spatial resolu-
tion are concerned. The spatial allocation of future wind turbines
on the other hand, is difficult to forecast, as the localization pro-
cess is dependent on social as well as economic and practical
aspects, and are thus generally difficult to investigate.

Studies exist that have evaluated the possible spatial evolution
of the European wind power park in next years [28,7] based on
power production optimization, cost minimization and practical
geographical constraints leading to the identification of most sui-
table areas. Nevertheless, given the coarse resolution of the
ENSEMBLES reference grid (about 25 km), in practice a detailed
geographical analysis is difficult. For this reason, a more pragmatic
approach to modelling the actual and future location of wind
turbines was taken in this study, based on partially random allo-
cation: the on-shore wind installed capacity planned for 2020 (see
Table 1) in 27 of the EU-28 countries, with the exclusion of Malta,4

was divided into parcels of 20 MW, roughly representing groups of
about 10 wind turbines i.e., a small sized wind farm. Each 20 MW
3 Four ENSEMBLES models run on 360-day years while other eight models run
on 365-day years. Yearly results in Section 3 have been renormalized to allow
comparison. Leap years are not considered in models runs.

4 Malta exclusion followed the observation that, being the total surface of its
islands approximately 50% of a single model grid, it is invisible to the ENSEMBLES
data. Wind installed capacity in Malta is expected to reach 15 MW in 2020.
capacity parcel was then randomly allocated in the country terri-
tory, subject to the only constraint of the load factor in each
selected (x,y) location being larger than the average load factor of
the country itself. In this way, capacity is randomly allocated in
"promising" areas, consistently defined by each model as provid-
ing an "above the average" potential for the 90-year time period
spanned by the study.

As an example, Fig. 2 shows the actual capacity distribution in
EU-28 in the case of three models (rows) and for three different
capacity random allocations (columns). Comparing rows in Fig. 2
shows how the three models provide quite a different pattern of
promising wind production areas: see e.g., the Great Britain, with
RM5_ARP focussing on the Southeast with some spots in Scotland,
RAC_ECH suggesting the central section and a more southern strip
and RCA_ECH suggesting a much larger area all along the country.
Being the criteria for selecting "promising" areas homogeneous
among the models, these differences in allocation patterns are
related to intrinsic differences in wind patterns as forecasted by
the different models.

On the contrary, the comparison of different figures in the same
rows on Fig. 2 shows how the random allocation procedure used
here provides different patterns of installed capacity. Capacity
allocation patterns in countries with higher capacity density tend
to be more uniform than in countries with lower installed capa-
city. Indeed, the more capacity is installed, the more geo-
graphically different locations are expected to be exploited and the
more uniformly and sparsely wind turbines are expected to be
distributed on the territory, subject to the availability of a mini-
mum potential.

In effect, the slightly constrained random allocation procedure
applied here has allowed the investigation of several "worlds" in
which each country allocates its wind turbines chasing for above-
the-average productive areas, where these wind-rich areas are
consistently defined through present and future meteo-climatic
features, being different for each climate model considered.

Once the capacity has been allocated on the territory, daily
(annual) wind power production for each country can be com-
puted simply multiplying the installed capacity in each grid point
of the country times the daily (annual) capacity factor as defined
in Section 2.2.1.5 The capacity allocation procedure has been
repeated ten times for each model in order to evaluate the varia-
bility arising from the overall capacity being differently split on to
the territory.

Results and further elaborations are reported in Sections 3.1
and 3.2.

2.3. Complementarity of wind power potentials in the European
Union and its member countries

Daily wind production profiles obtained following the metho-
dology detailed in Section 2.2 were compared in order to assess
time correlation of wind production for the EU countries and for
the EU as a whole.

2.3.1. Country-to-country complementarity
Pearson's correlation coefficient between countries wind

power production is the key quantitative parameter used in this
study for assessing national production complementarity. For each
couple of countries i and j the yearly correlation coefficients Ryi,j
5 It is worth emphasizing that the capacity allocation patterns do not change
along the simulation years, as the present study focuses on climate evolution and
not on the evolution of installed wind power fleets. For this reasons expressions
such as "Wind Power production in 2050" have to be read as "Wind Power that
would be produced in the meteorological year 2050 by the 2020 wind
turbine fleet"



Fig. 2. Allocation of wind capacity planned for 2020 in EU-28 for three models (RM5_ARP– top row, RAC_ECH middle row, RCA_ECH – bottom row) and for three different
random allocations (columns).
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were computed as

Ry
i;j ¼

σYi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σYi Uσ

Y
j

q ð3Þ

where

σYi;j ¼
XNd

d ¼ 1

WY
i ðdÞ�W
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i

� �
WY

j ðdÞ�W
Y
j

� �
ð4Þ

σYi ¼
XNd

d ¼ 1

WY
i ðdÞ�W

Y
i

� �2
ð5Þ
σYj ¼
XNd

d ¼ 1

WY
j ðdÞ�W

Y
j

� �2
ð6Þ

where Y is the year, ranging from 1961 to 2050, Wi
Y(d) is the wind

energy production in the ith country in the dth day of year Y,W
Y
i is

the yearly average of wind power production in the ith country in
year Y, and Nd equals either 360 or 365 depending on the model
considered (see footnote 4). Coefficients were computed for each
of the N capacity allocations and for each of the 12 ENSEMBLES
projections available, looking mainly for the actual influence of
capacity allocation and the presence of a climate signal. Results are
presented and discussed in Section 3.3.1.
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Fig. 3. Wind Power Density (WPD) trends [(W/m2)/10-year] in ENSEMBLES RCM simulations (ensemble mean): (a) 1961–2050, (b) 1961–2000, and (c) 2001–2050. Shadings
indicate 95% significant trends, measured by a Mann–Kendall test.

Table 3
Wind Power Classes definition.

Class WPD [W/m2] Resource potential

1 o100 Not suitable
2 100–150 Marginal
3 150–200 Fair
4 200–250 Good
5 250–300 Excellent
6 300–400 Outstanding
7 4400 Superb
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2.3.2. Country-to-Europe complementarity
While the RYi,j correlation coefficient describes the com-

plementarity of wind power production among pairs of countries,
it is interesting to assess the wind power complementarity
between a single country and the rest of the EU in order to
understand to what extent wind power produced in each single
country is synchronous with the overall EU wind production.

