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ABSTRACT 

Objective: We aimed to delineate the neurodevelopmental spectrum associated with 

SYNGAP1 mutations and to investigate genotype-phenotype correlations.  

Methods: We sequenced the exome or screened the exons of SYNGAP1 in a total of 

251 patients with neurodevelopmental disorders. Molecular and clinical data from 

patients with SYNGAP1 mutations from other centers were also collected, focusing 

on developmental aspects and the associated epileptic phenotype. A review of 

SYNGAP1 mutations published in the literature was also performed. 

Results: We describe 17 unrelated affected individuals carrying 13 different novel 

loss-of-function SYNGAP1 mutations. Developmental delay was the first 

manifestation of SYNGAP1-related encephalopathy; intellectual disability became 

progressively obvious and was associated with autistic behaviors in half of the 

patients. Hypotonia and unstable gait were frequent associated neurological features. 

With the exception of one patient who experienced a single seizure, all patients had 

epilepsy, characterized by falls or head drops due to atonic or myoclonic seizures, 

(myoclonic) absences, and/or eyelid myoclonia. Photosensitivity was frequent. 

Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy 

did not correlate with the presence of autistic features or with the severity of cognitive 

impairment. Mutations were distributed throughout the gene, but spared spliced 3‟ 

and 5‟ exons. Seizures in patients with mutations in exons 4-5 were more 

pharmacoresponsive than in patients with mutations in exons 8-15. 

Conclusion: SYNGAP1 encephalopathy is characterized by early 

neurodevelopmental delay typically preceding the onset of a relatively recognizable 

epilepsy comprising generalized seizures (absences, myoclonic jerks) and frequent 

photosensitivity.
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INTRODUCTION 

The human SYNGAP1 gene on chromosome 6p21.3 encodes the synaptic RAS-

GTPase-activating protein 1, a protein of the post-synaptic density (PSD) of 

glutamatergic neurons [1, 2]. SYNGAP1 interacts with PSD95 (DLG4) and SAP102 

(DLG3), and is able to positively or negatively regulate the density of NMDA and 

AMPA receptors at the glutamatergic synapses and mediate signaling downstream of 

glutamate receptor activation [3, 4]. While complete Syngap1 deficiency in mice is 

lethal at early post-natal stages, heterozygous syngap1+/- mice are viable but show 

behavioral and cognitive disturbances [5, 6, 7, 8]. Syngap1 haploinsufficiency 

disrupts the excitatory/inhibitory balance in the developing hippocampus and cortex 

and results in accelerated glutamatergic synapse maturation. When this process 

occurs during critical developmental windows, it alters the synaptic plasticity 

necessary for the refinement of connections that ultimately shape cognitive and 

behavioral modalities [4, 9]. Different SYNGAP1 protein isoforms exist and are 

generated through alternative splicing and alternative promoter usage, in a process 

regulated by synaptic activity and postnatal age in mice. Two of the main SYNGAP1 

mouse isoforms that differ in their N-terminal and C- terminal sequences, have 

opposite effects on glutamate activation pathway [10]. Although several isoforms 

have also been described in humans, their specific role has not yet been established. 

 

Recently, several groups have independently reported de novo SYNGAP1 mutations 

in patients with intellectual disability (ID), epileptic encephalopathy (EE) or autism 

spectrum disorders (ASD) identified by exome sequencing [11, 12, 13, 14, 15] or 

direct sequencing of the SYNGAP1 gene through a candidate gene approach [16, 17, 

18, 19, 20, 21, 22, 23, 24]. Recently, seven SYNGAP1 mutations were identified by 
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exome sequencing in a series of 1,133 patients, 83% of whom had ID, indicating a 

frequency of SYNGAP1 mutation of 0.74% in patients with ID [25]. One patient with 

a chromosomal translocation interrupting SYNGAP1 [26] and five patients with 

6p21.3 deletions encompassing SYNGAP1 [23, 27, 28, 29, 30] have also been 

reported. Thus, to date, SYNGAP1 appears one of the most relevant ID-causing 

genes, with mutations possibly explaining 0.7 to 1% of ID. Genotype-phenotype 

correlations have not been clearly established. Moreover, because most patients with 

SYNGAP1 mutation were identified in large-scale exome or panel studies, the clinical 

features and the natural history of the SYNGAP1-associated ID and epilepsy remain 

to be precisely described. Here, we have gathered the molecular and clinical data of 

15 unreported and two previously reported patients to investigate in more detail the 

SYNGAP1 mutational and neurodevelopmental spectra. 
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METHODS 

Patients. We analyzed 251 patients with variable neurodevelopmental phenotypes 

including ID, EE and ASD (see Supplementary Methods for details) by exome 

sequencing (n=59) or direct sequencing of genes encoding synaptic proteins (n=192). 

One additional patient had an intragenic SYNGAP1 deletion identified by microarray-

based comparative genomic hybridization (array-CGH). Clinical and molecular data 

of 13 additional patients with SYNGAP1 mutation, identified in 12 other centers, were 

collected: all patients with a mutation introducing a premature termination codon or 

occurring de novo (i.e. proven pathogenic), with the exception of patients with 

genomic deletions encompassing other genes than SYNGAP1, were eligible for 

inclusion. Patients #2 and #10 have been previously reported [12, 24]. Each patient's 

referring physician filled out a table with detailed developmental, neurological, 

behavioral and epileptic medical history, including EEG and imaging data if available. 

Most patients were evaluated according to developmental scales routinely used in 

enrolled centers by clinicians trained in neurodevelopment or neuropsychologists (for 

example Brunet-Lezine, HAWIK-IV, or SON-R2 scales). The sex ratio was 8 males / 

9 females. Mean age at the time of the study was 10.3 years (range 3-29 years). 

Informed written informed consent was locally obtained for all participants. This study 

was approved by INSERM (RBM C12-06) and the ethical CCPRB committee from La 

Pitié-Salpêtrière (Paris, France). 

 

Exome sequencing. The exome of index cases or parent-offspring trios was 

sequenced by IntegraGen (Evry, France) or by the Genotypic and sequencing facility 

of ICM [31]. Exons were captured from fragmented genomic DNA samples using the 

SureSelect Human All Exon 50Mb exome kit (Agilent Technologies) or the SeqCap 
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EZ Solution-Based Enrichment v3.0 (Roche), and paired-end 150-base massive 

parallel sequencing was carried out on an Illumina HiSeq2500 or a NextSeq500, 

according to manufacturers‟ protocols. Bioinformatics analyses were respectively 

done using the in-house pipeline developed by Integragen SA, as previously 

described [31] or by the iCONICS ICM facility platform as follows: sequencing reads 

passing quality filtering were aligned to the human reference genome (hg19) with 

Burrows-Wheeler Aligner (BWA) [32]; GATK [33] was used to recalibrate base quality 

scores, realign around indels, and mark duplicate reads. Variants were filtered based 

on their impact on the gene (missense, nonsense, frameshift, splice site-altering 

variants) and a minor allele frequency lower than 1% in databases (Exome Variant 

Server, 1000 Genomes, HapMap, Exome Aggregation Consortium, and in-house 

databases). Calling of de novo variants in trios was done using the Eris interface 

(Integragen SA) or Polyweb (University Paris-Descartes).  

 

SYNGAP1 screening and Sanger sequencing. All exons and intron-exon junctions 

of SYNGAP1 (NM_006772.2) and 18 other synaptic genes were amplified using the 

Fluidigm Access Array technology (IFC Controller AX, FC1 Cycler, 48x48 Access 

Arrays) and sequenced on a MiSeq Illumina sequencer as paired-end 2 x 250 bp 

reads. Alignment of reads on the human reference was performed with BWA and 

GATK, and additional bioinformatics steps including filtering for novel coding variants, 

were done using an in-house pipeline. Mutations identified by next generation 

sequencing (exome or panel) were validated by Sanger sequencing. De novo 

occurrence was tested by analyzing available parents. The predicted effect of 

mutations was interpreted with Alamut 2.2 (Interactive Biosoftware).  
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SYNGAP1 isoforms and genotype-phenotype correlations. Human SYNGAP1 

cDNA and protein sequences were retrieved from NCBI and Uniprot, aligned using 

Clustalw2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and compared to mouse and 

rat isoforms [10]. We first assessed genotype-phenotype correlations in the 17 

affected individuals from our cohort.  

Review of individuals with previously published SYNGAP1 mutations. The 

terms „SYNGAP1‟ and „mutation‟ were used to search for articles reporting patients 

with SYNGAP1 mutation in Pubmed. In addition, SYNGAP1 mutations and variants 

present in the HGMD professional (Biobase) and Exac databases were retrieved, 

listed and visualized on the schematic representation of the SYNGAP1 gene. 

Statistical analysis was done using the Fisher exact test. 
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RESULTS 

Genetic analyses and review of SYNGAP1 mutations. In our cohort of 251 patients 

with neurodevelopmental disorders, we identified 3 patients (1.2%) with novel de 

novo pathogenic heterozygous mutations of SYNGAP1 using exome or panel 

sequencing. One additional patient had a SYNGAP1 deletion of 16.6 Kb 

encompassing exons 2-9, identified by array-CGH. We collected additional 

phenotypic information for two cases published previously [12, 24] and 11 additional 

patients with SYNGAP1 mutations identified in other centers (Table 1 and 

Supplementary Table 2).  

