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I. Introduction

Almost 72 % of the total greenhouse effect is attributed to water vapor and clouds, the remainder being mainly the result of CO2 [1]. Natural greenhouse gas emissions are responsible for bringing the average temperature of the Earth to +15 °C (instead of -18°C) by absorbing its infrared radiation. However, anthropogenic activities reinforce this situation, leading to an increase of greenhouse gas concentrations in the atmosphere [START_REF] Seinfeld | Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[END_REF][START_REF] Canadell | [END_REF]. In that respect, carbon dioxide (but also methane) figures among the most important greenhouse gases produced by industries and taking part to the global warming. Its production has increased for many decades. Today, it represents 29 gigatons of emission per year and is expected to increase to 36 or 43 gigatons/year, depending upon the energy world policies, i.e. how we will use existing and new energy sources [4]. For this reason, the remediation of CO2 has received increasing attention in recent years.

Until now, four approaches have been considered to reduce the industrial CO2 footprint: using renewable energy, using non carbon energy resources, CO2 capture and CO2 reforming [5][6][START_REF] Aresta | Carbon Dioxide as Chemical Feedstock[END_REF]. The latter approach aims at using carbon dioxide as a feedstock and transforming it into value-added products such as carbon monoxide and oxygen, as shown in (1):

𝐶𝑂 2 → 1 2 𝑂 2 + 𝐶𝑂 Δ𝐺 298𝐾 0 = +257.2 𝑘𝐽. 𝑚𝑜𝑙 -1 (1)
This aforementioned reaction is thermodynamically limited and highly endothermic. According to Le Chatelier's principle, a high reaction temperature and a low CO2 partial pressure are required to achieve a high conversion [START_REF] Aresta | Carbon Dioxide as Chemical Feedstock[END_REF][START_REF] Nikoo | [END_REF][9]. Owing to the high thermodynamic stability of the CO2 molecule in standard conditions, its dissociation can only be achieved through endothermic reactions requiring an external energy source. In that respect, conventional chemistry processes have already been used, such as electroreduction of CO2 [6]. Besides, non-thermal atmospheric plasma processes can be employed such as corona discharges [10,11], dielectric barrier discharges (DBD) [12][13][14][15][16][17][18], gliding-arcs [19,20] and plasma jets [21,22]. Low pressure plasma sources can also be used such as microwave discharges [23,[START_REF] Cho | Carbon Dioxide Utilization for Global Sustainability[END_REF]. Among these sources, most of the energy required for the dissociation of CO2 depends on the electron energy distribution function (EEDF). Carbon dioxide can be mixed with methane to form carbon monoxide and molecular hydrogen in [START_REF] Seinfeld | Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[END_REF], but also other products of interest can be formed, such as oxygenated organic molecules and hydrocarbons [START_REF] Luque | [END_REF]26].

𝐶𝑂 2 + 𝐶𝐻 4 → 2𝐻 2 + 2𝐶𝑂 Δ𝐺 298𝐾 0 = +170.8 𝑘𝐽. 𝑚𝑜𝑙 -1 (2)
The conversion of CO2 and CH4 by an atmospheric dielectric barrier discharge (DBD) is reported in this study, using Ar as a carrier gas to generate more metastable species and therefore stabilize the discharge. Using a tubular DBD offers a promising and innovative solution since the transformation of CO2 can be performed ''on line'', i.e. directly at the output of industrial chimneys instead of releasing the CO2 into the atmosphere and hence increase the greenhouse effect. Therefore, it does not require capture, transport or storage of CO2 and, for instance, could partially close the carbon loop if coupled to green electricity. By using gas chromatography (GC), we demonstrate that this process is efficient to obtain CO and value-added products. Three parameters are evaluated: the CO2 and CH4 flow rates, the power supplied to the DBD and the nature of the carrier gas (Ar or He).

The energy efficiency of the CO2 conversion is estimated and compared with those of similar plasma sources.

