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Abstract 

The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated 
and presented through an integrated study of both the plasma phase and the resulting material surface. Three 
methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: 
(i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings 
and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the 
plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface 
can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which 
simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to 
hydrophobic coatings with water contact angles (WCAs) of 115°, but only the filamentary argon discharge induces 
higher WCAs. Finally, nanoparticles were deposited under the fluorinated layer to increase the surface roughness 
and therefore produce super-hydrophobic hybrid coatings characterized by the nonadherence of the water droplet 
at the surface. 

1. Introduction 

 

Super-hydrophobic thin films are attractive in applications where water-repellent, anti-fouling, and self-cleaning properties are 

desirable. A super-hydrophobic surface is one that repels water to such an extent that the droplet is almost spherical and easily rolls 

across the surface. They are generally characterized by a high water contact angle (WCA) (>150°) and a low tilting angle or a low contact 

angle hysteresis (<10°); the hysteresis being defined by the difference between the advancing contact angle and the receding contact 

angle.1 The highest known WCA of a smooth low-energy surface is comprised between 110° and 120° depending on the chemical group 

present at the surface (CH3, CF2, CF3).2 Super-hydrophobic surfaces are therefore obtained by combining rough surface morphology and 

low surface energy coatings.2 Such coatings have been deposited using wet chemistry with low surface energy materials but these 

methods usually require multiple processing steps and utilize solvents.3–6 The use of plasmas is then a very promising synthetic route 

to produce super-hydrophobic surfaces since this approach has the advantage of reducing the number of steps required to modify the 

surface of materials. Moreover, the use of atmospheric plasmas presents many benefits such as reducing the treatment time as well as 

the costs related to high-vacuum systems. Working under atmospheric pressure can therefore be advantageous in industrial 

applications since the process can be easily implemented in a continuous production line. The two main pathways involving the plasma 

processing of polymers are (i) the direct modification of polymer surfaces and (ii) the plasma deposition of thin polymeric films. 

 

The plasma treatments of fluoropolymer surfaces have drawn a special interest and particularly in the case of the 

polytetrafluoroethylene (PTFE) because of its outstanding properties such as high thermal stability, low friction coefficient, 

hydrophobicity, and chemical inertness which explain its use for biocompatibility and self-cleaning applications.7 The treatment of PTFE 

by plasma has been investigated in terms of both hydrophobic8–10 and hydrophilic11–14 surfaces. Inert gases such as helium and argon 
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improve the wettability of the PTFE by decreasing its WCA through either a defluorination of the polymer surface or an incorporation 

of residual oxygen.15–19 Moreover, it has been shown that, at low pressure, those gases could induce a sputtering of the PTFE and 

produce a film onto a substrate made of fluorocarbon species ejected from the polymer.20–23 

 

The treatment of PTFE by O2-containing gases is more controversial as both hydrophobic and hydrophilic modifications have been 

obtained. For instance, some studies showed that oxygen radio-frequency (RF) plasmas could lead to an etching of the surface 

characterized by oxygen grafting and as a result a decrease inWCA.13,14,24 Salapare et al. observed that in a O2 low-pressure plasma 

distinct behaviors (hydrophobic or hydrophilic) were obtained depending on the plasma energy.25 Many other studies also 

demonstrated that an oxygen plasma treatment could induce a roughening of the samples responsible for the increase in WCA but with 

no change in the chemical composition.8–10 Ryan and Badyal observed that the oxygen plasma did not induce any variation in the 

chemical composition but its use led to a surface texturization.9 More recently, Vandencasteele et al. highlighted the synergetic role of 

charged species (electrons) and atomic oxygen in the etching of PTFE by low-pressure oxygen plasmas.10 Super-hydrophobic PTFE 

surfaces were also created by an Ar+O2 low-pressure plasma.26 Although no change in the chemical composition was recorded, leaf-

like micro-protrusions were observed after a 4 h-plasma treatment related to the WCA of 158° and characterized by a root mean square 