SYNGAP1 mutations occurred de novo in all 12 patients for whom DNA of both 

parents was available and, with the exception of one de novo missense mutation, all 

of them introduced a premature termination codon in the protein sequence (Table 1 

and Figure 1). None of the mutations were reported in control databases (Exome 

Variant Server, 1000Genomes, HapMap, Exome Aggregation Consortium). The 

single missense mutation of this study (c.1685C>T, p.Pro562Leu, rs397514670), also 

identified in a previously reported patient [20], altered a highly conserved amino acid 

of the RasGap/GTPase domain of the protein (up to yeast) and was predicted 

damaging by SIFT and Polyphen-2. 

In total, 47 patients (including two monozygotic twins [23]) carrying 43 different point 

mutation or indels limited to the SYNGAP1 gene have been described to date (Figure 

1 and Supplementary Table 3). Three recurrent mutations (c.321_324del, c.427C>T/ 

p.Arg143*, c.1685C>T/ p.Pro562Leu) were found in 2 patients each. Pathogenic 

mutations in SYNGAP1 are distributed throughout the gene, especially in exons 5, 8, 

and 15, which are amongst the largest exons of SYNGAP1. Interestingly, the two first 

and two last exons, which are alternatively spliced and included in 3 out of 5 
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SYNGAP1 isoforms, but also exons 9 and 16, present in all known isoforms seem to 

be spared (Figure 1).  

 
 

Clinical and neurodevelopmental features of SYNGAP1-related encephalopathy 

(Table 1 and Supplementary Table 1). All patients with SYNGAP1 anomalies of our 

series had ID which was evaluated as severe in 10 patients, moderate in five and 

mild in two. The mean age of sitting unsupported was 12 months (median age 10 

months, n=15) and of walking 27.7 months (median age 24 months, n=15). Half of 

the patients could walk by age 2 years and 75% by age 3 years. All patients had 

speech delay: 12 of them spoke first words at a mean age of 2.5 years and five 

patients did not speak at age 10 years or older. In most patients, both receptive and 

expressive languages were affected. Two patients had mild ID, including one without 

motor delay. In those, mild, progressive language delay and behavioral anomalies 

were the most prominent features. 

Eight out of 16 patients (50%) older than 3 years old were diagnosed with ASD. 

Patients with ASD had remarkably poor verbal and non verbal communication 

abilities as well as impaired social interactions (Supplementary Table 1). Half of the 

patients (n=4/8) with severe ID, 1/5 with moderate ID and 2/2 with mild ID were 

diagnosed with ASD. Independent from a formal diagnosis of ASD, many of the 

patients exhibited stereotypies (n=10), temper tantrums, aggressiveness, self- 

injurious behavior and/or restlessness (n=7).  

Neurological examination, performed at a mean age of 8.9 years, was considered 

normal in two patients. Gait was clumsy or unsteady in five patients and ataxic in five 

others. Truncal hypotonia was reported in 10 patients and facial hypotonia in four. 

Some patients had orthopedic problems, such as pes planus and rotation of the hips. 
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Brain MRI performed in all 17 patients (mean age 5.4 years) was either normal or 

revealed nonspecific features (arachnoid cysts in two patients, mild myelination delay 

in one, and signal abnormities in another). 

Epilepsy was diagnosed in 16/17 patients (Table 2). The only patient without epilepsy, 

who was aged 5 at the time of this study, had a single afebrile seizure at the age of 

3.5 years. Excluding this patient, first seizures occurred at a mean age of 3 years 

(range: 1-8 years) and consisted of drop-attacks, massive myoclonic jerks, atonic 

seizures, myoclonic absences or absences. A diagnosis of Doose syndrome (DS) 

and epilepsy with myoclonic absences (EMA) was made in three and one patients, 

respectively. The others were diagnosed with unclassified genetic generalized 

epilepsy (GGE). None had a diagnosis of Lennox-Gastaut syndrome (LGS). 

The epilepsy responded to a single anti-epileptic drug (AED), mostly sodium 

valproate, in seven patients and was pharmacoresistant in nine. During the active 

phases of epilepsy, seizures occurred daily in five patients, 10 times per day or more 

in two and 100 times daily or more in two others. Seizures were of short-duration and 

the most frequent seizure types were typical or atypical absences (n=9), massive 

myoclonic jerks with or without falls (n=7), eyelid myoclonia (n=3), clonic or tonic 

clonic seizures (n=3), myoclonic absences (n=3) and atonic seizures (n=2). Head 

drops or falls were relatively frequent (n=5) and reported as myoclonic-astatic, atonic 

seizures or drop-attacks. Eight patients had several seizure types. No patients had 

status epilepticus and exacerbation by fever was mentioned in four. We found no 

correlations between the diagnosis of ASD and the age at epilepsy onset. The 

proportion of patients with ASD was identical among those with pharmacoresistant 

(n=5/10) and pharmacosensitive epilepsy (n=3/6). 
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The most frequent anomalies reported on EEG traces (Figure 2) from 16 patients 

were ictal or interictal bursts of spikes, spike-waves or slow waves that were either 

generalized (n=13), generalized with a posterior predominance or posterior only 

(n=5). Paroxysmal anomalies were localized to central regions in six instances. 

Triggers of seizures were identified in seven patients, including photosensitivity (PS, 

n=5), fixation-off sensitivity (FOS, n=1), PS and FOS (n=1), and chewing (n=1). 

 

Genotype/phenotype correlations. We observed no definite correlation between 

the location of the mutation on the gene and the severity of ID or ASD diagnosis. 

However, schematic representation of the clinical features of our 17 patients, ordered 

by the position of the mutation on the gene (Figure 3), revealed that the epilepsy of 

patients with mutations in exons 4-5 was mainly pharmacosensitive (5/6 patients) 

whereas that of patients with mutations in exons 8-15 was mainly pharmacoresistant 

(8/9, p=0.01).  

 

DISCUSSION 

In this study, we collected the comprehensive molecular and clinical data of the 

largest series of patients with SYNGAP1 mutation so far in order to describe more 

accurately the neurodevelopmental and epileptic phenotype and to address 

genotype-phenotype correlations. Delineation of the phenotype from 36 patients with 

SYNGAP1 mutations showed that it includes mild to severe ID in all, generalized 

epilepsy in most and autistic behavior in a half of them (Supplementary Table 3). In 

the present study, we describe the phenotype of 17 cases with SYNGAP1-associated 

encephalopathy, bringing the total number of reported patients with SYNGAP1 

mutations to 47. 
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Neurological examination in SYNGAP1-associated encephalopathy. Truncal 

hypotonia, sometimes in association with facial hypotonia, was the main recurrent 

feature in our patients, in line with previous series [20, 23]. Likewise, ataxia, with a 

broad-based or clumsy gait, was frequent in our patients and recurrently mentioned 

in others [20, 23]. Gait abnormalities are probably due to a combination of hypotonia, 

lack of global coordination, poor motor control, inattentiveness and orthopedic issues. 

Occipitofrontal circumference (OFC) was normal in 78% of patients from the literature 

and in 100% of ours. Though microcephaly has been mentioned in some cases [17, 

20, 23], it seems to be not a common aspect in patients with SYNGAP1 mutations. 

As with previously-reported patients, MRI in our patients showed either no or 

nonspecific features, implying that brain imaging is not helpful in the diagnosis of 

SYNGAP1-related disorders. 

 

The neurodevelopmental phenotype in SYNGAP1-associated encephalopathy. 

In our series as well as in the literature, early motor delay with severe language 

impairment is the first manifestation of SYNGAP1 encephalopathy. Fourteen patients 

of our series acquired a few words between 1 and 4 years old but only three patients 

were able to speak simple sentences. These data highlight that language acquisition 

in most patients with SYNGAP1 mutation rapidly reaches a plateau. It may even be 

subjected to regression, since seven of our patients acquired a few words but 

eventually lost them again during the first years of life. 

Slowing of global development and seizures appeared to occur concurrently in some 

patients, suggesting that SYNGAP1 mutation might be a cause of EE, as previously 

suggested [18]. By definition, EE is an epileptic disorder in which the "epileptic 
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activity itself may contribute to severe cognitive and behavioral impairments above 

and beyond what might be expected from the underlying pathology alone" [34]. The 

concept of EE may apply to specific syndromes (West syndrome and LGS) usually 

associated with ID or to epileptic individuals with an encephalopathic course [34]. 