II. Experimental setup

II.1. DBD reactor

A cylindrical multi-electrode DBD reactor dedicated to the treatment of elevated gas flow rates has been designed as shown in Figure 1. It consists of a 2 mm thick tube made in quartz with an external diameter of 34 mm and a length of 100 mm (so as to ensure a long residence time). The gas enters via 16 inlets of 0.75 mm in diameter arranged into a circular pattern, then travels longitudinally through the tubular reactor and finally flows out of the reactor via 16 outlets (same configuration as the inlet). The discharge is generated between six AC high-voltage tubular electrodes set at equal distance from a central tubular electrode which is grounded. The power applied to the high-voltage electrodes is provided by an AFS Generator G10S-V with a maximum power of 1000 W and a variable frequency in the range between 1 and 30 kHz. The distance between the grounded electrode and each high-voltage electrode is the same as the distance between two high-voltage electrodes, namely 3 mm. The grounded electrode is a copper rod with a diameter of 5 mm and a length of 100 mm, while the high-voltage electrodes are copper wires approximately 1 mm in diameter and with the same length of 100 mm. The high-voltage electrodes are encompassed into alumina dielectric tubes with 0.75 mm thickness, as depicted in Figure 1. 

II.2. Entire set-up

A schematic of the entire experimental setup is shown in Figure 2. Argon, carbon dioxide and methane are introduced into the reactor via Aalborg volumetric flow meters able to measure flow rates as high as 1800, 120 and 120 mL.min -1 , respectively. Argon (or helium) is used as the carrier gas to initiate and maintain the discharge. The total flow rate of the gas mixture supplying the DBD reactor remains fixed at 1920 mL.min -1 while the CO2 and CH4 flow rates are both varied from 0 to 120 mL.min -1 .

Figure 2. Schematic diagram of the entire experimental set up.

The products resulting from the plasma phase reactions are analyzed downstream of the reactor with an online gas chromatograph (Agilent 6890N) equipped with a 60/80 Carboxen 1000 column (Supelco 1-2390-U). The products are analyzed with two detectors: a thermal conductivity detector (TCD) and a flame ionization detector (FID). The conversion of CO2 and CH4 are calculated according to Eqs. ( 3) and ( 4), respectively, where A represents the peak area assigned to CO2 or CH4 in the chromatogram: The selectivities of H2, O2, CO, C2H6 and C2H4 have been calculated as reported in Table 1, listed as H, O or C based selectivities, depending on the plasma composition (CH4, CO2, CO2/CH4 respectively).

𝐶𝑂 2 𝑐𝑜𝑛𝑣 (%) = 𝜒 𝐶𝑂2 = 100. 𝐴 𝐶𝑂2 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝𝑙𝑎𝑠𝑚𝑎 -𝐴 𝐶𝑂2 𝑤𝑖𝑡ℎ 𝑝𝑙𝑎𝑠𝑚𝑎 𝐴 𝐶𝑂2 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝𝑙𝑎𝑠𝑚𝑎 (3) 