To this aim, the indicator RYi,EU has been computed as the
average of RYi,j (for ia j) weighted with the installed capacity in
each country, i.e.,

RY
i;EU ¼

X
ja i

CjR
Y
i;j=

X
ja i

Cj ð7Þ

where the weighting procedure has been introduced for the dual
purpose of obtaining an indicator ranging between �1 and 1, and
to take into consideration differences between high and low pro-
duction countries. High values of RYi,EU indicate that wind energy
produced in ith country is synchronous with production of coun-
tries in the rest of EU, while lower values indicate an higher
complementarity between wind energy production in the ith
country and the rest of EU. Such a number could be of interest both
for the ith country, when planning to exchange wind power pro-
duction on an EU market without a specific partner defined and
for the rest of Europe in order to evaluate how much "diversity" in
wind power patterns the ith country adds to the common pool.
Results are shown and discussed in Section 3.3.2.
2.3.3. European wind power production synchronicity
Finally, a single indicator providing a measure of the "syn-

chronicity" of wind power production in the EU was computed as
the average of the country-to-Europe correlation indicators again
weighted through the installed capacity in each country:

SY ¼
X
i

CiR
Y
i;EU=

X
i

Ci ð8Þ

where S is an overall measure of the synchronicity of wind power
productions and it is dependent on weather patterns across the
entire EU. Again ranging between �1 and 1 by definition, high
values of S correspond to wind fields varying in time with similar
patterns and leading to similar wind power patterns in all coun-
tries, while lower values of S indicate the coexistence of different
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weather regimes and time scales and consequently more diverse
and less time correlated wind power production patterns in dif-
ferent countries. Results obtained for the synchronicity indicator
in Europe will be shown and discussed in Section 3.3.3.
Fig. 4. WPC changes in ENSEMBLES RCM simulations (ensemble mean) between
1991–2010 and 2030–2050 periods.
3. Results

3.1. On-shore wind power production in Europe and its climate
evolution

3.1.1. Wind patterns and wind power production in the EU
The analysis of the ENSEMBLES wind fields, the physical pre-

cursors of wind power production, did identify major impacts
from the climate evolution. A detailed analysis of climate related
wind patterns changes in Europe is available in [8] and here just
the main results on WPD) [29] and associated wind power classes
are summarized.

WPD is defined as

WPD¼ 1=2 � ρ �w3;

with ρ being the air density (ρ¼1.225–1.194*10�4*z, at elevation
z), and w being the wind speed. WPD is computed considering the
operational range of wind turbines in the 2–4 MW class (e.g.
Vestas V-90), which is 4–25 m/s at the turbine hub-height, and 3–
19 m/s at 10-m height [3].

The WPD trends (Fig. 3) generally show stability in the 1961–
2050 period in the Continental Europe, with exceptions in some
areas: WPD decreases offshore in the Mediterranean Sea (with a
decrease of about 30 W/m2) and the North Sea (showing a
decrease of around 80 W/m2), while an increase is observed in the
Baltic Sea (increasing by up to 40 W/m2) and the British Isles
(increasing by up to 10 W/m2), with an acceleration of the changes
in the present-to-future time range (bottom panels).

The suitability of a certain area for wind power exploitation is
usually described by means of the associated Wind Power Class
(WPC – see Table 3) ranking, based on WPD values. Class 3 or
greater are suitable for most wind turbine applications, whereas
Class 2 is marginal and Class 1 is generally not suitable [30].

The modifications in WPC between future (2031–2050) and
present (1991–2010) climate conditions are presented in Fig. 4. It
results that most of the changes are observed offshore, while the
differences inland are limited and sparse, and almost all the
observed modifications are limited to one class.

The spatial pattern of potential wind energy sites is thus largely
unaffected by climate change as found by Tobin et al. [7] and, as
expected, the climate stability of actual wind patterns on the
European continent leads to climatically stable wind power pro-
duction in the EU countries.

National wind power production was estimated for each day of
the simulated period and for each model as described in Section
2.2.2, repeated N¼10 times the random allocation of installed
capacity and then analysed to assess statistically significant dif-
ferences among the different datasets.

Even if ANalysis Of Variance (ANOVA) tests have shown that
daily wind production sequences are indeed statistically different
in different simulated years for all models and countries con-
sidered, the annual wind energy production did not show evi-
dence of strong climatic effects for most of the countries and
models considered, in full agreement with the general picture of
small changes into physical potentials. More details on numerical
tests performed and their results are presented in Appendix A.

3.1.2. The impact of the actual deployment of installed capacity
The next group of tests was aimed at assessing the differences

in national wind power production rooted into the different
capacity allocation patterns tested. For this purpose, the 10-
member groups of 90-year long sequences of daily wind power
produced by the 12 investigated models in each European country
were subjected to an ANOVA analysis in order to verify their
similarity. Overall, the results show the influence of the total
amount of deployed capacity, with countries with a smaller
installed capacity being more likely to show significant differences
in power production related to actual spatial deployment of
turbines.

In comparison, in the case of countries deploying larger capa-
cities, ANOVA was not able to demonstrate significant differences
arising from the different random spatial allocations of the
installed capacity. Nevertheless, even when differences were
found to be statistically significant, they were generally small or
very small in absolute values and did not affect the main features
of time profiles.

As an example Fig. 5 shows the wind power daily production in
a given year as estimated by RAC_ECH model in Slovenia (the
country with the smallest installed capacity among the ones
analysed) in 4 different hypotheses of 2020 installed capacity
deployment. In the case illustrated, profiles were indeed found to
be statistically different by ANOVA, but a visual analysis shows
how general patterns remain very close to each other even in
this case.

For this reason, a first main finding of the present study con-
sisted in demonstrating through a Monte Carlo analysis that the
actual deployment of national wind turbine fleets in 2020 in a
country is expected to have a little overall influence on the main
features of the national wind power profiles, provided that the basic
assumption of wind turbines being installed in areas with above
average wind power potential is respected.

Following this result, the variability among different capacity
deployments has been generally neglected in subsequent analyses
and the average values of the analysed variables among the N¼10
capacity deployment scenarios are considered.

3.1.3. Model dependence
Inter-model wind power profile variability is on the contrary

very strong, as is to be expected considering the independence
between model runs, ensured by the diverse mixture of RCMs and
driving GCMs and the absence of any post-processing applied to
force models towards common results. Again as an example, Fig. 6
shows daily wind power production in 2000 as estimated by
3 different models (namely RAC_ECH, RM5_ARP and CLM_HAD) in
France.



Fig. 5. Wind power daily production foreseen by the RAC_ECH model in Slovenia in a reference year in 4 different deployment hypotheses of 2020 installed capacity
deployment (MWh).

Fig. 6. Wind power daily production (MWh) in 2000 as estimated by 3 different models (namely RAC_ECH – blue, RM5_ARP – red- and CLM_HAD – green) in France. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Wind power production in EU-28 (GWh/day) in the average year for the 12 ENSEMBLES models.