West syndrome and LGS were not diagnosed in our patients. However, retrospective 

analysis of the clinical history of some of them may illustrate an "encephalopathic 

course" apparently related to frequent daily seizures. As an example, patient #14 in 

whom first seizures occurred up to 100 times a day had increasing behavioral 

disturbances and a concomitant stagnation of cognitive acquisition; her language and 

communication skills significantly improved once the epilepsy was controlled. On the 

contrary, the epilepsy of patient #4 responded to sodium valproate alone at 4 years 

old but her cognitive evolution was very poor at 10 years. Beyond these particular 

clinical histories, a global view of the epilepsy and neurodevelopmental disorder in 

our series shows that the level of ID is not related to the resistance or sensitivity of 

the epilepsy to AED (Figure 3). In addition, the age at first seizure does not correlate 

with the resistance to AED and is not clearly linked to the severity of ID. Finally, 

among the eight patients with language regression reported here, two of them only 

had a concomitant first seizure. Epilepsy in the others started several months or 

years after language regression. The contribution of interictal EEG abnormalities to 

cognitive regression is theoretically possible, but cannot be demonstrated since EEG 

were recorded after the first seizure. Consequently, while the concept of EE may 

possibly correspond to the encephalopathic course of a subgroup of patients with 

pharmacoresistant epilepsy in our series, evidence to extend this concept to 

SYNGAP1-related neurodevelopmental disorder in general is lacking. 
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Epilepsy in SYNGAP1-associated encephalopathy. SYNGAP1 mutation rate was 

0.74% in a large series of 940 patients with ID [25], and up to 1% (5/500) in another 

large series of patients with EE [18]. Overall, about 85% patients with SYNGAP1 

mutations had seizures. This suggests that epilepsy is extremely common in the 

SYNGAP1-associated encephalopathy and that SYNGAP1 is one of the most 

frequently mutated genes in patients with ID and epilepsy. All patients in our series 

had generalized seizures, like those reported in a previous study  [20], only a few of 

them also experienced focal clonic or tonic clonic seizures. Generalized bursts of 

spikes, spike-waves and slow waves, sometimes with an occipital predominance, 

were the main recurrent EEG features in our patients. Thus, falls and myoclonic jerks, 

(typical or atypical) absences, sometimes in combination, define the most common 

seizures types that, together with the finding of interictal generalized and/or occipital 

anomalies on EEG, may guide toward the diagnosis of SYNGAP1 mutation in 

patients with ID. 

Though most of our patients with SYNGAP1 mutations had a diagnosis of 

unclassified GGE, seizure types were suggestive of epilepsy syndromes associated 

with ID, particularly EMA and DS, which diagnosis have been suggested in 3 and 1 

patient(s), respectively. To our knowledge, two other patients with EMA were found to 

carry a de novo genetic anomaly affecting SYNGAP1: one with a frameshift mutation 

[20] and another with a gene interruption due to a balanced translocation [26]. 

However, the sequencing of SYNGAP1 in four other patients with EMA and in 

another one with DS failed to reveal any mutations. This result is in agreement with a 

previous work in which a single SYNGAP1 mutation was identified in three patients 

with EMA, 10 with DS and two with LGS [20]. This suggests that SYNGAP1 

mutations are relatively uncommon causes of these epilepsy syndromes. 
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Photosensitivity has been mentioned in previously reported SYNGAP1 patients [17, 

23], but has not been emphasized. The fixation-off phenomenon has been described 

once [24]. In our series, photosensitivity as a trigger for seizure was found in half of 

the patients. Parents or caregivers of four patients noticed it as sensitivity to sunlight, 

artificial light or the television. This high rate of photosensitivity is significant since 

clinical photosensitivity is found in only 10% of patients with epilepsy in the 7-19 

years old group [35]. We assume that photosensitivity may have not been detected in 

some of our patients because it is an age-dependent phenomenon with a peak 

around puberty; it could therefore still appear in some of them; or because of the poor 

cooperation of patients during the recording. These data suggest that 

photosensitivity, when present, might be a diagnostic clue from the EEG of an 

underlying SYNGAP1 mutation. 

 

Genotype/phenotype correlations. Although patients with SYNGAP1 mutations 

show a common core clinical picture, the phenotype is relatively variable, particularly 

regarding the severity of ID, pharmacoresistance and the presence of ASD. Since 

SYNGAP1 is a complex gene, giving rise to several protein isoforms with opposite 

effects on the glutamate activation pathway, via alternative splicing and transcription 

start sites [10], it was tempting to speculate that the location of the mutation on the 

gene could correlate to the clinical outcome. However, we found little correlation 

between the location of the mutation and the severity of ID, epilepsy and/or ASD. Yet, 

the epilepsy of patients with mutations in exons 4-5 appeared more 

pharmacosensitive than that of patients with mutations in exons 8-15. Interestingly, 

exons 4 and 5 are not present in SYNGAP C, an isoform obtained through alternative 

promoter usage, which existence has been demonstrated in mice and rats. Although 
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this isoform has not been shown to exist in humans as well, our results suggest that it 

could also exist and have a different function, as already proven for isoforms 1 and 

2, which differ in their C-terminus. Further study is necessary to confirm this finding, 

and decrypt the precise function of each human SYNGAP1 isoform and its 

relationship with the human pathology characteristics.  

Nevertheless, the comparison of the clinical features of patients with identical 

mutations revealed significant clinical differences (Supplementary Tables 2 and 3), 

confirming that there is a real variability of the phenotype that depends on other 

factors than the mutation itself. On the contrary, monozygotic twins had strikingly 

similar phenotypes, suggesting that these modifier factors could be of genetic origin 

[23]. 

 

ASD in SYNGAP1-associated encephalopathy and hypothetical consequences 

of SYNGAP1 mutations on brain development. Although all patients with validated 

pathogenic SYNGAP1 mutations reported to date had ID, only half of them had a 

diagnosis of ASD (including data from the literature and our series). In our series, the 

presence of autistic traits was neither limited to patients with moderate or severe ID, 

nor to those with pharmacoresistant or early-onset epilepsy. Thus, ASD, like epilepsy, 

could be considered as an additional feature of the SYNGAP1-related phenotype in 

the context of ID, irrespectively of its severity, rather than an "isolated" diagnosis. 

This observation is in agreement with previous studies showing that many 

neurodevelopmental disorders are caused by mutations in genes encoding synaptic 

proteins, and more specifically constituents of the post-synaptic density [36]. The fact 

that a subset of patients with SYNGAP1 mutations exhibit autistic behaviors suggests 
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that a single mutation in a synaptic gene is not sufficient to cause ASD and that the 

genetic or epigenetic background of the patient probably plays an important role in 

the occurrence of autistic features in a context of intellectual development impairment. 

Many genes mutated in patients with ASD and ID are linked with neuronal signaling 

pathways and may alter the synaptic plasticity underlying the building, refinement and 

consolidation of neuronal networks associated with learning and adaptive behaviors, 

with the balance between inhibitory and excitatory signals being determinant in this 

process [37, 38, 39]. Given the function of the SYNGAP1 protein in regulating 

excitatory inputs downstream of NMDA receptors, the SYNGAP1-associated 

encephalopathy is likely a manifestation of the disruption of this balance. ASD as well 

other neurodevelopmental disorders could in many cases result from the interruption 

or impairment of the maturation processes of neuronal networks that are driven by 

neuronal activity during a critical period of brain development [39]. This scenario is 

particularly relevant to the fact that the clinical and morphological consequences of 

SYNGAP1 haplo-insufficiency in mice, i.e. behavioral disturbances and premature 

dendrite elongation, are restricted to gene disruption during a given period of brain 

development [4, 9]. Following this hypothesis, SYNGAP1 encephalopathy may be 

regarded as an example of premature closing of the time-window for cognitive 

development in humans. In the SYNGAP1-associated encephalopathy, disruption of 

the excitatory/inhibitory balance, which is also a cause of epilepsy, may therefore 

prematurely end the maturation process of synapses and lead to ID, ASD and 

epilepsy by a common pathophysiological mechanism. 
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FIGURE LEGENDS 

Figure 1. Summary of SYNGAP1 mutations identified in this study and the literature. 

(A) Location of mutations on the different SYNGAP1 isoforms. Mutations in red 

correspond to the patients identified in this study. Mutations in black correspond to 

previously published patients. Recurrent mutations are underlined. Isoform 1 

corresponds to the longest isoform (NM_006772.2, N-terminus: SYNGAP A, C-

terminus: SYNGAP 2); isoform 2 is obtained through alternative splicing of exons 18 

and 19 and differs in its C-terminus (SYNGAP : 1265-1343: 

RLMLVEEELR...NGEFRNTADH SPSLQADAGGGGAAPGPPRHG); isoform 3 is 

obtained through alternative transcription start site usage involving an additional exon 

and differs in its N-terminus (SYNGAP B:   1-98: 

MSRSRASIHR…PVEGRPHGEH  MGLRPPTPSP...RRCSSCCFPG); isoform 4 is 

obtained through alternative splicing of exon 19 and differs in its C-terminus 

(SYNGAP : 1296-1343: ERQLPPLGPTNPRV…LQITENGEFRNTADH  LLIR). 

Isoform 5 corresponds to a rat isoform obtained through transcription start site usage 

(SYNGAP C); its existence in humans has not been demonstrated and therefore 

remains putative. Note that other isoforms, not represented on this schematic, have 

been described in rodents but not yet in humans, in particular isoform alpha 1, which 

differs in the C-terminus (QTRV).  (B) Schematic representation of the mutations 

(above) and the variants present in the Exome Aggregation (ExAc) database (below) 

on the longest SYNGAP1 isoform (NM_006772.2) and corresponding protein 

domains. 

 

Figure 2. EEG samples from patients exemplifying electroencephalographic findings 

in SYNGAP1-related encephalopathy. (A) Sample demonstrating normalization of 

http://www.uniprot.org/blast/?about=Q96PV0%5b1265-1343%5d
http://www.uniprot.org/blast/?about=Q96PV0%5b1-98%5d
http://www.uniprot.org/blast/?about=Q96PV0%5b1296-1343%5d
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paroxysmal activity by eye opening, i.e. fixation-off sensitivity, in Patient #2. (B) 

Sample showing paroxysmal activity under photic stimulation, i.e. photosensitivity, in 

Patient #2. (C) Sample from Patient #1: burst of generalized spikes concomitant of a 

rapid eye deviation (fast rhythms are due to benzodiazepine therapy). (D) Sample 

from Patient #12 showing the appearance of generalized spike-wave complexes with 

a low degree of bilateral synchronization after eye closure (fixation off phenomenon). 