III. Results

III.1. Effect of the CO2 and CH4 flow rates

The plasma is generated in a mixture of CO2, CH4 and Ar (or He) to investigate the effect of the reactive gas flow rates on their conversion. The Ar flow rate is set to 1800 mL.min -1 while the CO2 and CH4 flow rates can be tuned between 0 and 120 mL.min -1 , but the sum of both is always equal to 120 mL.min -1 . Figure 3 represents the CO2 and CH4 conversions as a function of the CO2 and CH4 flow rates. Both for CO2 and CH4, an increase in the flow rate is always correlated with a decrease in its conversion. Indeed, for CO2 flow rates increasing from 20 to 120 mL.min -1 , CO2 decreases from 8.3 % to 6.1 % while CH4 decreases from 21.5 % to 10.9 % when the CH4 flow rates rise from 20 to 120 mL.min -1 . This figure illustrates also that CH4 is always converted to a larger extent than CO2, whatever the individual gas flow rates. Chemical reactions in the plasma lead to the dissociation of these molecules, thus generating products that can also recombine to form new species such as H2, O2, CO, C2H4 and C2H6 whose volumetric fractions (fV) are plotted in Figure 4a as a function of the CO2 and CH4 flow rates. Each fV fraction is calculated as the ratio of the product flow rate to the CO2/CH4 mixture flow rate, multiplied by 100. The main products are molecular hydrogen (fV,max[H2] = 7.73 %), carbon monoxide (fV,max[CO] = 8.13 %) and molecular oxygen (fV,max[O2] = 3.98%), the latter being detected only if no CH4 is injected in the discharge. Other products such as ethylene and ethane are also formed but in smaller proportions (fV,max[C2H4] = 0.52 % and fV,max[C2H6] = 1.51 %). The production of CO is more important with an increase in the CO2 flow rate, reaching a plateau of approximately 8.10 % for CO2 flow rates higher than 80 mL.min - 1 . In the same way, the production of hydrogen, ethane and ethylene increases with the CH4 flow rate. The production of O2 is only present for pure CO2 plasma while it disappears after CH4 addition. That probably means that the CH4 reactive species interact with oxygen in the discharge. It is quite logical that the decomposition of CO2 favors the production of CO and O2 while the decomposition of CH4 leads to the production of H2, C2H4 and C2H6 but also of carbon black powder (not detected by gas chromatography). The selectivities of these products have also been calculated using the formulas from Table 1 hence the durability of the reactor. To prevent these problems, coke deposit can easily be removed by cleaning the inner walls of the reactor and polishing them with sandpaper. Another convenient way is to apply a pure CO2 or pure O2 plasma to remove the coke deposit.

Selec

Table 1 Formulas for the H, O or C based selectivities of H2, O2, CO, C2H6 and C2H4 (n is the number of moles).

III.2. Effect of the power

Figure 5 shows the CH4 and CO2 conversions versus the power applied to the DBD in the range between 30 W and 80 W for Ar = 1680 mL.min -1 , CO2 = CH4 = 120 mL.min -1 and an AC frequency of 19.5 kHz. The CO2 conversion increases from 2.0 % to 7.5 % upon rising power, while the CH4 conversion increases from 6.7 % to 14.8% in the same power range. The two conversions can be considered as linearly increasing with the power since their correlation coefficients are r 2 (CO2) = 0.976 and r 2 (CH4) = 0.899. The slopes of both curves are almost the same, consistently with the results of Zheng et al. performed in a two-electrode DBD reactor [27]. It is also clear that the methane conversion is always higher than CO2 (difference of at least 5 %) thanks to its lower bond energy. The volumetric fractions of H2, CO, C2H4, C2H6 plotted in Figure 6 versus the power indicate that the production of syngas (hydrogen and carbon monoxide) also increases linearly with the power, and both products are formed nearly equally, yielding a syngas ratio close to 1. A linear increase is also observed in the case of C2H4 and C2H6, although the slopes are less significant. 

III.3. Effect of the carrier gas

The influence of the carrier gas (argon or helium) is investigated for the same flow rate set to 1800 mL.min -1 and the reactive gas flow rates set to CO2 = CH4 = 60 mL.min -1 . The nature of the carrier gas seems to have an important impact on the conversion of CO2 and CH4; see Figure 7a. The conversion of CH4 is indeed higher in the presence of helium than with argon (respectively 21.4 % and 16.4 %) while the opposite effect is observed for the conversion of CO2 since CO2 = 6.8% with helium and CH4 = 11.5 % with argon. It is also worth mentioning that for the same plasma power (60 W) and frequency (17.1 kHz), a filamentary discharge and a glow discharge are obtained with argon and helium, respectively, as shown in Figure 7b and7c. Plasmas are complex media where several hundred reactions of production and consumption can occur [28,29]. The most plausible mechanisms for the formation and consumption of intermediate and value-added products in the CO2/CH4 gas mixture are listed in Table 2. In the following sections, we explain how the most important reaction products are formed.