6 Each of the reported data is the average of 90 wind power production esti-
mates, one for each simulated year.
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It is evident how, even if some common features are visible
such as a lower production in summer than in winter, the three
models behave radically differently day by day, with such a
diversity being statistically significant even in the case of all other
countries and models included in the study. However, this aspect
should not be regarded as a limitation, because combination of
inter-model differences into the ensemble mean demonstrates the
capability of reproducing a reliable estimate of climate variability
[31].

3.2. On-shore wind power production in Europe: The overall picture

Overall wind power production for EU-28 was evaluated simply
summing up countries production for each day of the simulation,
obtaining N¼10 sequences of 90-year long daily generated on-
shore EU-28 wind power for each of the 12 models studied.
ANOVA analysis has again shown no siginificant differences in EU-
28 power production profiles arising from differences in the actual
allocation of turbines and the N¼10 EU-28 production profiles are
very close to each other. Thus, as is the case for EU-28 WE pro-
duction, the variability arising from different capacity
deployments scenarios has been neglected and the average values
among the N¼10 realizations are generally considered.

On the contrary, ANOVA has shown that yearly EU-28 wind
power profiles differ statistically from each other, but, consistent
with findings in Section 3.1, the annual EU-28 wind energy pro-
duction has shown very little evidence of climatic related changes.
More details on numerical tests performed and their results are
also presented in Appendix A.

Even in the case of the cumulated EU-28 wind power produc-
tion, different models have provided quite different estimates.
Fig. 7 show wind power production in EU-28 estimated by the 12
models for the average year6 demonstrating both the differences
among models and the clear wind power seasonality effect com-
mon to all models.

Tables 4 and 5 report the average of all daily wind power
production values (in GWh/day) and the average of all daily
capacity factors value (in percentage) for the 12 models involved
in function of the RCM and GCM used.



Table 4
Daily average wind power production for the 12 ENSEMBLES models (GWh/day).

RCM/GCM HadCM3 ARPEGE ECHAM5 BCM Average

RCA3 942 942
RM5.1 906 906
HIRHAM5 1411 1687 1387 1495
CLM 1197 1197
RACMO2 1227 1227
HadRM3 1315 1315
REMO 1198 1198
RCA 921 1032 901 951
Average 1094 1159 1286 1144 1177

Table 5
Average wind power capacity factors for the 12 ENSEMBLES models (percentage).

RCM/GCM HadCM3 ARPEGE ECHAM5 BCM Average

RCA3 23.2 23.2
RM5.1 22.3 22.3
HIRHAM5 34.8 41.6 34.2 36.8
CLM 29.5 29.5
RACMO2 30.2 30.2
HadRM3 32.4 32.4
REMO 29.5 29.5
RCA 22.7 25.4 22.2 23.4
Average 27.0 28.6 31.7 28.2 29.0
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Individual ENSEMBLES simulations lead to very different
results as far as EU-28 power production is concerned with the
highest average daily value (1687 GWh/day for HIRHAM5 driven
by ECHAM5) being 87% higher than the lowest average daily value
(901 GWh/day for RCA driven by BCM). Ensemble average values
(bottom right) leaded to an estimate of 1177 GWh/day produced
corresponding to a capacity factor of 29.0%.

It is also interesting to notice that in both tables RCM averages
(rows) show a larger diversity than GCM averages (columns) with
RCM averages ranging from 22.3% to 36.8% while GCM averages lay
between 27% and 31.7% in the case of capacity factors. Moreover,
the three highest values of daily production and capacity factors
are obtained from simulations using the HIRHAM5 RCM, while
three amongst the five lowest capacity factors values are obtained
from the RCA RCM. Although the overall amount of simulations is
relatively low, these results could suggest the absolute strength of
winds, and then the amount of wind power, being primary driven by
the RCM simulation scale. In Appendix B a deeper analysis of the
influence of RCM and GCM models on the results will be provided.

3.3. Wind power correlation

3.3.1. Country-to-country correlation
Table 6 illustrates the correlation between wind power pro-

duced in couples of EU countries obtained following the metho-
dology illustrated in Section 2.3.1, showing the time averaged
(over 90 years) and ensemble averaged (over 12 models) values of
RYi,J.

Red shades identify couples of countries strongly correlated,
yellow corresponds to couples of country loosely correlated while
very little correlated couples of countries (Ri,Jo0.3) are shown in
green shades.

Table 6 helps to identify groups of countries that are particu-
larly correlated each other (in most cases due to their geographical
proximity) and to evaluate to what extent these "closed systems"
are interrelated with the rest of the continent. An example of
closed system is the Iberian Peninsula (top left in Table 6) where
Portugal and Spain are strongly correlated each other and uncor-
related with the rest of Europe, with the exception of a slight
correlation with France and, in the case of Spain, with Italy. Cyprus
(bottom right) is a case of almost fully isolated wind system, with
very little correlation (Ri,Jr0.2) with any other countries, includ-
ing Greece. The Scandinavian and Baltic states (also top left) are
also two separate systems, mildly correlated each other, and with
somewhat stronger interaction with Northern and Central Europe
"bridge" countries such as Denmark, Poland and Germany.

The rest of European countries forms a succession of correlated
countries moving from British Isles (mid-top left) to France, BEN-
ELUX and Germany and then to the two related but clearly dis-
tinguishable blocks of Central European Countries and the Balkans,
with Italy showing a intermediate behaviour between these last
two groups.

The groups of countries identified on the basis of correlations
reflect the main climate patterns in the Euro-Mediterranean
region. Indeed, north-western Europe is under the influence of
North Atlantic atmospheric circulation patterns [32], while climate
variability in north-eastern Europe is modulated by mid and high
latitudes circulation patterns over the Eurasian continent [33].
Finally, the Mediterranean region is a transition zone affected by
both mid-latitude and tropical circulation systems [34].

Once again, climate effects have been found to be almost
negligible. Indeed, very few and very small statistically significant
changes in the RYi,J values between different time periods were
found. More details are reported in Appendix A.

By comparison, RYi,J values computed by different models have
been generally found to be statistically diverse with differences
that can be quite relevant in quantitative terms although rarely
implying a difference in correlation categorization (high, moder-
ate, low – see Table 6)

In Fig. 8 the example of the average (1961–2050) correlation
between Italian and French WE production is shown, illustrating
another interesting result of this analysis: different climate models
not only lead to different estimates of wind power production
because of differently biased wind fields (see Sections 3.1 and 3.2),
but different models found a different time correlation pattern among
wind power production in EU countries, probably caused by differ-
ences in the way models describe weather regimes on the continental
scale. Such a finding is confirmed by the results presented in next
sections.

