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After some historic considerations and a presentation of selected investigations were done
on physiological calcifications, a quick overview of research performed on pathological cal-
cifications is presented through different publications based on themodel ofMichel Daudon.
Some parallels between physiological and pathological calcifications are also discussed.
© 2016 Acad�emie des sciences. Published by Elsevier Masson SAS. This is an open access
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1. Introduction

Organisms produce material solutions using minerals in
conjunction with organic polymers in order to provide not
only protection but also for other purposes such as mag-
netic sensors, gravity sensing devices and iron storage and
mobilization [1e4]. Among the biominerals identified
(Fig. 1) let's quote silicates which are present in algae and
diatoms [5], carbonates in in vertebrates [6], and calcium
phosphates in vertebrates [7]. Regarding the organic part,
collagen and chitin have been identified to give structural
support to bones and shells [8,9].

Organisms also produce materials when they dysfunc-
tion. This time, such a new family of biomaterials may
contain information regarding the pathology which
responsible of their pathogenesis. At this point it is worth to
underline that pathological calcifications (PCs) [10e13] can
be considered as a biomineralization depending on the
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definition. For some authors biomineralization constitutes a
process by which organisms produce material solutions for
theirown functional requirements andthus PCs are excluded
by such definition. For others, the definition is more general
and in that case, biomineralization is the process by which
living organisms produce minerals. We also have to under-
line that the number of chemical compounds related to
synthesizedbiominerals is lowcompared to theonehundred
chemical compounds identified in kidney stones.

From a chemical point of view, it is amazing to see that
Mother Nature can elaborate a great structural complexity
evenwitha limitednumberof chemical constituents through
a precise control of the nucleation and the growth processes
[14]. An illustration is given by calcium carbonate (Fig. 2).

As we can see through scanning electron microscopy,
the hierarchical structure present in Coccolithophorid
cannot by explained by the simple morphology of the cal-
cium carbonate crystal [15]. As underlined by J.J. De Yoreo
and P.G. Vekilov [16], a complete physical picture of bio-
mineral growth requires at least a description of the ge-
ometry and stereochemistry of the interaction between the
crystal lattice and the organic modifiers.
This is an open access article under the CC BY-NC-ND license (http://
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Fig. 1. Biominerals present in different organisms: silicates (algae and diatoms), carbonates (invertebrates) and calcium phosphates and carbonates (vertebrates).
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Such complexity exists also for pathological calcifica-
tions. To exemplify such a parallel, we have to move from
calcium carbonate to calcium oxalate crystallites present in
kidney stones [17e19]. In Fig. 3A, we observe a radial and
compact structure from the core of the stone as well as a
more or less visible concentric organization. This structure
present at the micrometer scale and the dark color of the
stone observed through stereomicroscopy is related to a
relatively slow growth, reflecting intermittent hyper-
oxaluria (excess of oxalate in urine) as a result of dietary
conditions such as low beverage intake or high oxalate-rich
vegetable consumption [20,21]. In Fig. 3B, SEM observa-
tions show a very peculiar aspect of crystallite agglomera-
tion. This specific aspect has been consistently observed in
all Ic kidney stones, which appear to be pathognomonic for
primary hyperoxaluria [22]. This genetic disorder is asso-
ciated with an overproduction of oxalate by the liver due to
an enzymatic defect leading to a high risk of renal failure as
a result of intratubular whewellite crystallization [23,24].
Please cite this article in press as: D. Bazin, et al., Biomineralizatio
Comptes Rendus Chimie (2016), http://dx.doi.org/10.1016/j.crci.20
Thus, an early diagnosis is very important for initiating
medical treatment as soon as possible. Our findings which
are of clinical importance suggest that the SEM examina-
tion of the stone could be a valuable approach for detecting
the stones related to this inherited disease instead of ge-
netic investigations which are of high cost [25,26]. While
the characterization of the mineral part of pathological
calcification can be performed accurately at the subcellular
scale through conventional techniques as well as through
techniques specific to large scale instruments, little is
known regarding the organic part. In fact, while the organic
part of physiological calcifications is well defined by
mother Nature, in the case of pathological calcification, a
large number of organic molecules have been identified. Of
note, in the case of kidney stones, many organic com-
pounds present in trace amounts in urine, have been re-
ported as potential inhibitors and thus may play a
significant role in the crystal's morphology. Among them
are chondroitin sulfate, phosphocitric acid, citric acid,
n versus microcrystalline pathologies: Beauty and the beast,
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Fig. 2. Scanning electron micrographs of (A) synthetic calcite, (B) Coccolithophorid, Emiliania huxleyi (from the website of the International Nannoplankton
Association).
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ethylenediaminetetraacetic acid (EDTA), glycosaminogly-
cans, heparin homopolyribonucleotides, polyacrylate, pol-
yaspartic acid, polyglutamic acid and RNA. Nevertheless,
the fact that some specific morphology is related to a pa-
thology (as it is the case for primary hyperoxaluria) seems
to indicate that it is possible that an organic molecule may
Fig. 3. SEM images of (A) a Ia sample (N8624) and (B) a Ic sample (N9016).