 

Figure 3. Graphical representation of clinical data (age at epilepsy onset, level of ID 

and pharmacoresistance or pharmacosensitivity) in our patients series. X-axis 

indicates the number of the patient, ordered by the position of the mutation on the 

gene, except patient 1, who corresponds to the patient with the intragenic SYNGAP1 

deletion. Y-axis indicates the age at seizure onset (in months). The proportion of 

patients with mild (circles), moderate (triangles) and severe (squares) ID is not 

different in the pharmacoresistant (red) and in the pharmacosensitive (green) groups. 

One patient (black square, patient 10), who had a single afebrile seizure and was 

thus not considered strictly as epileptic, was not considered for this analysis. The age 

at the first seizure is neither related to the resistance or sensitivity of the epilepsy to 

AED, nor to the position on the gene. The age at seizure onset is not correlated with 

the level of ID. The mutations of most patients with pharmacosensitive epilepsy 

cluster in exons 4-5 whereas those of most patients with pharmacoresistant epilepsy 

spread over exons 8-15 (p=0.001).  

 

SUPPLEMENTARY DATA 

Supplementary Table 1. Additional data to Table 1. 
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Supplementary Table 2. Molecular data of patients with SYNGAP1-associated 

encephalopathy reported in the literature and in the present study. Lines with 

recurrent mutations are highlighted in green. 

Supplementary Table 3. Clinical data of patients with SYNGAP1-associated 

encephalopathy from the literature. Patients reported in two articles [21,30] were not 

included because of insufficient clinical data. 
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Table 1. Molecular and clinical data from the 17 patients with SYNGAP1 mutations*. (1) 

G
e
n

e
ti

c
s
 

Mutation type 
intragenic 
deletion 

nonsense nonsense nonsense frameshift nonsense splice site frameshift frameshift 

Mutation 
c.68-1518-

?_1530+?del 
c.348C>A c.403C>T c.427C>T c.455_459del c.490C>T c.509+1 G>T c.828dup c.1057delC 

Protein level p.? p.Tyr116* p.Arg135* p.Arg143* p.Arg152Glnfs*14 p.Arg164* p.? p.Lys277Glnfs*7 p.Leu353Trpfs*13 

Location in gene intron 1 - exon 9 exon 4 exon 5 exon 5 exon 5 exon 5 intron 5 exon 8 exon 8 

Inheritance de novo de novo de novo de novo de novo de novo de novo parents not tested parents not tested 

Level of intellectual 
disability / Age at 
evaluation 

severe / 10 y mild / 12 y 
moderate / 

5.5 y 
severe / 
10.8 y 

severe / 11 y severe / 11 y moderate / 5 y moderate / 4.5 y moderate / 5.5 y 

D
e
v
e
lo

p
m

e
n

ta
l 

s
ta

g
e

s
 

Age of sitting / 
walking 

7 m / 24 m 10 m / < 18 m 10 m / 20 m 10 m / 24 m 16 m / 36 m 8 m / 20 m 10 m / 22 m 9 m / 15 m NA / 24 m 

Age of first words 
/ first sentences 

4 y / no 
sentences 

14 m / NA 
33 m / no 
sentences 

5 y (5 words) 
/ no 

sentences 

4 y transient "mama" "papa" / 
no sentences 

NA / no sentences 3 y / 5 y 23 m 36 m / no sentences 

Current language 
ability 

single words NA ~ 50 words 10 words absence of speech few words at 11 y 5-word sentences short sentences 15 words 

Regressive 
episode during 
the development / 
Age  

slowing of 
development with 

untreated 
epilepsy / 2y 

no  no no 
possible (loss of few acquired 

words) 
no  

loss of few 
dissylable words 

after 20 m 
no NA 

Autism spectrum 
disorder  

no yes no yes yes yes no no no 

C
li

n
ic

a
l 
E

x
a
m

in
a

ti
o

n
 

Age at 
examination  

14 y 12 y 5.5 y 10.8 y 11 y 10 y 5 y 6 y 5.5 y 

Height in cm 
(SD) / weight in 
kg (SD) / head 
circumference in 
cm (SD) 

133 (-0.5) / 28 (-
0.5) / 50.5 (-1) 

173 (+2.5) / 40 
(-1) / 53 (-1) 

151 (+1) / 53 
(+3) / 53.5       

(-0.5) 
NA 156 (-0.75) / 62 (+0.25) / NA 

143 (+4) / 35 (+3.5) 
/ 51 (-0.5) 

15 (-1.5) / 103 (-1.5) 
/ 49 (-1.5) 

105 (-0.5) / 16 (-1) / 
52 (+0.5) 

110 (-1.5) / 17.9 (-
1.5) / 50.5 (-0.5) 

Neurologic 
examination 

normal normal 
global 

hypotonia, gait 
ataxia 

truncal 
hypotonia 

nystagmus during the 1st year 
(possibly caused by myopia), 

clumsy gait 

facial and truncal 
hypotonia, broad 

based gait 
truncal hypotonia 

facial hypotonia with 
drooling, gait ataxia 

truncal hypotonia, 
walking with 

inwards rotation of 
hips 

 

 

Patient ID 1 2 3 4 5 6 7 8 9 

Age at the time of 
the study (years) 

14 15 8.5 10.8 15 11 5 9.8 5.5 

Sex M F F M F M F F F 

Ancestry Guinean European European European Moroccan Malian European European European 
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Table 1. Molecular and clinical data from the 17 patients with SYNGAP1 mutations*. (2) 

G
e
n

e
ti

c
s
 

Mutation type nonsense nonsense missense nonsense frameshift frameshift frameshift splice site 

nonsense 7; frameshift 
5; splice 2; missense 1; 

intragenic deletion 1 

Mutation c.1253_1254del c.1630C>T c.1685C>T  c.1995T>A c.2214_2217del c.2933del c.3406dup c.3408+1G>A 

Protein level p.Lys418Argfs*54 p.Arg544* p.Pro562Leu  p.Tyr665* p.Glu739Glyfs*20 p.Pro978Hisfs*99 p.Gln1136Profs*17 p.? 

Location in gene exon 8 exon 10 exon 11 exon 12 exon 13 exon 15 exon 15 intron 15 

Inheritance de novo de novo de novo 
parents not 

tested 
de novo de novo parents not tested de novo 

Level of intellectual 
disability / Age at 
evaluation 

severe / 4 y severe / 3 y severe / 22 y severe / 12 y mild / 8 y moderate / 5 y severe / 8.5 y severe / 10 y 
mild n=2; moderate 
n=5; severe n=10 / 

mean age eval. 8.7 y 

D
e
v
e
lo

p
m

e
n

ta
l 

s
ta

g
e

s
 

Age of sitting / 
walking 

15-18 m / 36 m 
12 m / walks only 

with aid 
12 m / 38 m NA / 36 m 8 m / 18 m 10 m / 18 m 16 m / 30 m 25 m / 4.5 y mean 12 m / 27.7 m 

Age of first words 
/ first sentences 

~29 m  transient 
"mama", "papa" / 

no sentences 

3 y "papa" only / 
no sentences 

no words / no 
sentences 

no words / no 
sentences 

12 m / 6 y 3 y / no sentences 
17 m / no 
sentences 

no words / no 
sentences 

mean age first words 
2.6 y 

Current language 
ability 

absence of speech 
absence of 

speech 
absence of 

speech 
absence of 

speech 
120 words, 3 to 4-word 

sentences 
5 words absence of speech 

absence of 
speech 

absence of speech 7; 
speaks words 5; 

associates words or 
simple sentences 3 

Regressive 
episode during 
the development / 
Age  

since age of 36 
months-loss of 
"mama", "papa" 

no 
12m - with febrile 

seizures  
no 14 months no 

loss of words at 
age 18-30 m 

possible (loss of 
2-syllable words) 

n=7 

Autism spectrum 
disorder  

yes 
too young to be 

evaluated 
no no yes no yes yes yes 8; no 8 

C
li

n
ic

a
l 
E

x
a
m

in
a

ti
o

n
 

Age at 
examination 

5.2 y 3 y 22 y 12 y 8 y 7 y 8.5 y 6.6 y mean 8.9 y 

Height in cm (SD) 
/ weight in kg 
(SD) / head 
circumference in 
cm (SD) 

149 (+1.5) / 48.6 
(+2) / 52 (-1.5) 

105 (-0.5) / 20 
(+1.5) / 49.3 (-1) 

93 (0) / 13.8 (0) / 
48 (-2) 

146.5 (+1) / 
35 (+0.5) / 55 

(+1) 
NA /21 (-1) / 54 (+1) 

116 (+1) / 21 (+1) / 
50 (0) 

124 cm (-1.5) / 22 
kg (-1.8) / 50.8 cm 

(-1.7) 

116 cm (+0.4) / 
22.3 kg (+0.7) / 
51.3 cm (+0.4) 

normal OFC 15/15 

Neurologic 
examination 

 truncal hypotonia, 
broad based gait, 
hypotonic-atactic 

movements 

truncal hypotonia, 
swallowing 
difficulties 

mild gait ataxia, 
flexion deformity 

of left hip, 
hyperlordotic 
lumbar spine 

hyperactive 
deep tendon 

reflexes, 
unsteady gait 

motor slowness and 
moderate akinesia, 
ataxic gait, truncal 
hypotonia, dystonic 

postures of hands and 
feet, plastic hypertonia 

truncal hypotonia, 
orthostatic truncal 

tremor, slight 
pyramidal 

tetraparesis, gait 
ataxia 

truncal hypotonia 

truncal hypotonia, 
orofacial 

hypotonia, wide-
based gait 

clumsy/ataxic gait 10, 
truncal hypotonia 10, 

facial hypotonia 4, 
normal exam 2 

* patients are ordered by mutation from the 5‟ end of the gene. NA: not available; m: months; y: years; mean age eval.: mean age at evaluation; SD: standard 

deviation. 