3.3.2. Country-to-Europe correlation
Fig. 9 and Table 7 show the time (1961–2050) and ensemble (12

models) mean of the RYi,EU coefficients (see Section 2.3.2) in both
map and tabular format.

As expected, countries situated in Central Europe show the
highest weighted correlation with wind power production from
rest of the EU, while the more a country is "peripheral", the less its’
wind power production results correlated with the rest of the EU
system.

Thus, wind power arising from countries showing a low Ri,EU
value is more likely to come "at the right moment" in a single
European market perspective, i.e., being higher when the rest of
Europe is experiencing less wind and lower when in the rest of
Europe is experiencing high wind production. As already stated,
from a European planning point of view, the availability of such
"out of phase" production can help to reduce the need for storage
if excess production is exchanged at the right time via properly
dimensioned interconnections. From an investor perspective, this
means also that the same turbine is likely to sell its production on
the common EU market more easily if installed in, say, Portugal or
Ireland, rather than Central Europe, for the simple reason that its
production time profile is less correlated with the bulk European
WE production.

As with the case of country-to-country correlation, country-to-
Europe coefficients have shown little if, any, dependence on time



Table 6
Country-to-country correlation for EU-28 countries included in the study. The table shows time (1961–2050) and ensemble (12 models) mean values.

Rij PT ES FI EE LV LT SE DK IE UK FR LU BE NL DE PL CZ AT SK HU HR SI IT RO BG GR CY
PT 1.00 0.80 0.06 0.06 0.07 0.07 0.08 0.06 0.05 0.09 0.34 0.14 0.15 0.10 0.09 0.09 0.10 0.11 0.12 0.10 0.16 0.15 0.23 0.08 0.07 0.05 0.02
ES 0.80 1.00 0.11 0.09 0.10 0.10 0.13 0.08 0.05 0.11 0.50 0.20 0.19 0.12 0.13 0.12 0.15 0.18 0.19 0.17 0.27 0.24 0.40 0.15 0.14 0.14 0.05
FI 0.06 0.11 1.00 0.58 0.44 0.33 0.71 0.21 0.15 0.21 0.17 0.17 0.19 0.19 0.21 0.22 0.17 0.14 0.12 0.08 0.10 0.10 0.12 0.09 0.08 0.07 0.05
EE 0.06 0.09 0.58 1.00 0.87 0.67 0.52 0.28 0.14 0.19 0.16 0.18 0.19 0.20 0.24 0.34 0.19 0.13 0.14 0.09 0.08 0.08 0.09 0.08 0.05 0.04 0.03
LV 0.07 0.10 0.44 0.87 1.00 0.90 0.48 0.33 0.14 0.21 0.18 0.21 0.22 0.23 0.30 0.49 0.26 0.18 0.20 0.14 0.10 0.10 0.10 0.12 0.05 0.02 0.02
LT 0.07 0.10 0.33 0.67 0.90 1.00 0.42 0.36 0.14 0.20 0.18 0.22 0.23 0.24 0.35 0.65 0.34 0.23 0.28 0.19 0.12 0.11 0.12 0.17 0.07 0.01 0.02
SE 0.08 0.13 0.71 0.52 0.48 0.42 1.00 0.49 0.20 0.30 0.21 0.23 0.26 0.28 0.33 0.34 0.23 0.18 0.15 0.10 0.12 0.12 0.14 0.10 0.09 0.08 0.06
DK 0.06 0.08 0.21 0.28 0.33 0.36 0.49 1.00 0.22 0.37 0.21 0.30 0.36 0.48 0.56 0.46 0.31 0.20 0.14 0.10 0.05 0.06 0.07 0.07 0.03 -0.01 0.03
IE 0.05 0.05 0.15 0.14 0.14 0.14 0.20 0.22 1.00 0.75 0.28 0.27 0.36 0.36 0.27 0.17 0.17 0.15 0.10 0.06 0.06 0.07 0.07 0.06 0.06 0.02 0.06
UK 0.09 0.11 0.21 0.19 0.21 0.20 0.30 0.37 0.75 1.00 0.42 0.46 0.60 0.63 0.45 0.25 0.26 0.20 0.13 0.08 0.08 0.10 0.11 0.08 0.07 0.02 0.06
FR 0.34 0.50 0.17 0.16 0.18 0.18 0.21 0.21 0.28 0.42 1.00 0.73 0.72 0.54 0.54 0.28 0.40 0.37 0.27 0.23 0.27 0.32 0.42 0.17 0.12 0.07 0.07
LU 0.14 0.20 0.17 0.18 0.21 0.22 0.23 0.30 0.27 0.46 0.73 1.00 0.89 0.74 0.76 0.36 0.50 0.39 0.27 0.23 0.20 0.26 0.28 0.14 0.08 0.00 0.03
BE 0.15 0.19 0.19 0.19 0.22 0.23 0.26 0.36 0.36 0.60 0.72 0.89 1.00 0.88 0.74 0.34 0.44 0.33 0.21 0.17 0.13 0.18 0.21 0.11 0.07 0.00 0.04
NL 0.10 0.12 0.19 0.20 0.23 0.24 0.28 0.48 0.36 0.63 0.54 0.74 0.88 1.00 0.78 0.37 0.43 0.31 0.19 0.15 0.10 0.14 0.16 0.10 0.06 -0.02 0.04
DE 0.09 0.13 0.21 0.24 0.30 0.35 0.33 0.56 0.27 0.45 0.54 0.76 0.74 0.78 1.00 0.64 0.75 0.58 0.39 0.35 0.22 0.26 0.30 0.24 0.15 0.03 0.05
PL 0.09 0.12 0.22 0.34 0.49 0.65 0.34 0.46 0.17 0.25 0.28 0.36 0.34 0.37 0.64 1.00 0.74 0.55 0.62 0.47 0.26 0.25 0.24 0.38 0.20 0.04 0.05
CZ 0.10 0.15 0.17 0.19 0.26 0.34 0.23 0.31 0.17 0.26 0.40 0.50 0.44 0.43 0.75 0.74 1.00 0.83 0.72 0.59 0.40 0.39 0.42 0.40 0.25 0.10 0.07
AT 0.11 0.18 0.14 0.13 0.18 0.23 0.18 0.20 0.15 0.20 0.37 0.39 0.33 0.31 0.58 0.55 0.83 1.00 0.74 0.68 0.54 0.52 0.60 0.45 0.33 0.18 0.12
SK 0.12 0.19 0.12 0.14 0.20 0.28 0.15 0.14 0.10 0.13 0.27 0.27 0.21 0.19 0.39 0.62 0.72 0.74 1.00 0.87 0.62 0.55 0.49 0.59 0.36 0.15 0.09
HU 0.10 0.17 0.08 0.09 0.14 0.19 0.10 0.10 0.06 0.08 0.23 0.23 0.17 0.15 0.35 0.47 0.59 0.68 0.87 1.00 0.77 0.67 0.55 0.67 0.43 0.19 0.08
HR 0.16 0.27 0.10 0.08 0.10 0.12 0.12 0.05 0.06 0.08 0.27 0.20 0.13 0.10 0.22 0.26 0.40 0.54 0.62 0.77 1.00 0.86 0.73 0.48 0.34 0.20 0.05
SI 0.15 0.24 0.10 0.08 0.10 0.11 0.12 0.06 0.07 0.10 0.32 0.26 0.18 0.14 0.26 0.25 0.39 0.52 0.55 0.67 0.86 1.00 0.59 0.34 0.18 0.07 0.03
IT 0.23 0.40 0.12 0.09 0.10 0.12 0.14 0.07 0.07 0.11 0.42 0.28 0.21 0.16 0.30 0.24 0.42 0.60 0.49 0.55 0.73 0.59 1.00 0.42 0.38 0.36 0.09

