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Xenon is a monatomic gas that belongs to the family of noble
gases. Like other noble gases, it is characterized by a filled
valence shell and therefore exhibits low chemical reactivity.
Paradoxically, xenon possesses a remarkable spectrum of
biological effects that are of potential clinical interest. Xenon is
an approved anesthetic drug with analgesic properties.’? In
addition to that xenon is neuroprotective in preclinical models
of focal and global brain ischemia, spinal cord ischemia and
traumatic brain injury."? These neuroprotective effects are
generally observed at concentrations of xenon ranging from
35 to 75%.'" Although the activation of ATP-sensitive
potassium channels or of two-pore potassium channels may
explain some of the neuroprotective effects of xenon, the noble
gas appears to work primarily by limiting the overstimulation of
N-methyl-p-aspartate (NMDA) glutamate receptors under
excitotoxic stress conditions.’* More specifically, xenon has
been reported to compete with glycine, a co-agonist for NMDA
receptor activation.’

Excitotoxic stress mediated through NMDA receptors is
most generally associated to acute central nervous system
insults such as ischemia and traumatic brain injury, but
chronic, low-level overexcitation of these receptors is also a
possible contributor to neuronal death in a number of chronic
neurodegenerative conditions, including amyotrophic lateral
sclerosis, Parkinson’s disease and Alzheimers disease
(AD).>® The implication of excitotoxic stress in AD-mediated
neurodegeneration is specifically supported by studies report-
ing the benefits of treatments with NMDA receptor antagonists
in preclinical models of the disease.” Of interest, one of these
antagonists memantine has also a small beneficial effect on
cognitive impairment in AD patients.”*®

In our work published in Cell Death Discovery,? we explored
for the first time the neuroprotective potential of xenon in
experimental settings that mimic sustained, low-level excito-
toxic stress as it may occur in the AD pathology. For that, we
established cultures of neurons typically affected in this
disorder, that is, cortical neurons and basal forebrain cholinergic
neurons,’®'" and exposed them to L-trans-pyrrolidine-2,4-
dicarboxylic acid (PDC), a synthetic glutamate analog that
provokes an increase in ambient glutamate through the blockade
of glutamate uptake and the stimulation of its release.

When the conventional cell culture atmosphere was
substituted with a gas combination, including the same
amount of oxygen (20%) and carbon dioxide (5%) but 75%
xenon instead of nitrogen, we observed a substantial
reduction of neuronal loss induced by PDC. The noble gas
argon remained inactive against PDC, pointing to the
specificity of the effects of xenon in the present paradigm.
Neuroprotection by xenon was mimicked by two noncompe-
titive antagonists of NMDA glutamate receptors memantine
and ketamine, indicating that xenon might work itself by
antagonizing NMDA receptors. Coherent with this view, we
found that xenon remained strongly protective when NMDA, a
specific agonist for NMDA receptors was used instead of
PDC to trigger the death of cortical neurons. Note that we
failed to demonstrate a competitive inhibition of xenon at the
glycine-binding site of NMDA receptors, which is in apparent
contradiction with previous reports.! Yet, molecular dynamic
simulation studies predict different sites of action for xenon on
the NMDA receptor.*

Most interestingly, we found that memantine and ketamine
potentiated xenon-mediated neuroprotection when each of
these compounds was used at concentrations providing
suboptimal rescue to cortical neurons and, most surprisingly,
no rescue at all. The nature of this cooperative interaction
needs to be further characterized. Yet, we may assume that it
was due to the fact that xenon on one hand, and memantine
and ketamine on the other hand, acted through distinct binding
sites to modulate NMDA receptor activity. This type of
cooperative effect is of potential clinical interest in the context
of AD, as memantine is an approved drug for the treatment of
this disorder.”8

Basal forebrain cholinergic neurons represent another type
of neurons particularly vulnerable in the AD pathology.'"'?
Besides exerting true neuroprotective effects for cholinergic
neurons, we established that xenon was providing trophic
support for these neurons as well. This trophic effect that
was most prominent in control cultures remained observable in
PDC-treated cultures. The analysis of the trophic effects of
xenon, revealed that the noble gas increased the size of
cholinergic cell bodies and stimulated the cellular expression
of the cholinergic marker protein, choline acetyliransferase
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Figure 1  Simplified scheme describing the effects of xenon on cortical neurons and basal forebrain cholinergic neurons. (a) Protective effects of xenon (Xe) in cortical
cultures treated with PDC to generate sustained, low-level excitotoxic stress. Xenon (75%) afforded robust but partial protection in this experimental setting. This effect was
improved by a co-treatment with the noncompetitive NMDA receptor antagonist memantine (MEM), at a concentration that had no protective effect in itself (low MEM). This
suggests that xenon and MEM acted cooperatively to promote neuronal survival. When MEM was used alone, at an optimal concentration (high MEM), virtually all cortical
neurons were rescued. Note that a similar response profile was observed when MEM was replaced with the NMDA receptor antagonist, ketamine (not shown). (b) Xenon also
stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in basal forebrain septal cultures. + Means with or without treatment

transferase (ChAT). A subset of dormant cholinergic neurons
was also probably the target of xenon effects as the gaseous
treatment increased the number of ChAT* neurons in cultures
not exposed to PDC. Memantine amplified some of the effects
of xenon on cholinergic neurons but was generally less
efficacious than the noble gas when applied alone to the
cultures. In relation with these observations, NMDA receptor
blockade was reported to promote the expression of cholinergic
traits during development in subsets of forebrain glutamatergic
neurons.'® Thus, itis reasonable to believe that NMIDA receptor
antagonism accounted for both the trophic and restorative
effects of xenon. These data are of interest as there is evidence
from experimental lesions in animals and post-mortem human
studies that phenotypic markers disappear early from basal
forebrain cholinergic neurons vulnerable to AD pathology.'?

In summary, present data demonstrate that the noble gas
xenon has the ability to provide protection and to exert trophic
or restorative effects for AD vulnerable neurons (Figure 1).
Noticeably, some of the effects of xenon were improved by the
AD medication memantine. Altogether, these observations are
an indication that the noble gas may have potential utility for
AD treatment.
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