IV.1.2. Production of hydrogen

Several chemical reactions give rise to the production of molecular hydrogen through the dissociation of hydrocarbon species upon collision with an atom (R2), an electron (R5) or an H radical (R6, R7 and R8). The rate constants of these reactions are in the order of 10 -13 -10 -10 cm 3 .s -1 , except for R5 which is somewhat higher (7.88  10 -9 cm 3 .s -1 ) as the collision occurs between an energetic electron and an ion. Although the rate constant of R9 is a bit lower than the other ones (1.44  10 -14 cm 3 .s -1 ), the recombination of two H radicals may be considered as very important since v = k11.

[H] 2 and H is produced in many other reactions such as R3, R4, R11, R12, R16, R17, R18, R19 and R25. Electron impact reactions R16 and R17 are not described with a rate constant but with a cross section s which depends on the electron temperature. 

IV.1.3. Production of CO

The formation of CO is directly correlated with the dissociation of CO2. The reactions responsible for the production of CO are given by R2, R10, R11, R12, R21, R22, and R23 [44]. (R21) is electron impact dissociation of CO2 into CO and O, which is the most important process in CO2 splitting. When CH4 is present, the O atoms will be further consumed by R2, R11, R20, R23 and R25 and this explains the higher CO2 conversion when more CH4 is present in the gas mixture. Indeed, as stated by the Le Chatelier's principle, the dissociation is more favorable as one (or both) of the reaction products is constantly consumed. This effect has been demonstrated in the literature: Tagawa et al. have observed an increasing CO2 conversion by placing an O2 trapper membrane into a CO2/CH4 discharge in order to separate O2 from the gas stream. As a consequence, the CO/CO2 equilibrium is more shifted to CO [45].

IV.1.4. Production of ethane

The recombination of two CH3 • radicals can lead to the production of ethane according to reaction (R13). R14 and R15 could also lead to the production of ethane but are less probable. Indeed, as computed by Snoeckx et al. in the case of a similar atmospheric DBD source supplied in CH4-CO2, the density of CH3 is always higher than the one of C2H5 [29].

IV.1.5. Production of ethylene

The formation of ethylene may result from a two-step collisional mechanism, where first an electron collision leads to the dissociation of C2H6 into C2H5 • and H radicals (R16), followed by a second electron collision with C2H5 • resulting in the abstraction of a H radical to produce ethylene (R17). This simple mechanism can explain why fV[C2H4] is always lower than fV[C2H6].

IV.1.6. Other reaction products

Formaldehyde traces have also been detected. Their formation can result from CH3 radicals (R25) or to a lower extent from CH2 radicals (R26). Other oxygenated products have not been detected at the conditions under study, probably because their amounts are under the limit of detection of the gas chromatography detectors.

According to the literature, the formation of other oxygenated organic molecules such as acetic acid or methanol may also occur in a plasma [17,46,47]. The higher volumetric fraction of H2, compared to ethane and ethylene, can be explained according to several chemical reactions (R2, R5, R6, R7, R8 and R9). Indeed, there are more reactions for H2 and H • formation compared to reactions for C2H6 and C2H4 formation. Moreover, there are more reactions consuming C2H6 or C2H4 than consuming H2. C2H6 or C2H4 is indeed very easily consumed once it is produced. That is why the H2 amount is always higher than the amounts of C2H6 and C2H4.

IV.2. Effect of the power

The linear increase of CO2 and CH4 conversions as a function of the power results from a linear increase in the electron density (Figure 5). Indeed, the dissociation of C-H and C=O bonds requires energies of a few eV that may be mostly transferred from the electrons. An increase in the plasma power can induce higher electron temperatures and higher electron densities. In our case, the increase in electron temperature may be assumed as negligible since in a classical DBD, it would induce a stronger filamentary regime that has not been observed here. Increasing the plasma power can also induce higher electron densities that can be assumed as linearly depending on the power if the electron permeability and the electric field profile are considered as weakly dependent on the applied power.