RO 0.08 0.15 0.09 0.08 0.12 0.17 0.10 0.07 0.06 0.08 0.17 0.14 0.11 0.10 0.24 0.38 0.40 0.45 0.59 0.67 0.48 0.34 0.42 1.00 0.78 0.37 0.14
BG 0.07 0.14 0.08 0.05 0.05 0.07 0.09 0.03 0.06 0.07 0.12 0.08 0.07 0.06 0.15 0.20 0.25 0.33 0.36 0.43 0.34 0.18 0.38 0.78 1.00 0.67 0.18
GR 0.05 0.14 0.07 0.04 0.02 0.01 0.08 -0.01 0.02 0.02 0.07 0.00 0.00 -0.02 0.03 0.04 0.10 0.18 0.15 0.19 0.20 0.07 0.36 0.37 0.67 1.00 0.21
CY 0.02 0.05 0.05 0.03 0.02 0.02 0.06 0.03 0.06 0.06 0.07 0.03 0.04 0.04 0.05 0.05 0.07 0.12 0.09 0.08 0.05 0.03 0.09 0.14 0.18 0.21 1.00

Fig. 8. Average (1961–2050) R correlation between French and Italian wind power production. Bars show the average values computed by each of the 12 models investigated
(in blue) and the ensemble mean (in red), while error bars report 10th and 90th percentiles. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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(see again Appendix A for more details). Instead, individual models
provide significantly different values (see Fig. 10 for an example
involving both a relatively highly correlated country – Germany –

and a quite uncorrelated country – Portugal).

3.3.3. Synchronicity of European wind power production
Finally, SY values (see Section 2.3.3) were computed as the

average of the country-to-Europe RYi,EU coefficients weighted with
the installed capacity, for each of the model involved in the ana-
lysis. Fig. 11 shows the time averaged SY value for the 12 models
involved (in blue) and the ensemble mean (in red). Error bars
report the 10th and the 90th percentiles.

Table 8 shows the average values of S in function of the RCM
and GCM used.

It is worth noticing how S seems at least partially related to the
GCM driving the simulation: For instance, the two largest values of
S are found for the only two simulations driven by the BCM model.
In other words, S values seem to be more sensitive to the GCM
model than the RCM model, the opposite to what was found for
the total power production: the issue has been further analysed in
Appendix B. Finally, it has to be noted that even in the case of SY no
evidence of climatic effect was found (see Appendix A for details).
3.3.4. Sub-continental synchronicity
The S values reported in Table 8 are difficult to be interpreted in

absolute terms, as the present study is the first to apply this
indicator to the authors knowledge. Nevertheless, starting from
data reported in Table 6 and making use of formulas (7) and (8), it
is possible to assess the synchronicity of any subset of the EU
countries. As expected, higher values for S were found for groups
of countries sharing the same geographical features (e.g., BENELUX
countries) than for groups of countries spanning different weather
zones (e.g., Germany, Austria and Italy). As a matter of comparison,
S value for some groups of countries are reported in Table 9.

Future studies are expected to discuss these findings at the sub-
continental scale and their implication for regional electricity
markets.
4. Discussion and conclusions

4.1. Summary of main findings

The present study has addressed several aspects related to
present and future deployment of on-shore wind power in the EU,



Fig. 9. Country-to-Europe correlation factors for EU countries. The figure shows time (1961–2050) and ensemble (12 models) mean values.

Table 7
Country-to-Europe correlation factors for EU countries. The table shows time (1961–2050) and ensemble (12 models) average values.

Country Ri,EU Country Ri,EU Country Ri,EU

DE 0.339 HR 0.282 LT 0.222
CZ 0.339 LU 0.277 DK 0.206
HU 0.337 BE 0.274 EE 0.189
AT 0.332 NL 0.265 FI 0.178
PL 0.330 SI 0.247 ES 0.174
SK 0.329 LV 0.234 IE 0.152
IT 0.312 BG 0.233 GR 0.099
RO 0.296 UK 0.232 PT 0.085
FR 0.294 SE 0.229 CY 0.067

Fig. 10. Average (1961–2050) country-to-Europe correlation coefficients RYi,EU for Germany (blue) and Portugal (red) WE production. Bars show the average values computed
by each of the 12 models investigated (light colours) and the ensemble mean (dark colours), while error bars report 10th and 90th percentiles. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Average (1961–2050) EU synchronicity indicator SY. Bars show the average values computed by each of the 12 models investigated (blue) and the ensemble mean
(red), while error bars report 10th and 90th percentiles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 8
Synchronicity factor of EU wind power production for the 12 ENSEMBLES models.

RCM/GCM HadCM3 ARPEGE ECHAM5 BCM Average

RCA3 0.284 0.284
RM5.1 0.219 0.219
HIRHAM5 0.232 0.247 0.316 0.265
CLM 0.247 0.247
RACMO2 0.234 0.234
HadRM3 0.200 0.200
REMO 0.210 0.210
RCA 0.255 0.250 0.286 0.264
Average 0.247 0.225 0.235 0.301 0.248

Table 9
Values of the S synchronicity indicator for some groups of EU countries.