Patient ID 10 11 12 13 14 15 16 17 Summary 

Age at the time of 
the study (years) 

5 3 22 12 8 8.2 29 10 mean 11.4 

Sex M M F M F M M M M=8, F=9 

Ancestry European Iraqi European Turkish European European European  European   



39 

 

 

Table 2. Epilepsy features in SYNGAP1-related encephalopathy. (1) 
 

Patient ID 1 2 3 4 5 6 7 8 9 

Age at seizure onset  
(m:months or 
y:years) 

24 m 24 m 22 m 4 y 3 y 30 m 5 y 33 m 30 m 

Seizure type at 
onset 

myoclonic 
jerks (falls) 

drop attacks 
febrile 
seizure 

GTCS, abs. 
tonic febrile and afebrile, 

myoclonic jerks 
not defined abs. abs. head nodding, abs. 

Seizure types 
during disease 
course 

myoclonic 
abs., eye 
myoclonia 

GTCS, clonic, 
drop attacks, 

myoclonic jerks,  

atypical 
abs., 

myoclonic 
jerks, atonic 

seizures 

abs. 
head falls, massive myoclonic 
jerks of arms, myoclonic abs. 

abs. abs. abs. 
myoclonic jerks 
(mainly arms) 

Epilepsy syndrome EMA 
DS then atypical 

GGE 
unclassified 

GGE 
unclassified GGE 

with absences 
unclassified GGE 

unclassified GGE 
with absences 

unclassified GGE 
with absences 

unclassified GGE 
with absences 

unclassified GGE 
with absences 

Febrile seizures no yes yes no rare no no no no 

Status epilepticus no no no no no no no no no 

Frequency of 
seizures 

>10 daily then 
2/day 

presently 
nearly seizure-

free 

daily -> one per 
week-> almost 

seizure free 
1-2/month 

seizure free for 
several years 

controlled <1/day several/day daily up to 100/day 

Lifetime / current 
anti-epileptic 
treatment 

VPA VPA then LEV LEV VPA 
VPA, OXC, LTG, LEV, CBZ / 

VPA + LTG 
VPA, CBZ LTG VPA, LTG / LTG 

VPA, ETH, LEV, 
CLN*, ketogenic 

diet / none 

Pharmoresistance no no no no partial no no yes yes 

E
E

G
 

Age at 
examination 

9 y 2 to 15 y 4.5 y 9 y 1 to 5 y 3 to 8 y 5 y 8.5 y 5 y 

Main 
abnormalities 

generalized 
bursts of S 

generalized 
PsW and 

photoconvulsion
s 

frontal and 
generalized 
SpW and 

PSW 

irregular spike-
slow-wave-
complexes: 
generalized, 

maximum frontal; 
beta-waves 

1 y: normal; 3.5 y: generalized 
bursts of S, S + SW in 

posterior areas; 5 y: slow 
background activity, fronto-

temporal bursts of SW 

bi-occipital SW, S 
and SpW, bi-

central anomalies 
NA 

diffuse SpW, PSp or 
PSW 

bursts of bilateral S 
and  PSp with 
maximum in 

posterior regions 

Triggers of 
seizures 

none PS no none none none NA none chewing, emotions 
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Table 2. Epilepsy features in SYNGAP1-related encephalopathy. (2) 
 

Patient ID 10 11 12 13 14 15 16 17 Summary 

Age at seizure onset  
(m:months or 
y:years) 

one seizure at 3.5 
y 

24 m 12 m <2 y 5 y 22 m 27 m 8 y 
mean 35.4 m, median 

age 28.5 m, 75th centile 
39 m 

Seizure type at 
onset 

non febrile febrile  seizure febrile seizures 
astatic 

seizures 
eyelid myoclonia atonic myoclonic seizures NA   

Seizure types 
during disease 
course 

NA eyelid myoclonia 

eyelid 
myoclonia, 

atypical abs., 
myoclonic jerks 

myoclonic 
astatic 

eyelid myoclonia, 
myoclonic abs. 

GTCS, focal, 
atypical abs., 

myoclonic jerks 

 myoclonic jerks, 
GTCS, atypical 

abs. 
atypical absences 

myoclonic jerks 7, 
atypical abs. 5, abs. 4, 

eyelid myoclonia 3, clonic 
or GTCS 3, myoclonic 

abs.3, atonic 2 

Epilepsy syndrome NA unclassified GGE 
unclassified 

GGE 
DS unclassified GGE DS unclassified GGE unclassified 

unclassified 12 , DS 3, 
EMA 1 

Febrile seizures no yes yes no no no no no yes 4 

Status epilepticus no no no no no 
clusters of 

seizures/no status 
epilepticus 

no no n=0 

Frequency of 
seizures 

only one until 
now 

several/day several/month 10/day 100/day several/day several/day 4-8/month   

Lifetime / current 
anti-epileptic 
treatment 

no VPA LEV, TPM 
VPA, ZNM, 

LTG 
LEV, ETH 

VPA, LTG + VPA, 
LTG, LEV, CLN, 

ACTH 

VPA, CBL, TPM / 
ketogenic diet 

VPA   

Pharmoresistance not applicable no yes yes  yes yes yes partial yes 9, no 7 

E
E

G
 

Age at 
examination 

1.8 and 2.5 y 3 y 3 to 8 y 2 to 10 y 2 to 5 y 7 8.5 y 2.3 y   

Main 
abnormalities 

1st: SW; 2nd: no 
abnormalities 

abnormal 
background, 

generalized slowing, 
recorded seizures 

with eyelid myoclonia 
and generalized 
seizure patterns 

bursts of S and 
SW in the 

occipital region 
after eye 
closure 

generalized 
SpW 

2y: normal; 5y: ictal 
bursts of diffuse PSW 

with posterior 
predominance after 

eyes closer and 
photic stimulation 

focal SpW in 
central-parietal 

areas, generalized 
S and PSW 

generalized PSW 
and frontal Sw 

multifocal SW   

Triggers of 
seizures 

none PS FOS PS PS, FOS none none PS 
PS 4, FOS 1, PS + FOS 

1, other 1 

 
GTCS: generalized tonic-clonic seizures; abs.: absences; EMA: epilepsy with myoclonic absences; GGE: genetic generalized epilepsy; DS: Doose syndrome. 
Anti-epileptic drugs: VPA: valproic acid, LEV: levetiracetam, ETH: ethosuximide, OXC: oxcarabzepine, CBZ: clobazam, ZNM: zonisamide, LTG: lamotrigin, TPM: 
topiramate, CLN: clonazepam, ACTH: adrenocorticotropic hormone. EEG: electroencephalogram; SW: slow waves; S: spikes; SpW: spike-waves; PSW: 
polyspike-waves; PSp: polyspikes; PS: photosensitivity; FOS: fixation off sensitivity. 
*epilepsy aggravated 
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Figure 1. 
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Figure 2 
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Figure 3. 
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Supplementary Methods. 
Clinical characteristics of the 251 patients with variable neurodevelopmental phenotypes included in this study (ID: intellectual disability, ASD: 
autism spectrum disorder). 

 

Among epileptic patients, 158 had a non-syndromic or unclassified epilepsy. The epilepsy type or the main seizure type in the 58 other 
patients were the following: West syndrome (n=24), epilepsy with myoclonic absences (n=5), Doose syndrome/ epilepsy with myoclonic atonic 
seizures (n=1), malignant migrating partial seizures of infancy (n=1), unspecified neonatal epileptic encephalopathy (n=7), myoclonic epilepsy 
(n=4), absence epilepsy (n=3), generalized epilepsy with tonic-clonic seizures (n=13). 
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Supplementary Table 1. Complement to genetic and clinical data of the 17 patients with SYNGAP1 mutations. (1) 

Patient ID 1 2 3 4 5 6 7 8 9 

G
e
n

e
ti

c
s
 

Family history none 
cousin with 

absence epilepsy 
none none none  none  none  none  none  

Parental age at 
birth 

Mo=35, Fa=18 NA Mo=34, Fa=35 Mo=40, Fa=36 Mo=40, Fa=47 NA Mo=40, Fa=30 Mo=28, Fa=28 NA 

Other 
significant 
genetics 
abnormalities 

none none 

array-CGH: Xp22.33 
dup 491 kb - 511 kb 

(inherited from 
healthy father) 

de novo VOUS: 
RANBP2: c.8146G>A 
(p.K2716E); KLHL8: 
c.95C>G (p.S32L) 

variant in MBD5 
inherited from one 

parent 
none none none 

RBFOX1-deletion 
(hq19 

chr16:6340454-
6814185) 

