L. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

S. Ghosh, S. Biswas, D. Sarkar, and P. P. Sarkar, A novel Neuro-fuzzy classification technique for data mining, Egyptian Informatics Journal, vol.15, issue.3, pp.129-147, 2014.
DOI : 10.1016/j.eij.2014.08.001

H. Núñez, C. Angulo, and A. , Rule-Based Learning Systems for Support Vector Machines, Neural Processing Letters, vol.16, issue.1, pp.1-18, 2006.
DOI : 10.1007/s11063-006-9007-8

J. and R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, vol.23, issue.3, pp.665-685, 1993.
DOI : 10.1109/21.256541

Z. Pawlak, Rough sets, International Journal of Computer & Information Sciences, vol.8, issue.3, pp.341-356, 1982.
DOI : 10.1007/BF01001956

A. E. Hassanien and J. M. Ali, Rough set approach for generation of classification rules of breast cancer data, Informatica, Lith. Acad. Sci, vol.15, issue.1, pp.23-38, 2004.

A. Zaki, M. Salama, H. Hefny, and A. Hassanien, Rough Sets-Based Rules Generation Approach: A Hepatitis C Virus Data Sets, Advanced Machine Learning Technologies and Applications, ser. Communications in Computer and Information Science, pp.52-59, 2012.
DOI : 10.1007/978-3-642-35326-0_6

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B, vol.39, pp.1-38, 1977.

N. Shokouhi, A. Sathyanarayana, S. Sadjadi, and J. Hansen, Overlapped-speech detection with applications to driver assessment for in-vehicle active safety systems, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2834-2838, 2013.
DOI : 10.1109/ICASSP.2013.6638174

B. Patrice, Etude de la représentation pyramidale, 1986.

B. Patrice and M. F. Janowitz, The k-weak hierarchical representations: an extension of the indexed closed weak hierarchies, Discrete applied mathematics, vol.127, issue.2, pp.199-220, 2003.

P. Maji and P. Garai, IT2 Fuzzy-Rough Sets and Max Relevance-Max Significance Criterion for Attribute Selection, IEEE Transactions on Cybernetics, vol.45, issue.8, pp.1-1, 2014.
DOI : 10.1109/TCYB.2014.2357892

G. Geng, N. Li, and S. Gong, Feature Selection Method for Network Intrusion Based on Fast Attribute Reduction of Rough Set, 2012 International Conference on Industrial Control and Electronics Engineering, pp.530-534, 2012.
DOI : 10.1109/ICICEE.2012.146

J. Qian, D. Miao, Z. Zhang, and X. Yue, Parallel attribute reduction algorithms using MapReduce, Information Sciences, vol.279, issue.0, pp.671-690, 2014.
DOI : 10.1016/j.ins.2014.04.019

Z. Sun, Parallel Feature Selection Based on MapReduce, Computer Engineering and Networking, pp.299-306, 2014.
DOI : 10.1007/978-3-319-01766-2_35

J. Dean and S. Ghemawat, MapReduce, Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation, pp.10-10, 2004.
DOI : 10.1145/1327452.1327492

S. Gugnani, D. Khanolkar, T. Bihany, and N. Khadilkar, Rule Based Classification on a Multi Node Scalable Hadoop Cluster, Lecture Notes in Computer Science, vol.8729, pp.174-183, 2014.
DOI : 10.1007/978-3-319-11692-1_15

S. Maharjan, P. Shrestha, T. Solorio, and R. Hasan, A Straightforward Author Profiling Approach in MapReduce, Advances in Artificial Intelligence ? IBERAMIA 2014, ser. Lecture Notes in Computer Science, pp.95-107, 2014.
DOI : 10.1007/978-3-319-12027-0_8

L. Han and H. Ong, Parallel data intensive applications using MapReduce: a data mining case study in biomedical sciences, Cluster Computing, vol.7, issue.1, pp.403-418, 2015.
DOI : 10.1007/s10586-014-0405-9

S. Arctander, Perfume and Flavor Chemicals: (aroma Chemicals), ser. Perfume and Flavor Chemicals: Aroma Chemicals, 1969.