Countries Synchronicity Countries Synchronicity

BE-NL-LU 0.876 DE-AT-IT 0.356
EE-LT-LV 0.776 FR-DE-ES 0.323
SE-FI-DK 0.516 ES-IT-GR 0.309
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as foreseen in the ENSEMBLES numerical experiment framework
and the main findings are summarized.

4.1.1. Climatic effects
Little or no evidence of climate change affecting wind power

deployment has been found. From the physical point of view, on-
shore Wind Power Density shows few statistically significant
trends, if any, in the continent (Fig. 3), very rarely leading a grid
point to change Wind Power Class (Fig. 4).

National wind power production also shows little statistical
evidence of climate effects (see Appendix A), while significant
climate effects are either absent or negligible in the overall EU
wind power production.

Finally, country-to-country wind power correlation coefficients
show very few cases of significant climate impacts and both in the
case of country-to-Europe correlation and the EU synchronicity
indicator, no significant climate change effects were found.

4.1.2. Inter-model variability
Both the individual RCM and the GCM models have a profound

influence on the overall results. Some statistical evidence was
found (see Table B.1) of the RCM having a larger impact on wind
power production and the GCM influencing the overall continental
synchronicity of the different national power production patterns.
The extension of this analysis to further model intercomparison
exercises is expected to cast more light on this issue.
4.1.3. Dependence of wind power production on turbine fleet
deployment

Thanks to a Monte Carlo based analysis, wind power produc-
tion has been found to be substantially independent from the
actual deployment of capacity fleet. The only constraint applied
consisted in assuming countries deploy their wind turbines in
areas where wind production is estimated to be above the national
average.

4.1.4. Wind power production and capacity factors
Considering the 2020 installed capacity planned in NREAPS

(totalizing 169 GW), the average EU capacity factor has been found
to be 29%, and the average daily production amounting to
1177 GWh/day. A large variation in these results depending on the
models employed was also found (see Tables 4 and 5), while all the
models have confirmed the seasonal pattern of wind production
(see Fig. 7) although again quantitatively differently between
models.

4.1.5. Wind power correlation patterns
Wind power production correlates differently for different

country couples and "clusters" of similarly behaving countries
could be identified (Table 6) consistent with the main meteor-
ological features of the European weather system. Country-to-
Europe correlation coefficients have shown how peripheral
countries generally provide wind power production less correlated
with the rest of the EU production (Fig. 9). Implications of this
result for the EU transmission grid will be discussed in the next
section.

4.1.6. Wind power synchronicity in the EU
An indicator for the overall synchronicity of the EU wind power

production has been developed and its model related variability
was discussed. Future work is expected to apply the indicator to
sub-sets of EU countries in order to assess the complementarity
features of regional wind electricity markets.

4.2. Implications for EU wind power transmission

Table 6 and Fig. 9 summarize the results of the present study
having the most relevant implications for the EU power trans-
mission system. Generally speaking, the less wind power pro-
duction from two countries is correlated, the more the two power
productions are expected to complement each other and the more
power exchange will be beneficial to both countries. In terms of
Fig. 9, the less wind power production in a country is correlated
with power production in the rest of the EU, the more exchanging
its power will be beneficial on average to other countries.



Fig. 12. Interconnection levels for electricity for EU countries in 2014. Data show the ratio between interconnection capacity and total power production capacity (in
percentage).
Source: EC – European Commission [35].
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In other words, countries showing low correlation values in
Fig. 9 should be the more interconnected ones in order to allow
their "out of phase" wind power production to easily reach the
whole EU market.

On the contrary, Fig. 12 shows how this is not always the case in
the present EU transmission grid, and there are several cases of
countries potentially providing wind power well complementary
to the EU production being little or very little interconnected with
neighbour countries, as it is the case of Spain, the UK and, to a
smaller extent, of Ireland and Greece.

Plans are already in place to increase interconnection levels to
10% minimum in the EU [30] and the present study is further
strengthening the benefits arising from such an approach, show-
ing as wind electricity flowing freely among countries showing
different production patterns could benefit the whole system
stability through complementarity.
4.3. Open issues and outlook for future research

Some points remain open after the present study, providing
guidelines for further future analyses.

1. Results arising from other combinations of GCM/RCM should be
included in order to further populate Tables 4, 5 and 8 and
better addressing the issue of model scales.

2. A similar analysis could be produced based on retrospective
data from e.g., reanalysis in order to assess synchronicity,
correlation and power production values closer to the actual
past wind features.

3. More details could be provided on specific subsets of countries
in order to guide regional markets.

4. As the ENSEMBLES data set provided daily values only, intraday
correlation analysis has not been possible. Such an analysis
could provide further insights on short term power exchanges
among EU countries, allowing taking into consideration time
shifts between daily cycles spread in a geographical area span-
ning about 40° of longitude and 35° of latitude.

5. The methodology developed here can be easily extended in
order to include other sources such as off-shore wind and solar
energy, provided reliable data are available.
Disclaimer

The views expressed in this paper are purely those of the
writers and may not in any circumstances be regarded as stating
an official position of the European Commission.
Acknowledgement

The authors would like to thank Marcello Miglietta from ISAC-
CNR for his useful comments and our colleagues Katalin Bodis for
producing maps in Figs. 2, 9 and 12, Manjola Banja for providing



F. Monforti et al. / Renewable and Sustainable Energy Reviews 59 (2016) 1622–16381636
the data contained in Table 1, Hrvoje Medarac for optimizing
Table 6 and Julian Wilson for kindly revising the final manuscript.
Appendix A. Climate impacts on wind power production and
complementarity: Detailed statistics results

Following the methodology applied in [8], the statistical evi-
dence of changes in key variable related attributable to climate
effects was assessed comparing the "present" time period (1991–
2010) with the mid-century period (2031–2050) by means of t-test
looking for 95% (po0.05) significance. Consistently with the dis-
cussion in Section 3.1.2, the average values of the N¼10 different
wind power fleet allocations were considered.
A.1. Wind power production

Table A.1 shows the results of such tests for the annual wind
power production 27 countries studied and for the 12 ENSEMBLES
models and their ensemble mean. Significant differences were
found in just 27 cases out of 324 possible country/model combi-
nations and were never found by more than three models for each
country (see N_m column in Table A.1). On the contrary, 17 out of
the 27 significant wind power variations were found by just three
models, namely RC3_HAD, CLM_HAD and HAD_HAD all sharing
the same GCM, while half of the model tested found no or just one
case of significant differences. Wind power production changes,
even when statistically significant, were in any case quite small,
rarely overcoming 5% and lower than 2% in the case of ensembles
averages.
Table A.1
Percentage differences in average wind power production between "future" (2031–205
investigated. Statistically significant differences at 95% level are highlighted in red. N_
significant difference, while N_m in the number of models that found a statistically sig