Method of 
molecular 
diagnosis 

microarray 
analysis 

CeGat panel CeGat panel WES SYNGAP1 testing WES 
panel 

(genetikum ® ) 
SYNGAP1 testing CeGat panel 

N
e
o

n
a

ta
l 

p
e

ri
o

d
 

Pregnancy and 
delivery 

probably 
normal, 
fullterm 

unremarkable Apgar 8/10/10 
unremarkable, 

cesarean section week 
39, Apgar scores 10/10 

unremarkable 

twin pregnancy, 
born at 8 months, 

delivery 
unremarkable 

unremarkable 
mild gestational 

diabetes, fullterm, 
Apgar 10 

unremarkable 

Birth length in 
cm (perc) / 
weight in g 
(perc) / head 
circumference 
in cm (perc) 

NA 
52 (50th) / 3010 
(50th) / 34 (25th) 

55 (90th) / 4125 
(96th) / 36.5 (98th) 

49 (10-50th) /3160 (10-
50th)/ 34 (10-50th) 

50 (10-50th) / 3230 
(10-50th) / 34.5 

(10-50th) 

NA / 2740 (NA) / 34 
(NA) 

52 / 3880 / 36 
48 (10th) / 3300 (25th) / 

33 (25th) 
48 (10th)/ 3420 
(10-50th) / NA 

Neonatal 
findings 

NA none none 
muscular hypertonia 
during first months 

none none none none none 

A
u

ti
s
m

 s
p

e
c
tr

u
m

 d
is

o
rd

e
r 

Alteration of 
nonverbal 
communication 

mild mild moderate no moderate severe NA mild severe 

Repetitive 
behaviours 

no no no yes yes yes little no no 

Stereotypies no no no yes yes yes no yes no 

Social 
interactions 

normal 

no social 
reactions to 

peers, lack of 
eye-contact, no 

empathy 

altered normal very poor very poor altered altered altered 

Behaviour 
troubles 

temper tantrum 
then peaceful 

behaviour 

aggr. especially 
after acoustic or 

tactile stimuli 
severe social anxiety hetero- / autoagr. anxiety restlessness, aggr. 

autoaggr., 
temper tantrum 

temper tantrum, 
occasional aggr. 

anxiety, 
incontrolled panic 

attacks 

Brain imaging (age) normal (9 y) normal (13 y) normal (3.8 y) 
myelination not yet 

complete (4 y) 
normal (2 and 9 y) 

normal with small 
cyst in the right 
pontocerebellar 

angle 

normal (2 y) normal (4 y) normal (3 y) 
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Supplementary Table 1. Complement to genetic and clinical data of the 17 patients with SYNGAP1 mutations. (2)  

Patient ID 10 11 12 13 14 15 16 17 

G
e
n

e
ti

c
s
 

Family history none none none none none none none none 
Parental age at 
birth 

Mo=34, Fa=35 Mo=46, Fa=38 NA Mo=30, Fa=33 
Mo=26, 
Fa=26 

Mo=31, Fa=27 Mo=37, Fa=40 Mo=31, Fa=28 

Other 
significant 
genetics 
abnormalities 

none 

VOUS inherited from 
the mother: SCN9A: 

c.4282G>A and 
c.5624G>A, ARX 

c.1462A>G 

none none none none 

array-CGH: 3q12.2-12.3 
dup 1.55-1.60 MB 

(inherited from healthy 
father) 

none 

Method of 
molecular 
diagnosis 

WES CeGaT panel WES WES WES MIP gene panel CeGaT panel MR-Panel (Kingsmore Panel) 

N
e
o

n
a

ta
l 

p
e

ri
o

d
 

Pregnancy and 
delivery 

unremarkable 
pathologic, otherwise 

normal delivery, 
Apgar 10/10 

IVF; emergency 
LSCS at 36 

weeks due to 
reduced fetal 
movements 

unremarkable unremarkable 
born at 37 WG, 

premature detachment of 
the placenta, Apgar 10 

gestation diabetes, Apgar 
9/10/10  

36+6 week of pregnancy, APGAR 
8/8/8, intensive care 

Birth length in 
cm (perc) / 
weight in g 
(perc) / head 
circumference 
in cm (perc) 

49 (10th) /3160 
(25th) / 36 (50th) 

NA 
47 (50th) / NA / 

NA 

50 (50th) / 3500 
(50th) / 34 (10-

50th) 

49 (10-50th) / 
3120 (10-
50th) / 34 
(10-50th) 

52 (90-97th) / 2700 (25th) 
/33 (10th) 

49 (14th) / 3350 (46th) / 
35 (52th) 

47.5 (<10th) / 2490 (50th) / 33,5 
(>50th) 

Neonatal 
findings 

none none 
slow to suck and 

feed 
none none hyperbilirubinemia none 

hypotonia, bradycardia, 
hypothermia, hyperbilirubinemia 

A
u

ti
s
m

 s
p

e
c
tr

u
m

 

d
is

o
rd

e
r 

Alteration of 
nonverbal 
communication 

moderate-severe moderate-severe  moderate moderate NA NA severe severe 

Repetitive 
behaviours 

no yes no no NA NA yes yes 

Stereotypies yes yes yes no yes yes yes yes 

Social 
interactions 

very poor very poor altered altered NA NA very poor poor 

Behaviour 
troubles 

hetero- / 
autoaggr. 

NA NA aggr. NA NA auto- and hetero-aggr. altered 

Brain imaging (age) 
arachnoid cysts 

(1.8 y) 
normal (3 y) normal (8 y) normal (8 y) normal (5 y) 

slight dilatation of the 
anterior horns of lateral 
ventricles (3 and 5 y) 

normal (28 m and 
6 y)  

bilateral T2 hypersignal of 
fasciculus longitudinalis medialis, 

piritrigonal white matter and 
central parts of centrum 

semiovale (15 m) 

Mo: mother; Fa: father; VOUS: variant of unknown signification; WES: whole exome sequencing; ID: intellectual deficiency; NA: not available; m: months; y: 

years; aggr.: aggressiveness; SD: standard deviation; WG: weeks of gestation; IVF: in vitro fertilization; LCSC: lower segment Caesarean section. 
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Supplementary Table 2. Molecular data of patients with SYNGAP1 encephalopathy reported in the literature and in the present study. 

Type Mutation nomenclature 
(GRCh37) 

Exon Isoform Domain Expected 
effect 

Mutation 
type 

Base change 
(NM_006772.2) 

Amino acid change Inheritance Patient ID Reference 

Point Chr6:g.33393668dup 3 1, 2, 4  Hap frameshift c.283dup p.His95Profs*5 Mosaic father Patient 1 Berryer et al,  2013 

Point Chr6:g.33399963_33399966del 4 1, 2, 3, 4   Hap frameshift c.321_324del p.Lys108Valfs*25 de novo R0038372 Hamdan et al., 2011 

Point Chr6:g.33399963_33399966del 4 1, 2, 3, 4   Hap frameshift c.321_324del p.Lys108Valfs*25 de novo T19988 Carvill et al., 2013 

Point Chr6:g.33399975del 4 1, 2, 3, 4  Hap frameshift c.333del p.Lys114Serfs*20 de novo 217-14271-3940 O'Roak et al., 2014 

Point Chr6:g.33399990C>A 4 1, 2, 3, 4  Hap nonsense c.348C>A p.Tyr116* de novo Patient #2 von Stüpnagel et al., 2015; 
this study 

Point Chr6:g.33400460A>T intron 4 1, 2, 3, 4  Hap splice c.388-2A>T p.? de novo T15924 Carvill et al., 2013 

Point Chr6:g.33400477C>T 5 1, 2, 3, 4  Hap nonsense c.403C>T p.Arg135* de novo Patient #3 This study 

Point Chr6:g.33400486A>T 5 1, 2, 3, 4  Hap nonsense c.412A>T p.Lys138* de novo R0033401 Hamdan et al., 2009 

Point Chr6:g.33400501C>T 5 1, 2, 3, 4   Hap nonsense c.427C>T p.Arg143* de novo T22387 Carvill et al., 2013 

Point Chr6:g.33400501C>T 5 1, 2, 3, 4   Hap nonsense c.427C>T p.Arg143* de novo Patient #4 This study 

Point Chr6:g.33400505_33400508del 5 1, 2, 3, 4  Hap frameshift c.431_434del p.Thr144Serfs*29 de novo 259214 Parker et al., 2015 

Point Chr6:g.33400529_33400533del 5 1, 2, 3, 4 PH Hap frameshift c.455_459del p.Arg152Glnfs*14 de novo Patient #5 This study 

Point Chr6:g.33400564C>T 5 1, 2, 3, 4 PH Hap nonsense c.490C>T p.Arg164* de novo Patient #6 This study 

Point Chr6:g.33400583G>A 5 (last 
nucleotide) 

1, 2, 3, 4 PH Hap missense 
+splice 

c.509G>A p.Arg170Gln de novo 259840 Parker et al., 2015 

Point Chr6:g.33400584G>T intron 5 1, 2, 3, 4 PH Hap splice c.509+1 G>T p.? de novo Patient #7 This study 

Point Chr6:g.33402928G>A intron 5 1, 2, 3, 4 PH Hap splice c.510-1G>A p.? de novo Patient 16 De Ligt et al., 2012 

Point Chr6:g.33403326G>A 7 All PH mis missense c.698G>A p.Cys233Tyr de novo 12804.p1 O'Roak et al., 2014 

Point Chr6:g.33405482G>A 8 All C2 Hap nonsense c.800G>A p.Trp267* de novo T15923 Carvill et al., 2013 