Please cite this article in press as: D. Bazin, et al., Biomineralizatio
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play a key role. Another possibility is related to peculiar
sursaturation conditions related to the fact that the
nucleation is done under “microfluidic” conditions.
Fig. 4. Part of the letter of J. Friedel regarding the interface medicine
chemistry.
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We would like to present some recent results obtained
thanks to a close collaboration with M. Daudon to whom
this contribution is dedicated.

2. Some historic considerations

Clinical and experimental investigations within the
sphere of pathological calcifications constitute an exciting
research field at the interface betweenmedicine, chemistry
and physics. A necessary condition to perform such
research is the existence of a model between structural
characteristics of concretions and the pathology respon-
sible for their occurrence. In the case of urolithiasis, a
model developed 25 years ago by Dr. Michel Daudon was
able to encompass different pathologies namely genetic,
alimentation disorders, infection as well as drugs [27e30].

A parallel between the accomplishments of Michel
Daudon regarding the study of biological crystals and the
research performed by Louis Pasteur (1822e1895) on the
role of the morphology of the tartaric acid crystal on
polarized light crystal can be made [31]. In both cases, a
careful observation of crystals led to a major breakthrough
for the scientific community. Also, Louis Pasteur has
already underlined through his investigation on crystals
the usefulness of strong interactions between chemistry
and crystallography [32].

Other outstanding scientists have performed a research
at the interface between medicine, physics and chemistry.
In a letter (Fig. 4) of Prof. J. Friedel (1921e2014) to whom
we send different papers regarding pathological calcifica-
tions, the key role of major scientific people such as
M. Curie (1867e1934) [33] or Prof. G. Friedel (1865e1933)
[34] have been underlined. In the letter, Prof. J. Friedel
wrote “On peut aussi penser �a Marie Curie, partant vers le
front en 14e18 avec sa fille, pilotant des camionnettes
Fig. 5. Schema of the classical and novel view on precipitation (not to scale). Prenuc
different amorphous calcium carbonate phases giving rise to an alternative crystal

Please cite this article in press as: D. Bazin, et al., Biomineralizatio
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d'appareil de rayons X, puis d�eveloppant dans l'institut
Curie l'effet des radiations sur le cancer.”

3. Bottom (molecules) e up (patients) versus top
(patients) e down (molecules) approaches

Numerous papers have discussed the nucleation and the
growing process of mineral composite [35e38] using two
stratagems namely top-down rand bottom-up. Basically, the
firstone refers to themicrofabricationmethodwhere toolsare
used to cut into the desired shape and orderwhile the second
one is related to methods where devices ‘create themselves’
by self-assembly. Regarding research on pathological calcifi-
cations, we may also consider bottom (molecules) e up
(patients) and top (patients)e down (molecules) stratagems.
For the first one, wemay consider the research performed on
the interaction of drug with cells in order to develop new
therapeutic treatments or the interaction between the min-
eral and theorganicpartof thecalcification. Inourcase,weare
more close toa top (patients)edown(molecules)approach in
whichwe consider directly biological samples such as kidney
stones in order to develop original diagnostic tools or/and a
precise description of the biochemical parameters related to
the pathogenesis of these calcifications.

We would like now to present some selected results
regarding these two stratagems. Regarding the bottom
(molecules) e up (patients) approach, we would like to
present a limited number of contributions regarding a new
model on nucleation, as well as the role of the organic part
and water. We will then present some of our results.

D. Gebauer et al. [39] show that dissolved calcium car-
bonate contains stable pre-nucleation ion clusters occur-
ring even in an undersaturated solution. Such mechanisms
are also important for the crystallization of other minerals.
In Fig. 5, the conventional model and the new paradigm are
leation-stage calcium carbonate clusters provide an early precursor species of
lization-reaction channel (from Ref. 39).

n versus microcrystalline pathologies: Beauty and the beast,
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compared. As shown, the very first steps of the genesis of
the mineral are quite different.