RAC_ECH RC3_HAD RM5_ARP HIR_ARP HIR_BCM HIR_ECH CLM_HA
Belgium 0.4% -5.0% -0.7% -0.9% 2.3% -1.4% -0.2%
Bulgaria 0.9% -3.4% 4.8% 1.6% 2.6% -2.2% -2.8%
Czech Rep. -1.3% -1.4% -2.0% -1.0% 2.3% -1.8% -1.3%
Germany -0.9% -3.1% -0.9% -1.0% 2.3% -1.0% -0.1%
Denmark -1.2% -1.5% -0.5% -1.6% 1.8% 0.2% 1.5%
Estonia 1.4% -0.8% 0.1% -0.3% 1.3% 1.1% 2.8%
Ireland -0.5% -4.3% -0.6% -1.9% 1.7% 0.0% 1.5%
Greece 0.7% -0.5% 2.4% 1.8% 1.9% -0.4% -1.4%
Spain -1.5% 1.9% 3.0% 3.1% -0.6% -2.2% -1.6%
France -0.3% 0.1% 1.2% 0.0% 0.0% -3.6% -3.5%
Croatia 0.2% -1.9% -1.3% -2.2% -0.8% -0.6% -6.5%
Italy 1.2% 0.0% 0.3% -0.8% 1.7% 0.4% 2.1%
Cyprus -0.3% -0.9% -1.0% -0.3% 2.0% 0.8% 3.0%
Latvia 0.4% 1.0% -0.2% -1.3% 1.5% -0.1% 1.6%
Lithuania -0.7% -5.0% -3.5% -1.2% 3.0% -1.2% -1.0%
Luxembourg 0.0% -4.3% -0.4% -0.1% 1.1% -0.8% -1.0%
Hungary -1.2% -3.7% 1.4% 1.2% 1.1% -1.8% -3.5%
Netherlands -1.2% -2.8% -5.1% -2.0% 2.6% -2.0% -3.4%
Austria -1.3% -0.5% -1.5% -1.4% 1.6% -1.6% -0.2%
Poland -1.8% 1.1% -2.2% -2.2% 2.2% -0.5% -5.7%
Portugal -1.0% -1.1% 2.9% 0.8% 0.5% -2.0% -2.8%
Romania -2.9% 0.2% -0.8% -0.2% 0.5% -3.0% -2.4%
Slovenia -1.3% -3.4% -0.5% -0.1% 0.1% -0.6% -5.5%
Slovakia -1.3% 1.0% 0.5% 3.3% -1.4% -3.7% -3.6%
Finland -0.4% -4.3% -0.1% -0.2% 2.9% -0.7% -1.4%
Sweden -0.3% 0.2% -0.9% 0.5% 2.4% -0.5% 2.8%
United King. -0.2% -4.0% -0.8% -1.3% 0.5% -0.9% 1.0%

N_c 0 7 1 0 2 2 6
EU Total -0.7% -3.0% -0.5% -0.5% 1.4% -0.9% -1.6%
Finally, the last line in Table A.1 shows how only three models
found a significant change in the total wind power production,
never higher than 3%, with ensemble mean not showing any sig-
nificant change.

A.2. Wind power correlation

Table A.2 shows the results of the t-tests for country-to-Europe
complementarity coefficients (see Section 2.3.2) for the 27 coun-
tries studied and for the 12 ENSEMBLES models and their
ensemble mean. Significant differences were found in just 25 cases
out of 324 possible country/model combinations and were never
found by more than three models for each country (see N_m
column in Table A.2). On the contrary, 14 out of the 25 significant
coefficients variations were found by just two models, namely
HIR_ECH and RCA_BCM, different from the ones that have shown
the largest number of significant wind power variations. Two
thirds of the models tested found no or just one case of significant
differences and significant coefficient changes ranged between
þ0.057 to �0.054. Finally, the last line in Table A.1 shows how
only one model found a significant change in the EU synchronicity
factor amounting to an increase of 0.022.
Appendix B. Impacts of RCM and GCM on wind power and its
time patterns in ENSEMBLES runs

Data contained in Tables 6 and 8 have been analysed through
single factor ANOVA in order to determine a statistical evidence
for the influence of RCM and/or GCM to the results obtained. p-
Values obtained are reported in Table B.1
0) and "present" (1991–2010) scenarios for each country and ENSEMBLES model
c reports the number of countries for which each model has found a statistically
nificant difference for each country.

D HAD_HAD REM_ECH RCA_BCM RCA_ECH RCA_HAD N_m ENS. MEAN
0.5% -0.3% 2.3% -1.0% -2.0% 1 -0.5%
-2.1% 0.2% 1.2% -1.0% -0.4% 0 -0.2%
-0.5% -1.2% 0.5% -2.5% 0.1% 0 -0.8%
1.9% -1.1% 3.3% -2.7% 0.0% 1 -0.3%
1.8% -1.1% 2.4% -2.4% -0.4% 0 -0.1%
0.3% 0.4% -0.5% -3.0% 0.5% 0 0.4%
3.8% -2.0% 5.4% -1.5% -0.8% 3 -0.1%
-3.7% 0.1% 3.5% 1.3% 3.5% 1 0.5%
0.5% -2.8% 1.2% -1.9% -0.4% 0 -0.3%
0.1% -3.2% 1.2% -3.2% -0.4% 3 -0.8%
-5.6% 0.0% -4.6% 0.7% 0.2% 2 -2.0%
0.1% 0.0% -0.4% -2.9% -0.3% 0 0.1%
1.6% -1.0% 0.6% -3.6% -0.5% 0 0.2%
0.7% -0.8% 0.8% -2.9% -0.5% 0 0.0%
0.1% -1.0% 3.1% -1.7% -1.4% 1 -0.8%
0.1% -0.3% 2.4% -1.9% 0.5% 1 -0.4%
-2.5% -2.4% 1.9% -2.0% 0.7% 1 -1.0%
-1.6% -2.5% 1.5% -2.8% -0.4% 1 -1.8%
1.6% -1.0% 0.1% -3.0% -0.9% 0 -0.7%
-1.1% -0.4% -0.4% -1.9% 1.4% 1 -0.8%
-1.2% -0.7% -2.1% -2.5% -0.5% 0 -0.9%
-0.5% -3.1% -0.5% -3.9% -0.6% 2 -1.5%
-4.0% -2.0% -2.1% -2.7% -0.4% 2 -1.8%
1.4% -2.8% 1.4% -2.3% -1.9% 1 -1.0%
-0.3% -1.7% 3.4% -1.4% -2.2% 3 -0.5%
1.8% -1.5% 3.6% -2.2% -0.8% 2 0.4%
1.2% -2.1% 1.5% -1.1% -2.3% 1 -0.7%

4 1 3 1 0 27 4
-0.3% -1.5% 1.5% -2.1% -0.6% -0.7%



Table A.2
Differences in average country-to-Europe complementarity coefficients (see Section 2.3.2) between "future" (2031–2050) and "present" (1991–2010) scenarios for each
country and ENSEMBLES model investigated. Statistically significant differences at 95% level are highlighted in red. N_c reports the number of countries for which each
model has found a statistically significant difference, while N_m in the number of models that found a statistically significant difference for each country. The last line reports
results for the synchronicity coefficient for Europe as defined in Section 2.3.3.