Point Chr6:g.33405510dup 8 All C2 Hap frameshift c.828dup p.Lys277Glnfs*7 NA Patient #8 This study 

Point Chr6:g.33405662T>C 8 All C2 mis missense c.980T>C p.Leu327Pro de novo LEM300468 + 
LEM300469 

Parker et al., 2015 

Point Chr6:g.33405725_33405726del 8 All C2 Hap frameshift c.1043_1044del p.Val348Alafs*70 de novo Patient 8 Vissers et al., 2010 

Point Chr6:g.33405739del 8 All C2 Hap frameshift c.1057del p.Leu353Trpfs*13 NA Patient #9 This study 

Point Chr6:g.33405766T>A 8 All C2 mis missense c.1084T>A p.Trp362Arg de novo Patient 2 Berryer et al,  2013 

Point Chr6:g.33405935_33405936del 8 All RASGAP Hap frameshift c.1253_1254del p.Lys418Argfs*54 de novo ER53899 and 
Patient #10 

Rauch et al., 2012; this 
study 

Point Chr6:g.33406572_33406575del 10 All RASGAP Hap frameshift c.1552_1555del p.Tyr518Asnfs*8 de novo 259041 Parker et al., 2015 

Point Chr6:g.33406650C>T 10 All RASGAP Hap nonsense c.1630C>T p.Arg544* de novo Patient #11 This study 

Point Chr6:g.33408514C>T 11 All RASGAP mis missense c.1685C>T p.Pro562Leu de novo Patient 3 Berryer et al,  2013 

Point Chr6:g.33408514C>T 11 All RASGAP mis missense c.1685C>T p.Pro562Leu de novo Patient #12 This study 

Point Chr6:g.33408564C>T 11 All RASGAP Hap nonsense c.1735C>T p.Arg579* de novo R0032180 Hamdan et al., 2009 
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Point Chr6:g.33408612del 11 All RASGAP Hap frameshift c.1782del p.Leu595Cysfs*55 de novo 212-21043-1 O'Roak et al., 2014 

Point Chr6:g.33408652_33408653del 11 All RASGAP Hap frameshift c.1823_1824del p.Phe608Trpfs*9 de novo 13073.p1 O'Roak et al., 2014 

Point Chr6:g.33409031T>A 12 All RASGAP Hap nonsense c.1995T>A p.Tyr665* NA Patient #13 This study 

Point Chr6:g.33409140C>T 12 All RASGAP Hap nonsense c.2104C>T p.Gln702* de novo T2528 Carvill et al., 2013 

Point Chr6:g.33409426del 13 All RASGAP Hap frameshift c.2184del p.Asn729Thrfs*31 de novo Patient 5 Berryer et al,  2013; 
Dyment et al, 2015 

Point Chr6:g.33409454_33409455del 13 All  Hap frameshift c.2212_2213del p.Ser738* de novo Patient 4 Berryer et al,  2013 

Point Chr6:g.33409456_33409459del 13 All  Hap frameshift c.2214_2217del p.Glu739Glyfs*20 de novo Patient #14 This study 

Point Chr6:g.33409537G>A intron 13 All  Hap splice c.2294+1G>A p.? de novo R0034526 Hamdan et al., 2011; Xiong 
et al., 2015 

Point Chr6:g.33410767del 15 All SH3 Hap frameshift c.2438del p.Leu813Argfs*23 de novo R0033475 Hamdan et al., 2009 

Point Chr6:g.33410959dup 15 All  Hap frameshift c.2630dup p.Thr878Aspfs*60 de novo BO14/09 Rauch et al., 2012 

Point Chr6:g.33411006del 15 All  Hap frameshift c.2677del p.Gln893Argfs*184 de novo R0034759 Hamdan et al., 2011 

Point Chr6:g.33411093C>T 15 All  Hap nonsense c.2764C>T p.Arg922* de novo 264135 Parker et al., 2015 

Point Chr6:g.33411103del 15 All  Hap frameshift c.2774del p.Leu925Profs*152 de novo 259606 Parker et al., 2015 

Point Chr6:g.33411111C>T 15 All  Hap nonsense c.2782C>T p.Gln928* de novo 258913 Parker et al., 2015 

Point Chr6:g.33411262del 15 All  Hap frameshift c.2933del p.Pro978Hisfs*99 de novo Patient #15 This study 

Point Chr6:g.33411606C>T 15 All  Hap nonsense c.3277C>T p.Gln1093* de novo Pat. 8 "258536" Parker et al., 2015 

Point Chr6:g.33411735dup 15 All  Hap frameshift c.3406dup p.Gln1136Profs*17 NA Patient #16 This study 

Point Chr6:g.33411738G>A intron 15 All  Hap splice c.3408+1G>A p.? de novo Patient #17 This study 

Point Chr6:g.33414346G>A intron 16 All CC Hap splice c.3583-6G>A p.Val1195Alafs*27 de novo APN-139 Redin  et al., 2014 

                        

Type Mutation nomenclature 
(GRCh37) 

Type    Size Genes altered Consequence Inheritance  Reference 

CNV Chr6:33389736-33406339 Deletion All PH, C2, 
RASGAP 

Hap 16.6 Kb SYNGAP1 
(intron 1 - exon 
9) 

p.? de novo Patient #1 This study 

CNV Chr6:33356364-33406339 Deletion All PH, C2, 
RASGAP 

Hap 50 Kb SYNGAP1 
(5'UTR-exon 9) 
+ 3 others 

p.? de novo Case report Writzl et al., 2013 

CNV Chr6:33291871-33404064 Deletion All PH, C2, 
RASGAP 

Hap 112 Kb SYNGAP1 
('UTR-intron8) 
+ 5 others 

absence of protein 
synthesis 

de novo Case report Pinto et al., 2010 

CNV NA Deletion All All Hap 300 Kb Entire gene + 6 
others 

absence of protein 
synthesis 

de novo Case report Zollino et al., 2011 

CNV Chr6:33201710-33595089 Deletion All All Hap 393 Kb Entire gene + 
18 others 

absence of protein 
synthesis 

de novo Case report Parker et al., 2015 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21237447&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21237447&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20531469&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21119708&dopt=Abstract
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CNV Chr6:33273955–34086729 Deletion All All Hap 813 Kb Entire gene + 
18 others 

absence of protein 
synthesis 

de novo Case report Krepischi et al., 2010  

CNV t(6;22)(p21.32;q11.21) Balanced 
translocation 

    Interrupts 
SYNGAP1 

p.? de novo Case report Klitten et al., 2013 

Hap: haploinsufficiency. 

 
 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20683986&dopt=Abstract


Reference

Patient 259041 259840 258913 264135

Sex F F F F

Age (in years) 7 8 7 3

Developmental/neur

ological evaluation

Evaluation of 

developmental 

delay/intellectual 

disability

moderate moderate moderate moderate

Age of sitting 20 m 7 m 12 m 24 m

Age of walking 24 m 36 m 60 m does not walk

Evaluation of 

speech

50 words, two-word 

sentences
single words single words no speech

Neurological signs unsteady gait wide-based gait wide-based gait NA

OFC -1.6 SD + 0.8 SD - 2.6 SD - 2.5 SD

Behavior
aggressiveness, 

routine-orientated

autism, 

aggressiveness, 

routine-orientated, 

obsessions

aggressiveness, 

routine-orientated, 

stereotypies

autism, 

aggressiveness, 

obsessions

Brain MRI NA normal normal normal

Epilepsy no epilepsy yes yes yes

Epilepsy onset NA 6 y 2 y 2 y

Seizure types NA mj, abs mj, abs, drop at abs, drop at

Epilepsy outcome NA NA NA NA

EEG NA NA NA NA

EEG: DS= diffuse slowing; ETPs= epileptic potentials;  GPSW= generalized poly spike waves; GSW= generalized spike waves; MFD= multi focal discharges; GS=generalized spikes; GSW=slow waves; poly-SW= poly spike waves; SSW= slow spike waves  

NA=not available or not applicable; F= female;  M=male; m= months; y=years; ADHD= attention deficit hyperactivitiy disorder; ASD = autistic spectrum disorder; EE= epileptic encephalopathy; EEG= electro encephalogram; mod.= moderate; MRI= magnetic resonance imaging; TPM = topiramate; VPA = valproic acid; OFC=occipitofrontal

Seizures: a = aura; abs = absences; atyp abs = atypical absences; drop at = drop attacks; FDS = focal discognitive seizures; FS = febrile seizures; GTCS = generalized tonic clonic seizures; myo abs = myoclonic absence; myo at = myoclonic atonic; mj = myoclonic jerks; PCS = partial complex seizures; tc = tonic-clonic; PS: photosensitivity

Parker et al. Am J Med Genet 2015

Supplementary Table 3



259214 259606 258536  Pat. 8 "258536" LEM300469

M F F F M

8 12 5 8 14

moderate moderate moderate moderate severe

15 m NA 7 m 12 m 24-36 m

17 m 24 m 19 m 30 m > 60 m

200 single words 20 single words 2-word sentences 4-word sentences absent

NA wide-based gait unsteady gait NA ataxic gait

- 1.1 SD - 1.83 SD - 2.9 SD 0 SD - 0.98 SD

autism, 

aggressiveness, 

obsessions

aggressiveness, 

stereotypies

autism, 

aggressiveness, 

obsessions

ASD

autism, laughter 

outbursts, routine-

orientated, 

obsessions

normal normal NA NA normal

no epilepsy yes no epilepsy yes yes

NA 3 y NA 5 y 13 m

NA
head drops & 

blinking, PS
NA abs, drop at

FS, abs, drop at, 

occasional tc, mj

NA NA NA NA NA

NA NA NA NA NA

EEG: DS= diffuse slowing; ETPs= epileptic potentials; GPSW= generalized poly spike waves;  GSW= generalized spike waves; MFD= multi focal discharges; GS=generalized spikes; GSW=slow waves; poly-SW= poly spike waves; SSW= slow spike waves  