To produce C2H4 and C2H6, a linear increase upon increasing power is also observed, but the slopes are less pronounced than for CO and H2. This is probably because the production of these molecules is not simply based on one electron impact reaction, like the formation of H2 from CH4 and the splitting of CO2 into CO. Indeed, to obtain C2H6, two CH3 • radicals are necessary (R13) while to obtain C2H4, two electronic collisions with C2H6 are required (R16 and R17).

IV.3. Effect of the carrier gas

According to Figure 7, CH4 is always higher than CO2 whatever the nature of the carrier gas. Indeed, in a plasma, the dissociation of CH4 is easier than for CO2 since the bond dissociation energy of C-H (4.48 eV) is lower than the bond dissociation energy of C=O (5.52 eV) [START_REF] Stans | Bond Dissociation Energies in Simple Molecules[END_REF]. However, the fact that CH4 is more efficiently dissociated in He than in Ar, whereas CO2 is more efficiently dissociated in Ar than in He, is less straightforward. The reason is that the shape of the electron energy distribution function (EEDF) is different when the plasma is in the filamentary regime (Ar) or in the glow regime (He). The EEDF of these two regimes is sketched in Figure 8, assuming Maxwellian distributions (thermodynamic equilibrium) for the sake of clarity [START_REF] Godyak | [END_REF]. The bond dissociation energies of C-H and C=O are also reported in Figure 8. In the filamentary regime, the EEDF is characterized by (i) a number of warm electrons much lower than in a glow discharge but also by (ii) a tail extending toward higher energies, meaning that the hot electrons (even if not in a large number) can be involved into new collisional processes, which require a stronger activation energy [START_REF] Lieberman | Principles of Plasma Discharges and Materials Processing[END_REF]. In the case of the CH4 dissociation, all the electrons that contribute to breaking of the C-H bonds, must be located at the right side of BDE(C-H) and under the EEDF curves: this corresponds to the area A1 in the glow regime (He) and A3 in the filamentary regime (Ar) (see insert in Figure 8). As A1 is larger than A3, more electrons can participate to the dissociation of CH4 in the case of He, hence this explains why (CH4)He > (CH4)Ar.

On the other hand, a higher electron energy is needed for breaking the C=O bonds of CO2: all electrons that contribute to this bond breaking, must be located at the right side of BDE(C=O), and under the EEDF curves: this corresponds to area A2 in the glow regime (He) and to area A4 in the filamentary regime (Ar). As A4 is larger than A2, more electrons can participate to the dissociation of CO2 in Ar than in He, and this explains why (CO2)Ar > (CO2)He. Finally, if we consider the areas which correspond to the electrons that can contribute to the dissociation of C-H and C=O bonds for both the glow and filamentary regimes, it appears that A1 > A3 > A4 > A2.

Hence, this corresponds to (CH4)He > (CH4)Ar > (CO2)Ar > (CO2)He, which is indeed observed in Figure 7. Therefore, the CO2 conversion is the lowest in helium since A2 is the smallest among the four areas. In other terms, the number of electrons available in a He discharge for the conversion of CO2 is very small as the energy of these electrons has to be equal to or higher than the activation energy to break C=O (i.e. 5.52 eV). In summary, the nature of the carrier gas -and consequently the regime (glow or filamentary) of the DBD -directly impacts the shape of the EEDF and therefore the electron collision processes that may occur.

Figure 8. Schematic sketch of the EEDFs in the case of a glow discharge (He) and a filamentary discharge (Ar) at thermodynamic equilibrium. Also indicated are the bond dissociation energies (BDE) for C-H and C=O bonds. The insert shows the fractions of electrons that can contribute to dissociation of C-H and C=O bonds in both regimes (see text for more explanation).