RAC_ECH RC3_HAD RM5_ARP HIR_ARP HIR_BCM HIR_ECH CLM_HAD HAD_HAD REM_ECH RCA_BCM RCA_ECH RCA_HAD N_m 
Belgium 0.000 -0.003 -0.012 0.001 0.018 0.023 0.008 -0.007 0.010 0.024 0.012 0.008 2
Bulgaria -0.009 -0.032 -0.031 -0.010 0.004 -0.012 -0.018 -0.017 -0.006 -0.014 0.001 -0.017 0
Czech Rep 0.004 0.004 -0.011 -0.004 0.007 0.018 0.010 -0.004 0.006 0.028 0.012 0.008 1
Germany -0.004 0.000 -0.023 -0.006 0.019 0.027 -0.004 -0.006 0.003 0.021 0.003 0.012 0
Denmark -0.001 0.011 -0.016 0.000 0.025 0.009 -0.008 -0.001 -0.002 0.024 0.006 0.021 0
Estonia 0.007 0.014 -0.031 -0.002 0.007 0.005 -0.001 -0.027 -0.003 0.037 0.006 -0.018 1
Ireland 0.010 0.013 -0.012 0.008 0.017 0.023 -0.001 -0.013 0.014 0.043 0.012 -0.002 1
Greece -0.005 -0.005 -0.054 -0.037 -0.017 -0.024 -0.057 -0.014 -0.001 -0.021 -0.008 -0.021 3
Spain -0.011 0.006 -0.017 -0.001 0.002 0.036 -0.026 -0.027 0.000 0.002 -0.003 0.017 1
France 0.005 0.000 -0.011 0.005 0.015 0.020 0.003 -0.008 0.013 0.024 0.013 0.005 0
Croatia 0.002 -0.022 -0.018 -0.018 0.006 0.009 0.002 -0.009 0.001 0.028 0.008 -0.004 0
Italy 0.002 -0.009 -0.014 -0.018 0.006 0.016 -0.003 -0.021 0.006 0.026 0.001 0.013 0
Cyprus -0.005 0.010 -0.041 -0.008 0.009 0.027 -0.006 -0.034 -0.001 0.057 0.001 0.010 3
Latvia 0.014 0.010 -0.019 0.002 0.020 0.012 0.002 -0.033 0.003 0.040 0.013 -0.005 2
Lithuania 0.012 0.006 -0.018 0.007 0.018 0.013 0.004 -0.029 0.010 0.040 0.018 0.009 2
Luxembou -0.001 -0.005 -0.007 -0.001 0.014 0.018 0.006 -0.007 0.009 0.025 0.007 0.007 1
Hungary 0.002 -0.002 -0.029 -0.008 0.025 0.010 0.004 -0.009 0.000 0.022 0.014 0.004 0
Netherland -0.003 0.000 -0.018 0.001 0.014 0.024 0.008 -0.006 0.007 0.024 0.011 0.010 2
Austria 0.001 -0.003 -0.007 -0.002 0.010 0.020 0.007 -0.014 0.009 0.021 0.017 0.005 0
Poland 0.010 0.007 -0.016 -0.011 0.018 0.016 0.010 -0.010 0.016 0.039 0.016 0.017 1
Portugal -0.031 0.005 0.003 0.017 -0.008 0.029 -0.009 -0.006 -0.016 -0.030 -0.025 0.002 0
Romania 0.006 -0.012 -0.028 -0.010 0.019 -0.003 -0.002 -0.018 0.017 0.002 0.016 -0.016 0
Slovenia -0.005 -0.022 -0.007 -0.015 0.019 0.003 0.010 0.002 -0.008 0.025 0.003 -0.003 1
Slovakia 0.019 0.006 -0.028 -0.012 0.018 0.022 0.009 -0.012 0.014 0.026 0.026 0.010 2
Finland 0.004 0.024 -0.028 0.002 -0.008 0.005 -0.003 -0.012 -0.004 0.011 -0.004 -0.033 1
Sweden 0.008 0.013 -0.030 -0.007 0.009 0.009 -0.012 -0.012 0.005 0.024 0.009 -0.005 1
United Kin 0.009 0.009 -0.013 -0.001 0.005 0.021 -0.003 -0.012 0.012 0.014 0.016 -0.001 0
N_c 0 1 3 1 0 4 1 3 0 10 1 1 25
S_EU -0.002 0.002 -0.018 -0.004 0.009 0.022 -0.009 -0.014 0.005 0.014 0.004 0.007

Table B.1
p-Values for ANOVA analysis on the dependence of power production and syn-
chronicity factor from GCM and RCM.

Model/Indicator Power Synchronicity

RCM 0.06 0.57
GCM 0.79 0.06
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Because the lower the p-value found, the higher is the influence
of the RCM/GCM used on the variability of the indicator assessed,
Table B.1 results confirm that wind power production is more
strongly influenced by the RCM than the GCM, as already qualita-
tively discussed in Section 3.2. On the contrary, EU wind power
synchronicity seems to be more deeply influenced by the GCM than
the RCM.

These results confirm to some extent the physical intuition that
wind power absolute values are more related to the way RCM
models deal with local aspects having a direct impact on wind
strength, such as orography or sea breezes. On the contrary, the
observations of statistically different S values coming from differ-
ent models leads to the hypothesis that ENSEMBLES GCM models
differently describe the time evolution of wind patterns on the Eur-
opean continent, with some models describing a EU wind system
more "concordant", with winds growing and decreasing more syn-
chronously than in other models.

Nevertheless, it is worth noticing that values in Table B.1 pro-
vide an indication, but still not a definitive proof of the effects
described. Indeed, a p-value of 0.06 is not always considered
robust enough to take conclusions. The extension of the analysis
performed in this study to other numerical experiments leading to
filling the gaps in Tables 6 and 8 could cast more light on
this issue.
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