(RMS) roughness of about 2 µm. Most of the studies were realized at low pressure; only few researches showed results focused on the 

superhydrophobicity of PTFE by O2 in atmospheric plasmas. For instance, the treatment of PTFE by the post-discharge of an Ar-O2 plasma 

torch induced an increase in the WCA (130°) and in the roughness while it was not observed in the pure argon plasma.27 Trigwell et al. 

showed that PTFE was chemically resistant to an atmospheric pressure glow discharge supplied with He-O2 with a WCA up to 125°.28 

 

Low-pressure plasma deposition of fluorocarbon films has been widely studied in the last decades.29–34 Gaseous monomers (e.g., CF4, 

C2F4, C2F6, C3F8, C3HF7 or c-C4F8) polymerized into the discharge led to the deposition of coatings with different properties depending on 

the plasma source or the feed gases. The F/CFx ratio was identified as one of the most relevant internal indicators to describe the 

deposition of the fluoropolymers because it defines the competition between the etching and the polymerization processes.35–37 The 

precursors used at atmospheric pressure are usually identical to those used in low-pressure processes but the use of a plasma gas 

(usually helium or argon) is most often required when working at atmospheric pressure. The groups of d’Agostino30,33,35,38,39 and 

Vinogradov40,41 have been very active in this domain at both low and atmospheric pressures. For instance, they widely studied the 

influence of reactive gases such as H2 and O2 on the chemistry of the films and the deposition rate. They showed that the addition of 

oxygen tends to consume the CF2 through the formation of COF, CO, CO2, and/or F, then reducing the deposition rate and shifting the 

process from deposition to etching. Regarding the wettability properties, only few works reported in the literature succeeded in getting 

WCAs higher than 100–110°, at atmospheric pressure.42–44 

 

As previously mentioned, the synergy of the roughness and the low-energy surface is required to enhance the hydrophobicity. Many 

studies have investigated the combination of those two factors to create super-hydrophobic surfaces where authors combine several 

techniques; from creating roughness into a material followed by an hydrophobization step to obtain the desired properties. For instance, 

photolithography was used to transfer patterns to silicon wafers before hydrophobization by silanization reagents,3 electrochemical 

deposition of zinc oxide, nickel, and copper leads to hydrophobic surfaces after modification with hydrophobic self-assembly 

monolayers such as fluoroalkylsilane,45,46 an oxygen plasma etching of paper fibers followed by the deposition of a pentafluoroethane 

thin film.47 Additionally to those methods, the roughness might be obtained by the incorporation of nanoparticles which ones can be 

deposited on the substrate by solvent evaporation, 48 sol–gel method,49,50 electrophoretic path,51 or spray-deposition methods.52,53 
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Once the nanoparticles are deposited, the hydrophobization step is performed through the synthesis of a low surface energy film such 

as fluorinebased compounds. Few studies have reported the interest of making hybrid coatings from nanoparticles; such as the use of 

a sol–gel process in the presence of tetraethoxysilane,54 the use of a vacuum-based method combining the deposition of nanoparticles 

by means of a gas aggregation source with conventional RF magnetron sputtering of PTFE,55 or also the incorporation of 

hydrophobically modified silica nanoparticles in PTFE emulsion.56 

 

In the present study, we show that cold atmospheric plasma is an efficient technology to easily obtain (super)-hydrophobic surfaces 

from fluorinated compounds. Three pathways are described: (i) the modification of an existing fluoropolymer surface, (ii) the deposition 

of a fluorocarbon film and (iii) the enhancement of the film hydrophobicity through the addition of nanoparticles. Based on the 

integrated study of both the plasma phase and the resulting material surface, polymerization and texturization processes are proposed. 

The influence of the gas phase on the etching of the PTFE and the deposition and texturization of CxFy compounds are described. 

Although helium and argon have both demonstrated their efficiency in the plasma deposition of fluorocarbons, studies usually deal with 

the effects of a single gas, either argon or helium. Moreover, these last results are compared with super-hydrophobic hybrid coatings 

made of nanoparticles covered by a fluorinated layer deposited by a dielectric barrier discharge (DBD). 