Regarding the organic part, acidic extracellular matrix
proteins play a pivotal role during biomineral formation. G.
He et al. [40] report that dentinmatrix protein 1 (DMP1), an
acidic protein, can nucleate the formation of hydroxyapa-
tite in vitro in a multistep process that begins by DMP1
binding calcium ions and initiating mineral deposition.
Also, by combining high-resolution cryo-transmission
electron microscopy and tomography with molecular
modeling of the electrostatic potential energy distribution
along a collagen chain in a fibril, Nudelman et al. [41]
pointed out the presence of pre-nucleation clusters stabi-
lized by polyaspartic acid. The following steps are related to
the deposition of a dense network of pre-nucleation clus-
ters, their subsequent transformation into amorphous cal-
cium phosphate and finally into oriented crystalline
hydroxyapatite inside the fibrils (Fig. 6).
Fig. 6. Mineralization of a collagen fibril (from Ref. 42). (A) Calcium phosphate (Ca
stable mineral droplets. (B), Mineral droplets bind to a distinct region on the colla
liquid state diffuses through the interior of the fibril and solidifies into a disord
amorphous mineral transforms into oriented apatite crystals (yellow).

Please cite this article in press as: D. Bazin, et al., Biomineralizatio
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Quite recently, J. Ihli et al. [43] underlined the role of
water in the crystallization process (Fig. 7). These authors
show that amorphous calcium carbonate can dehydrate
before crystallizing. The high activation energy of this
step suggests that it occurs by partial dissolution/recrys-
tallization, mediated by surface water, and the majority of
the particle then crystallizes by a solid-state trans-
formation. Of note, water is also implicated in the
ordering process [44].

4. Some results regarding pathological
microcalcifications

All the improvements listed above in the under-
standing of the mineralization process are of major
importance. Nevertheless, in the case of tissue calcifica-
tions present in kidney papillae called Randall's plaque,
their pathogenesis is intimately related to the tissue, a
parameter which has not really been discussed in Bottom
P) clusters (green) form complexes with the polymer (orange line), forming
gen fibers and enter the fibril. (C) Once inside the collagen, the mineral in a
ered (amorphous) phase (black). (D) Finally, directed by the collagen, the

n versus microcrystalline pathologies: Beauty and the beast,
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Fig. 7. Schematic of stages of dehydration. On going from a to b, surface-bound water is lost, during b to c water is lost from the interior of the ACC and the ACC
particle shrinks. On going from c to d, the most deeply located water is expelled and on going from d to e, crystallization to calcite occurs.
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(molecules) e Up (patients) and which seems to play the
role of a template.

Eight decades ago, Alexander Randall identified calcium
phosphate deposits at the tip of renal papillae as the origin
of renal calculi [45,46]. In France, stones harboring an
umbilication (surface structure related to its interaction
with the kidney tissue) corresponding to the attachment of
stones to the papillae (Fig. 8) were found to be three times
more frequent in the recent years than at the beginning of
the 1980s and especially in younger patients population
were younger and younger [47]. Such an increase observed
in all industrialized countries has motivated numerous
structural investigations [48e55].

We have also made several publications on this subject
[56e61]. In our case, we have assessed the structure of
Randall's plaque at the mesoscopic scale (Fig. 8), the nature
of the interaction between the Randall's plaque made of
calcium phosphate apatite and the crystallites of calcium
oxalate which constitute the kidney stones [61] as well as
its relationship with inflammation through the Zn content
[59]. The role of the tissue is visualized in Fig. 8 which
shows that the plaque is made of a mixing of tubules with
calcified walls and of tubules obstructed by calcium phos-
phate plugs. At this point, it is worth to underline that 3.5%
of RP are made of sodium urate. If this number is small, it
represents however a high number of patients, about
70,000 subjects in France.
Please cite this article in press as: D. Bazin, et al., Biomineralizatio
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5. Physico-chemical characterization techniques as
diagnostic techniques

Regarding themineral part of pathological calcifications,
we used a set of characterization techniques which allowed
us to assess their chemical composition as well as their
topology and the presence of trace elements, the mea-
surements being performed at the micrometer scale
(Fig. 9).

We have already presented the benefits of Field Emis-
sion e Scanning Electron Microscopy in the case of hyper-
oxaluria [26]. During these last ten years, we have
published other clinical cases where physicochemical
techniques bring valuable information to the clinicians. I
would now like to present these different improvements.