NA=not available or not applicable; F= female; M=male; m= months; y=years; ADHD= attention deficit hyperactivitiy disorder; ASD = autistic spectrum disorder; EE= epileptic encephalopathy; EEG= electro encephalogram; mod.= moderate; MRI= magnetic resonance imaging; TPM = topiramate; VPA = valproic acid; OFC=occipitofrontal

Seizures: a = aura; abs = absences; atyp abs = atypical absences; drop at = drop attacks; FDS = focal discognitive seizures; FS = febrile seizures; GTCS = generalized tonic clonic seizures; myo abs = myoclonic absence; myo at = myoclonic atonic; mj = myoclonic jerks; PCS = partial complex seizures; tc = tonic-clonic; PS: photosensitivity

Parker et al. Am J Med Genet 2015



Redin et al. J Med 

Genet 2014

LEM300468 APN-139 T15923 T22387 T19988 T15924 T2528

M M F F M M M

14 6 26 7 18 11 26

severe moderate severe severe moderate severe moderate

24-36 m delayed NA NA NA NA NA

> 60 m delayed NA NA NA NA NA

absent absent NA NA NA NA NA

ataxic gait

hypotonia, 

cerebellar 

syndrome

NA NA NA NA NA

- 1.2 SD NA NA NA NA NA NA

autism, laughter 

outbursts, routine-

orientated, 

obsessions

stereotypic 

movements, hetero 

and auto-

aggressiveness

ASD ASD NA ASD NA

normal NA NA NA NA NA NA

yes NA yes yes yes yes yes

13 m NA 36 10 NA 6 18

FS, abs, drop at, 

occasional tc, mj
NA

atyp abs, a, 

FDS, mj
abs, mj FDS abs, tc

FS; abs, a, 

FDS, mj, tc, 

NCS

NA NA EE EE EE EE EE

NA NA SSW, MFD GSW MFD, DS
GSW, MFD, 

GPSW

SSW, 

bioccipital 

ETPs, DS

EEG: DS= diffuse slowing; ETPs= epileptic potentials;  GPSW= generalized poly spike waves;  GSW= generalized spike waves; MFD= multi focal discharges; GS=generalized spikes; GSW=slow waves; poly-SW= poly spike waves; SSW= slow spike waves  

NA=not available or not applicable; F= female;  M=male; m= months; y=years; ADHD= attention deficit hyperactivitiy disorder; ASD = autistic spectrum disorder; EE= epileptic encephalopathy; EEG= electro encephalogram; mod.= moderate; MRI= magnetic resonance imaging; TPM = topiramate; VPA = valproic acid; OFC=occipitofrontal 

Seizures: a = aura; abs = absences; atyp abs = atypical absences; drop at = drop attacks; FDS = focal discognitive seizures; FS = febrile seizures; GTCS = generalized tonic clonic seizures; myo abs = myoclonic absence; myo at = myoclonic atonic; mj = myoclonic jerks; PCS = partial complex seizures; tc = tonic-clonic; PS: photosensitivity

Parker et al. Am J Med Genet 2015 Carvill et al. Nat Genet 2013



de Light et al. 

New Engl J 

Med 2012

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 16
Patient 1 

R0034759

F M F M F M F

16 3.5 4.3 2.5 9.3 7.7 3.7

moderate moderate mild moderate
moderate/seve

re
moderate

moderate/seve

re

6 m NA NA 9 m NA 12 m NA

10.5 m 30 m 15 m 21 m 26 m 22 m 22 m

impaired absent delayed absent impaired absent absent

none hypotonia none hypotonia ataxic gait NA hypotonia

normal normal normal "microcephaly" normal normal normal

recurrent 

seasonal 

depression

ASD

autism, 

irritability, 

automutilations

, sleeping 

difficulties

sleeping 

difficulties and 

aggressiveness

ASD

self-mutilation, 

inappropriate 

laughters

attention 

deficit; 

aggressive 

adverse 

behavior

normal normal NA normal normal normal normal

yes yes no epilepsy yes yes yes yes

18 30 NA 36 38 60 29

myo abs, abs, 

mj
drop at, abs NA NA drop at, abs NA head drop, abs

poor control poor control NA NA good control NA good control

GSW posterior 

predominance

GSW posterior 

predominance

"intermittent 

and slow 

dysfunction in 

the

occipital 

regions"

bursts of GS + 

GSW

bioccipital 

predominance

"abnormal 

bursts, in the 

right vertex 

region, of 

poorly

formed waves 

during sleep"

NA
GSW posterior 

predominance

NA=not available or not applicable; F= female;  M=male; m= months; y=years; ADHD= attention deficit hyperactivitiy disorder; ASD = autistic spectrum disorder; EE= epileptic encephalopathy; EEG= electro encephalogram; mod.= moderate; MRI= magnetic resonance imaging; TPM = topiramate; VPA = valproic acid; OFC=occipitofrontal 

Seizures: a = aura; abs = absences; atyp abs = atypical absences; drop at = drop attacks; FDS = focal discognitive seizures; FS = febrile seizures; GTCS = generalized tonic clonic seizures; myo abs = myoclonic absence; myo at = myoclonic atonic; mj = myoclonic jerks; PCS = partial complex seizures; tc = tonic-clonic; PS: photosensitivity

Berryer et al. Hum Mutat 2013 Hamdan et al. Biol Psychiatr 2011 



Vissers et al. 

Nat Genet 

2010

Patient 2 

R0038372

Patient 3 

R0034526

Patient 1 

R0033401

Patient 2 

R0032180

Patient 3 

R0033475
Patient 8 BO14/09

M M F F F F F

4 13 4.4 5.8 12 NA 11

moderate/seve

re

moderate/seve

re
moderate moderate moderate mild/moderate moderate/severe

NA NA NA NA NA 19 m 15 m

17 m 24 M 24 M 21 m 24 m NA 24 m

impaired impaired impaired impaired impaired absent absent

normal normal hypotonia hypotonia normal hypotonia NA

normal normal normal NA NA normal normal

ADHD; 

aggressivenes

s; temper 

tantrums

autism, mood 

instability, 

temper 

tantrums

no ASD no ASD no ASD NA
auto-aggressive 

behaviour

mildly enlarged 

ventricles
NA normal normal normal (TDM)

mild 

myelination 

dealy (10 m)

normal

yes no epilepsy yes yes no epilepsy yes yes

24 NA 15 28 NA 48 26

FS, mj,abs NA

febrile and 

afebrile GTCS; 

PCS

myo at NA NA abs, atonic seizures

good control NA
good control 

by TPM

good control 

by VPA
NA NA NA

bioccipital 

SSW
NA

bioccipital 

spikes during 

light 

stimulation

bioccipital 

spikes during 

light 

stimulation

NA NA NA

Hamdan et al. Am J Hum Genet 2011, New 

Engl J Med 2009 and Biol Psychiatr 2011
Rauch et al. Lancet 2012Hamdan et al. Biol Psychiatr 2011 



Klitten et al. 

Epilepsia 2011

Writzl et al. 

Am J Med 

Genet 2013

Zollino et al. Eur J 

Hum Genet 2011

Krepischi et al. Am 

J Med Genet 2010

ER53899

M M M F M

5 25 9 5 6.8

severe severe moderate severe moderate

17 m NA 10 m NA 6.5 m

36 m 36 m 29 m NA 16 m

absent impaired impiaired impaired impaired

hypotonia NA NA normal NA

normal NA normal normal normal

ADS, stereotypies ASD none ASD, stereotypies NA

arachnoid cyst NA normal normal NA

NA yes yes yes NA

NA 13 48 3 NA

NA

abs, myo abs, 

atyp abs, drop 

at with mj

abs, head 

nodding
myo at, NA

NA poor control
good control 

VPA

positive effect by 

VPA and TPM
NA

NA GSW, GPSW MFD

MFD;SSW; Sp and 

Poly-SPW;  

subcontinuous 

during sleep and 

were reminiscent of 

the EEG features of 

the Lennox–Gastaut 

syndrome

NA

Rauch et al. Lancet 2012



summary

n=35

sex ratio M/F : 0.84

mean 10 y

mild 1; mild/moderate 1; 

moderate 20; 

moderate/severe 5, severe 8 

mean 14.8 m, median 12 m

mean 25.3 m; median 24 m

absent speech 11; single 

words 4; 2-4-word sentences 

3; "impaired" 12

none 6; unsteady gait/ataxia 

8; hypotonia 8 

normal 22; microcephaly (≤ -

2.5 SD) 6

ASD 20; aggressiveness 11; 

stereotypies 5

normal 19; minor nonspecific 

findings 3

yes 26; no 6

mean 30 m; median 24 m; 

75th centile 3.5 years

abs 19; mj 10; drop at 8; tc 4; 

FDS/PCS 4; myo abs 2; 

GTCS 1; PS 1

NA 20; EE 5; poor control 3; 

good control 7

occipital predominance of 

anomalies 8; PS 2
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