2. Experimental part 
 

2.1. Materials 
 

One mm thick PTFE samples were supplied by Goodfellow. The samples were cleaned in pure methanol (AnalaR Normapur, VWR) and 

pure iso-octane (GR for analysis, Merck), before being exposed to the plasma postdischarge. The liquid precursors namely perfluoro-2-

methyl-2-pentene (C6F12) and perfluorohexane (C6F14) were provided by Fluorochem and were used without any further purification 

(Fig. 1). 80 nm SiO2 nanoparticles from Alfa Aesar are dispersed in demineralized water without any surfactant. Silicon wafers (100) from 

Compart Technology Ltd. (Tamworth, UK) were used as substrates after being cleaned with methanol and isooctane. The glow discharge 

was sustained with argon (Air Liquide, ALPHAGAZ 1), helium (Air Liquide, ALPHAGAZ 1), or O2 (Air Liquide, ALPHAGAZ 1). 

 

 

 

FIG. 1. Structures of the two liquid 

precursors C6F12 and C6F14 and the 

two C6F14 isomers. 

 

2.2. The plasma sources 
 

The PTFE sample surfaces were exposed to the linear post-discharge of an RF atmospheric plasma torch, the Atomflo™ 400L-Series from 

SurfX Technologies (Redondo Beach, California), supplied with He and He-O2 and integrated to a robotic system detailed in a previous 

paper.57 The kinematic parameters used in this study are the following ones: power 90–120 W, He 15 L/min, O2 0–0.1 L/min, while 

the kinematic parameters are the scanning length (LS = 10 mm), the scanning velocity (vS = 25 mm/s), the number of scans (NS = 1000), 
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and the torch-to-sample distance (gS = 0.5–1 mm). In all our experiments, the scanning plasma source moved back and forth along a 

single axis. According to the used kinematic parameters (LS = 10 mm, vS = 25 mm/s), the treatment time is the number of scans multiplied 

by the time required to scan one scanning length (0.4 s). The width of the plasma torch slit being 0.8 mm, the exposure time of a spot 

(0.8 mm) is estimated at 0.032 s. For a number of scans of 1000, the total treatment time is 400 s while the exposure time of each spot 

is about 32 s. The plasma-polymerized (pp)-fluorinated films were deposited with a home-built DBD described in previous studies.58,59 

The vapors of the precursor were introduced into the discharge by means of the carrier gas (second flow—0.2 L/min) bubbling into the 

liquid, after being diluted with a primary flow of the carrier gas with a total carrier gas flow of 5 L/min. The injected amounts for 0.2 

L/min are: Ar–C6F12 782 6 44 mg/min, He–C6F12 783 6 52 mg/min, Ar–C6F14 768 6 84 mg/min, and He–C6F14 767 6 101 mg/min. The 

operating frequency was set at 17.1 kHz with an output power set at 50 W for the results presented in this paper, supplied by an AFS-

G10S power generator (AFS Entwicklungs-und Vertriebs GmbH, Horgau, Germany). The deposition time varied from 30 to 360 s. 

 

2.3. Water contact angles (WCA) 
 

A drop shape analyzer (Krüss DSA 100, Krüss GmbH, Hamburg, Germany) was used to measure dynamic WCAs onto the samples, 

according to the sessile drop method. The fitting method used is the “Tangent 1”. Advancing and receding contact angles were both 

measured by growing and shrinking the size of a single drop on the surface sample, from 0 to 15 µL and back to 0 µL at a rate of 30 

µL/min. The receding angles are not presented in this paper but information can be found in Refs. 59, 60. 