IV.4. Conversion, specific energy input and energy efficiency: comparison with literature

The specific energy input (SEI) corresponds to the energy density (Ed) in J.cm -3 and can also be expressed in eV.molecule -1 as defined by equations ( 5) and (6). The energy efficiency of the CO2 conversion (CO2) has been calculated (in %) from the conversion 

The same equation can be written for the energy efficiency of the CH4 conversion (CH4). Hence, the energy efficiency is separately defined for CO2 and CH4 in this article. Eq. [START_REF] Aresta | Carbon Dioxide as Chemical Feedstock[END_REF] indicates that an increase in the SEI systematically induces a decrease in , at least when the conversion stays constant, and this means that we should have a SEI value as low as possible to obtain a more energy efficient process. This is indeed clear from Figure 9, where the energy efficiencies of both CH4 and CO2 clearly drop upon higher SEI. For a SEI as low as 5.7 eV.molecule -1 , max(CO2) = 3.3 % while max(CH4) = 4.9 %. A comparison of our multiple electrode DBD reactor with other atmospheric plasma sources is presented in Table 3. This table reports various plasma sources: DBD, AC glow discharges, pulsed corona and gliding arcs with different geometries and specific operating parameters, namely: frequency, power given by authors, nature of the carrier gas or reactive gas, and CO2 flow rate. Note that some of these experiments apply to pure CO2 splitting, while others refer to dry reforming (i.e., conversion of both CO2 and CH4). However, we focus here only on the CO2 conversion. Also, it should be noted that some experiments were carried out for the pure greenhouse gases, while others made use of a carrier gas. The conversion and energy efficiency are in general higher in a carrier gas but it is obviously less interesting for applications. The optimal CO2 conversions for all these cases are plotted in Figure 10 as a function of the corresponding SEI while their energy efficiencies are plotted in Figure 11 as a function of the CO2 flow rates. In these figures, each squared number refers to one of the plasma sources listed in Table 3. A first remark is that no atmospheric plasma source can reach a CO2 higher than 25 %. Moreover, no general trend can be deduced: the cloud of points indicates that some plasma sources are very energy-consuming with high CO2 (#8, #14 and #15) while some others are much more dedicated to CO2 reforming at a lower energy cost (#1, #4, #7, #17, #18 and #19) since they are located close to the vertical line at 2.56 eV.molecule -1 , standing for the enthalpy of reaction (2). The plasma source #7 shows a good energy efficiency, but is not suitable as it can handle CO2 flow rates of only 0.8 mL.min -1 . The plasma sources #17 and #19 present interesting conversions for SEI as low as ours, but with the disadvantage of their geometry, which is a pulsed corona and a gliding arc, respectively. Indeed, the advantage of using a tubular DBD lies in the ability to place it at the nozzle exit of a combustion process to treat the entire gas flow since all the gas passes through the discharge zone. On the contrary, a pulsed corona and a gliding arc can exhibit ''dead volumes'' where the gas passes through the reactor without being treated in the plasma zone. Furthermore, the corona source is not adapted for high flow rates treatment as its discharge volume is not that important, which makes it a good candidate only to handle low flow rates. The plasma source #4 is an interesting alternative to our plasma process. In our case, the CO2 conversion is not so high but the SEI is quite low, so this yields a good energy efficiency, as shown in Figure 11 (#1). Our plasma source shows a good compromise between a high energy efficiency and the treatment of a significant CO2 flow rate, probably thanks to the multielectrode configuration. 