5.1. Synchrotron radiation e FTIR & a genetic pathology
inducing ectopic calcifications

Adenine phosphoribosyltransferase deficiency is an
inherited disease that is able to induce recurrent kidney
stones and/or kidney failure [62e64]. This disease for
which recent data suggest that it is not probably as rare as
initially thought is responsible of the formation of dihy-
droxyadenine crystals [65]. For this genetic disorder, we
use SR mFTIR spectroscopy for indirect diagnosis through
the chemical identification of abnormal deposits [66].
n versus microcrystalline pathologies: Beauty and the beast,
15.12.012



Fig. 8. (A) Randall's plaque at the surface of a kidney stone made of calcium oxalate. (B) Randall's plaque at the mesoscopic scale showing an agglomeration of
calcified tubes. (C) Interaction between the Randall's plaque and the kidney stones.
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Now, thanks to a new generation of mFTIR experimental
devices, such measurements can be performed at the
Tenon hospital. In our first series, two patients were
diagnosed after renal impairment of the grafted kidney.
They were treated with allopurinol and they recovered a
large part of their kidney function. Such observations un-
derline the clinical interest of early identification of crys-
tals in the tissue. Finally, this investigation has motivated a
characterization through infrared microspectroscopy
(IReMS) of kidney transplant crystal deposits [67] that are
underdiagnosed [68].

5.2. SEM and asymptomatic infection

From an epidemiologic point of view, struvite stones are
strongly associated with urinary tract infection (UTI)
[69e71]. These stones represent 10e15% of all kidney
stones in patients in industrialized countries [72] and are
common in children. In a recent investigation [73], statis-
tical analysis of the chemical composition of urolithiasis
suggests that a family of chemical compounds namely
struvite, amorphous carbonated calcium phosphate, whit-
lockite, proteins, triglycerides and mucopolysaccharides
(MPS) share the particularity of being present mainly or
exclusively in calculi related to urinary tract infection.
These data pinpoint the importance of identify the different
compounds present in stones in order to drive significantly
the diagnosis [73].

At the hospital, physical methods such as FTIR or XRD
are used to determine the chemical composition urolith-
iasis. Moreover, it was well known that in the case of
Please cite this article in press as: D. Bazin, et al., Biomineralizatio
Comptes Rendus Chimie (2016), http://dx.doi.org/10.1016/j.crci.20
infection the presence of bacterial imprints at the surface of
kidney stones can be detected through SEM [74,75]. Based
on a set of 39 urinary calculi mainly composed of CA
without struvite, we were able to establish a relationship
between the presence of bacterial imprints, indicative of
past or current urinary tract infection, and both the pres-
ence of amorphous carbonated calcium phosphate (or
whitlockite) and a high CR of CA [76]. A difficulty comes
from asymptomatic patients with recurrent kidney stones
for whom the chemical analysis cannot be related to
infection process (i.e. without struvite, a low carbonatation
level of the apatite…). For these patients, if we want to
propose SEM investigations to underline the presence of
bacterial imprints, it was necessary to understand why
bacterial imprints cannot be found at the surface of struvite.

The answer of this apparent contradiction was given by
neutron powder diffraction which points out the high
crystal size for struvite [77]. Powder neutron diffraction
allows probing the average size of the nanocrystals in
struvite kidney stones. The high quality of the signal-to-
noise ratio allowed a complete Rietveld-type refinement.
The complete set of data shows that struvite and calcium
carbonated apatite have very different sizes i.e. 25 nm
for struvite crystals versus 5 nm for carbonated calcium
apatite. To explain the absence of bacterial imprints on
struvite stones, an analogy can be given by a man walking
on a beach. If the beach is made of sand, footprints may be
observed, but if the beach is made of stone, no footprints
appear. Therefore, a relationship between the size of bac-
teria and the size of nanocrystals when looking for bacterial
imprints is possible. This explains why bacterial imprints
n versus microcrystalline pathologies: Beauty and the beast,
15.12.012



Fig. 9. (A) Starting point of this research performed by M. Daudon at the Tenon Hospital combining FTIR spectroscopy and optical binocular. (B) Different
characterization techniques used in this research.

D. Bazin et al. / C. R. Chimie xxx (2016) 1e98
may appear with small calcium carbonated apatite nano-
crystals rather than large struvite nanocrystals.
6. Conclusion

Research on pathological calcifications using last gen-
eration physicochemical techniques constitute an exciting
research field. Basically, this research tries to

- determine if a relationship between their physico-
chemical characteristics and the pathology responsible
of their pathogenesis exists,

- describe the biochemical parameters related to the
pathogenesis in order to elaborate some drugs that are
able to inhibit their formation

- develop new diagnostic tools. Such characterization
can be performed on microcalcifications and thus early
diagnosis can be proposed

Now, thanks to the model proposed by M. Daudon,
interesting results have been gathered also on pathological
calcifications present in the breast, pancreas and thyroid.
Studies are in progress.
Please cite this article in press as: D. Bazin, et al., Biomineralizatio
Comptes Rendus Chimie (2016), http://dx.doi.org/10.1016/j.crci.20
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