 

2.4. X-ray photoelectron spectroscopy (XPS) 
 

XPS analysis was performed on a Physical Electronics PHI-5600 photoelectron spectrometer (Eden Prairie, Minnesota). Survey spectra 

were used to determine the elemental chemical composition of the surface. Narrow region photoelectron spectra were used for the 

chemical study of the C1s. The spectra were acquired using the Mg anode (1253.6 eV) operating at 300 W. Wide surveys were acquired 

at a pass-energy of 187.5 eV with a five-scans accumulation (time/step: 50 ms, eV/step: 0.8) and high-resolution spectra of the C1s 

peaks were recorded at a pass-energy of 23.5 eV with an accumulation of 5 scans (time/step: 200 ms, eV/step: 0.05). The elementary 

composition was calculated after the removal of a Shirley background and using the sensitivity coefficients from the manufacturer’s 

handbook: SC = 0.205, SF = 1, and SO = 0.63. 

 

2.5. Atomic force microscopy (AFM) 
 

AFM was used to analyze the surface morphology of the deposited films. AFM images were recorded in air with a Nanoscope IIIa 

microscope (Brüker, Karlsruhe, Germany) operating in tapping mode. The probes were commercially available silicon tips with a spring 

constant of 24–52 N/m, a resonance frequency lying in the 264–339 kHz range, and a typical radius of curvature in the 5–10 nm range. 

The images presented here are height images recorded with a sampling resolution of 512*512 data points and a scan size of 5*5 µm2. 
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2.6. Profilometry 
 

The thickness measurements were performed using a stylus profiler Brücker dektak XT (Brüker, Karlsruhe, Germany). The stylus with a 

2 µm radius scans the surface with a force of 1 mg and the measurement was controlled and analyzed with the Vision 64 software. The 

thickness was estimated based on the height difference between the substrate surface and the surface of the coating and used to 

estimate the deposition rates. The roughness of the samples containing nanoparticles was estimated by a 3D simulation of the surface 

obtained by the sum of 150 scans covering a surface of 0.9 mm2. The RRMS was then calculated by the software. The force of the stylus 

for these measurements was set at 0.2 mg. 

 

2.7. Scanning electron microscopy (SEM) 
 

SEM measurements were performed on a JEOL JSM-7000F (JEOL, Tokyo, Japan) equipped by a Schottky field emission gun. The analyses 

were essentially topographic with a magnification of 5000. The electrons were accelerated by a 5 kV electrical field. 

 

2.8. Mass loss measurements and XPS of aluminum trapping ejected species 
 

The PTFE samples were weighted before and after the plasma treatments to evaluate mass variations. A Sartorius BA110S Basic series 

analytical balance characterized by a capacity of 110 g and a readability of 0.1 mg was used. Moreover, during the plasma treatment, 

an aluminum foil was placed close to the samples. As aluminum is known to be an efficient fluorine trap,61 we then analyzed the foil 

by XPS, looking for the presence of fluorinated species. 

 

2.9. Optical emission and absorption spectroscopy (OES–OAS) 
 

OES was performed with a SpectraPro-2500i spectrometer from ACTON Research Corporation (Acton, Massachusetts) (0.500 m focal 

length, triple grating imaging). The light emitted by the discharge was collected by an optical fiber and transmitted to the entrance slit 

(50 µm) of the monochromator. Each optical emission spectrum was acquired with the 1800 grooves/mm grating (blazed at 500 nm) 

and recorded over 10 accumulations with an exposure time of 50 ms for the DBD and 30 accumulations, 25 ms for the postdischarge. 

To tackle intensity variations as a function of the plasma conditions, the emissions of all the species were divided by the emission of the 

whole spectra (i.e., a continuum ranging from 250 to 850 nm). Line-absorption spectroscopy was applied to study He (23S) metastable 

states, more precisely on the transition 23S–33P at 388.9 nm.62 The absorption rate A is related to the emission intensities by the relation 

A = (IL + IP – IL+P)/IL, where IP is the light intensity emitted from the post-discharge, IL is the line intensity from the external lamp and IL+P 

is the line intensity from the two light sources.63,64 

 

2.10. Mass spectrometry (MS) 
 

MS of the gas phase was performed with a Hiden analytical atmospheric gas analysis—quadrupole gas analyzer (QGA; Hiden Analytical, 

Warrington, UK). The gases were collected through a perfluoroalkoxy capillary located between the electrodes at the boundary of the 
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plasma region. The secondary electron multiplier detector (SED) was used to detect fragments with low partial pressures (10–6–10–13 

Torr). To avoid excessive fragmentation of the precursor in the ionization chamber, the electron energy was set at 35 eV. The provided 

software MASsoft7 was used either to analyze the partial pressure as a function of the m/z ratio or to follow the partial pressure as a 

function of time for several specific m/z ratios, simultaneously. 