V. Conclusion

The production of syngas (CO and H2), C2H4 and C2H6 has been achieved at atmospheric pressure in a dielectric barrier discharge operating in CO2 and CH4, with Ar or He as carrier gases. The main mechanisms responsible for the production of these compounds have been discussed. In this study, the effect of the concentration of CO2/CH4 in the mixture on the conversion has been demonstrated. Furthermore, the effect of power has also been reported, showing a linear increase in the CO2 and CH4 conversions but also in the production of syngas as a function of the supplied power. Finally, the energy efficiency of the CO2 conversion has been calculated and compared with those of other atmospheric plasma sources. Our DBD reactor offers very encouraging results as it offers one of the best compromises between a high energy efficiency and the treatment of a large CO2 flow rate.
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 1 Figure 1. Schematic diagram of the DBD reactor.
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 3 Figure 3. CO2 and CH4 conversions as a function of the CO2 and CH4 flow rates with Tot = 1920 mL.min -1 , Ar = 1800 mL.min -1 , CO2 = CH4 = 120 mL.min -1 , plasma power = 45 W, frequency = 19.5 kHz.
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 14 Figure 4. (a) Volumetric fractions of H2, CO, O2, C2H4 and C2H6 (using the TCD) and (b) C-based selectivity of the quantified gaseous products as a function of the CO2 and CH4 flow rates with Tot = 1920 mL.min -1 , Ar = 1800 mL.min -1 , CO2 = CH4 = 120 mL.min -1 , power = 45 W, f = 19.5 kHz.
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 566 Figure 5. Conversions of CO2 and CH4 versus the power (Ar = 1680 mL.min -1 ; CO2 = CH4 = 120 mL.min -1 ; frequency = 19.5 kHz).
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 47 Figure 7. (a) Conversions of CH4 and CO2 in Ar/CO2/CH4 and He/CO2/CH4 plasmas with Tot = 1920 mL.min -1 , Ar or He = 1800 mL.min -1 , CO2 =
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 9 Figure 9. Energy efficiency as a function of specific energy input in our experimental set-up with Tot = 1920 mL.min -1 , Ar = 1800 mL.min -1 , CO2 = CH4 = 120 mL.min -1 , plasma power = 45 W, frequency = 19.5 kHz.
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 1011 Figure 10. CO2 conversions vs SEI for the various plasma sources listed in Table3.

Table 2 Reaction pathways for the formation and consumption of intermediate and value-added products of CH4 and CO2 conversion.

 2 𝐶𝐻 3 • + 𝐶𝐻 2 • → 𝐶 2 𝐻 4 + 𝐻 • 7.0110 -11 cm 3 .s -1[32] (R20) 𝐶 2 𝐻 5 • + 𝑂 • → 𝐶 2 𝐻 4 + 𝑂𝐻 • 4.4010 -11 cm 3 .s -1[31] 

		Reaction	Rate constant	Ref.
	(R1) 𝐶𝐻 4 + 𝑒 → 𝐶𝐻 3 • + 𝐻 • + 𝑒 3* (cross section) [30]
	(R2)	𝐶𝐻 2 • + 𝑂 • → 𝐶𝑂 + 𝐻 2	5.5310 -11 cm 3 .s -1 [31]
	(R3) (R4) (R5)	𝐶𝐻 3 • → 𝐶𝐻 2 • + 𝐻 • 𝐶𝐻 3 + + 𝑒 → 𝐶𝐻 2 • + 𝐻 • 𝐶𝐻 3 + + 𝑒 → 𝐶𝐻 • + 𝐻 2	1.6910 -08 cm 3 .s -1 [32] 2.2510 -08 cm 3 .s -1 [30, 33] 7.8810 -09 cm 3 .s -1 [30, 33]
	(R6)	𝐶𝐻 3 • + 𝐻 • → 𝐶𝐻 2 • + 𝐻 2	1.0010 -10 cm 3 .s -1 [32]
	(R7)	𝐶𝐻 4 + 𝐻 • → 𝐶𝐻 3 • + 𝐻 2	5.8310 -13 cm 3 .s -1 [32]
	(R8)	𝐶𝐻 4 + + 𝐻 • → 𝐶𝐻 3 + + 𝐻 2	1.0010 -11 cm 3 .s -1 [34]
	(R9)	𝐻 • + 𝐻 • → 𝐻 2	1.4410 -14 cm 3 .s -1 [35]
	(R10) 𝐶𝑂 2 + 𝐻 • → 𝐶𝑂 + 𝑂𝐻 •	1.4010 -29 cm 3 .s -1 [36]
	(R11)	𝐶𝐻 • + 𝑂 • → 𝐶𝑂 + 𝐻 •	6.9010 -11 cm 3 .s -1 [32]
	(R12) 𝐶𝑂 2 + 𝐶𝐻 • → 2𝐶𝑂 + 𝐻 •	9.6810 -13 cm 3 .s -1 [31]
	(R13)	𝐶𝐻 3 • + 𝐶𝐻 3 • → 𝐶 2 𝐻 6	4.2010 -11 cm 3 .s -1 [37]
	(R14)	𝐶 2 𝐻 5 • + 𝐻 • → 𝐶 2 𝐻 6	2.2510 -10 cm 3 .s -1 [38]
	(R15) 𝐶 2 𝐻 5 • + 𝐶𝐻 4 → 𝐶 2 𝐻 6 + 𝐶𝐻 3 • 1.8310 -24 cm 3 .s -1 [36]
	(R16) 𝐶 2 𝐻 6 + 𝑒 → 𝐶 2 𝐻 5 • + 𝐻 • + 𝑒	18*	[39]
	(R17) 𝐶 2 𝐻 5 • + 𝑒 → 𝐶 2 𝐻 4 + 𝐻 • + 𝑒	19*	[39]
	(R18) 𝐶𝐻 4 + 𝐶𝐻 • → 𝐶 2 𝐻 4 + 𝐻 •	9.7410 -11 cm 3 .s -1 [32]
	(R19)		