3. Results & Discussion 
 

As previously mentioned, three pathways are presented to show the efficiency of the cold atmospheric plasma to easily obtain (super)-

hydrophobic surfaces from fluorinated compounds. 

 

3.1. PTFE surface properties enhanced by atmospheric post-discharge 
 

3.1.1. Characterization of the surface modifications 

The first evaluated method to enhance the hydrophobicity of a surface is the use of an atmospheric plasma torch to modify polymer 

properties. In this study, PTFE surfaces were submitted to the post-discharge of a RF plasma torch supplied in He or in He-O2 to study 

wettability variations. By comparing pure helium and He-O2 plasma treatments, it is shown that oxygen has a significant impact on the 

PTFE wettability and its presence is required to enhance the hydrophobicity of the polymer surface. As illustrated in Fig. 2, helium 

plasma treatments lead to a small decrease in the WCA while an increase in the hydrophobicity is observed by adding oxygen. Moreover, 

we previously showed that advancing WCA as high as 155° (with a contact angle hysteresis < 10°) could be obtained for higher number 

of scans and therefore a higher treatment time.57 

 

FIG. 2. Advancing WCAs of untreated PTFE and He and He–O2 plasma-

treated PTFE, with the associated pictures of the static WCA. (P = 90 W, 

Ls = 10 mm, vs = 25 mm/s, gs = 500 µm, Ns = 1000, (He) = 15 L/min, 

(O2) = 0 and 100 mL/min). 

 

FIG. 3. HR C1s spectra of untreated PTFE and He and He-O2 plasma-

treated PTFE. (Ls = 10 mm, vs = 25 mm/s, gs = 500 µm, Ns 5 1000, (He) 

= 15 L/min,  (O2) = 0 and 100 mL/min, P = 90 W). 

Although modifications in wettability were observed, the relative surface chemical composition measured by XPS was kept unchanged 

as shown in Fig. 3. Indeed, only a strong CF2 component at 292.2 eV and a small CC component (284.6 eV) mixed up with the satellite 

peak of CF2 are detected at the surface with the same High Resolution C1s profile independently of the plasma conditions (native, He, 

He-O2).  
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It is known that a high roughness and a low-energy surface are required to get (super)-hydrophobic properties. 2,65–67 According to 

the above results in terms of surface composition (which does not change), the variation in the WCA is assumed to be only induced by 

morphology modifications. Indeed, the RMS roughness slightly decreases for a pure helium plasma (from 17 to 15 nm), while this 

roughness is much higher when oxygen is added (up to 58 nm). This significant variation between both plasma treatments is illustrated 

by the AFM images in Fig. 4 and justifies the wettability behaviors. Moreover, these results are correlated with those previously observed 

at low pressure.10,68 

 

 

FIG. 4. 5*5 µm2 AFM 3D images of a PTFE 

surface treated by (a) pure He plasma (RRMS 15 

nm) and (b) He-O2 plasma (RRMS 58 nm), with a 

Z scale of 511 nm. (Ls = 10 mm, vs = 25 mm/s, gs 

= 500 lm, Ns = 1000, (He) = 15 L/min,  (O2) = 

0 and 100 mL/min, P = 90 W). 