  CO2, the enthalpy of (2) namely H 0 298K = 247.3 kJ.mol -1 = 2.56 eV.molecule -1 and the SEI value, according to equation[START_REF] Aresta | Carbon Dioxide as Chemical Feedstock[END_REF].

	𝐸 𝑑[𝐽.𝑐𝑚 -3 ] =	𝑃𝑜𝑤𝑒𝑟 [𝐽.𝑠 -1 ] 𝐺𝑎𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 [𝑐𝑚 3 .𝑠 -1 ]	(5)
	𝑆𝐸𝐼 𝑒𝑉.𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 -1 =	𝐸 𝑑[𝐽.𝑐𝑚 -3 ] × 6.24 × 10 [𝑒𝑉.𝐽 -1 ] 18 6.022 × 10 [𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒.𝑚𝑜𝑙 -1 ] × 24500 [𝑐𝑚 3 .𝑚𝑜𝑙 -1 ] 23	(6)
	𝜂 𝐶𝑂 2 (%) =	𝑜 𝜒 𝐶𝑂2 (%) × Δ𝐻 298𝐾 [𝑒𝑉.𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 -1 ] 𝑆𝐸𝐼 [𝑒𝑉.𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 -1 ]
	Journal of CO2 utilization, 2015, Vol. 9, 74-81, http://dx.doi.org/10.1016/j.jcou.2015.01.002

Table 3 Comparison of various plasma sources dedicated to the conversion of CO2 at atmospheric pressure. The CO2 conversions vs SEI and the energy efficiency as a function of CO2 flow rate for all these cases are reported in Figures 10 and 11, respectively.
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	#	Plasma source Type Geometry (kHz) (W) Freq. Pow. Carrier or reactive gas	CO2 (mL/min)	Ref.
	1	DBD	Tube multi-electrodes	19.5	45	Ar	120	Our reactor
	2	DBD	Tube	30	100	/	50	16
	3	DBD	Plane	30	500	CH4	500	47
	4	DBD	Tube	2.2	45	Ar	80	27
	5	DBD	Plane	25	15	He/CH4	5	26
	6	DBD	Tube	25	100	CH4	60	51
	7	DBD	Tube	8.1 0.11	/	0.8	44
	8	DBD	Tube	20	74	CH4	15	52
	9			8.1 2.78	He	2.5	
	10			8.1 3.64	Ar	2.5	
	11			8.1 5.25	N2	2.5	
	12 13	AC glow discharge	Tube	8.1 2.78 8.1 3.64	He Ar	1.5 1.5	53
	14			8.1 5.25	N2	1.5	
	15			8.1 3.64	Ar	0.75	
	16			8.1 5.25	N2	0.75	
	17	Pulsed corona	Electrode tip	20-200 9	/	47.5	54
	18	DBD	Tube	30	60	Ar/CH4	60	55
	19	Gliding arc	"V" shaped electrode	20	225	/	2000	20
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