 

Although the surface modifications by a pure helium plasma are less noticeable in terms of wettability and morphology, this treatment 

however appears to induce the highest etching of the PTFE surface. Indeed, higher mass losses and higher concentrations of fluorinated 

compounds (% F values from survey spectra and % CF2 values from C1s high resolution spectra) were detected onto an aluminum foil, 

indicating that more species are ejected from the PTFE sample using pure helium treatment as illustrated in Fig. 5 (pure helium plasma 

corresponds to 0 mL/min O2 flow rate). From the XPS study of the aluminum foil, the ejection of a higher amount of material in the pure 

He plasma can also be evidenced by the attenuation of the signal coming from the aluminum substrate indicating a thicker deposit of 

polymer (i.e., O2 100 mL/min: 8% F, 17% C, 39% O and 36% Al compared to no oxygen: 43% F, 27% C, 12% O and 18% Al). 

 

 

 

FIG. 5. (a) Relative mass losses of PTFE as a function of the 

oxygen flow rate and (b) relative surface composition of 

the fluorinated fragments ejected from the PTFE on the 

aluminum foil. (Ls = 10 mm, vs = 25 mm/s, gs = 1 mm, Ns = 

1000, (He) = 15 L/min, P = 90 W). 
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3.1.2. Characterization of the post-discharge 

OES–OAS of the post-discharge allowed detecting the emissive species existing in the post-discharge and analyzing their evolution as a 

function of the oxygen flow rate. Absorption spectroscopy showed that helium metastable atoms were present in the post-discharge 

and were consumed by the addition of oxygen leading to the formation of atomic oxygen according to the following reactions69: 

(i) Consumption of the helium metastable through the Penning Ionization with oxygen: Hem + O2  O2
+ + He + e 

(ii) Production of atomic oxygen: O2
+ + e  2O 

 

The evolution of the most relevant species observed by spectroscopy is illustrated in Fig. 6. The intensity of O2
+ ions (525 nm) 

permanently increases as a function of the oxygen flow rate. Several mechanisms are usually considered to explain their production 

[dissociative transfer with He2
+ ions, charge transfer reaction involving O2 molecules and O+ ions or the electron impact ionization of O2 

(Ref. 62)]. Considering the species observed or absent from the post-discharge and the weak electron densities measured in typical He-

O2 RF post-discharge,70 the mechanism explaining the production of O2
+ ions is assumed to be the Penning ionization of O2 molecules 

by He metastable atoms [Eq. (1)]. These He metastable species were indeed experimentally evidenced by OAS as seen in Fig. 6(a) and 

their consumption by oxygen are consistent with the production of O2
+. Moreover, their presence can also be emphasized by the 

observation of N2+ ions. Indeed, N2 molecules easily quench Hem to produce N2
+ through the Penning ionization of N2.71,72 Their 

intensity decreases with the oxygen flow rate since helium metastable atoms are consumed by O2. Finally, the most probable channel 

to produce atomic oxygen is the electron impact dissociation of O2
+ [Eq. (2)] since the rate constant of this reaction is important 

compared to other reactions.62 The plateau observed for the highest oxygen flow rate can be interpreted as a result from equilibrium 

between the production and the consumption mechanisms. 

 

 

 

FIG. 6. (a) Transmission rate of He 23S at 388.9 

nm and (b) optical emission intensity of O (844.6 

nm), O2
+ (525 nm) and N2

+ (391 nm) in the He-O2 

post-discharge (gs = 1 mm, (He) = 15 L/min, P = 

120 W). 

According to the results obtained from OES–OAS and surface characterization, etching processes explaining the two different behaviors 

are proposed. In a He–O2 plasma, no modification of the surface composition was observed but the roughness and therefore the WCA 

were increased inducing the (super)-hydrophobic property. In this condition, we assume an anisotropic etching where the oxygen atoms 

etch preferentially the amorphous phase of the polymer. Oxygen atoms are indeed known to etch more easily the amorphous region 

of a polymer than the crystal phase,40,73 creating alveolar structures at the surface playing a role on the increase in roughness. Since 

the etching of the PTFE at atmospheric pressure is higher in absence of oxygen but leads to a smoothening of the surface (slight decrease 

in WCA and RRMS), we assume a layer-by-layer random physical etching without any preferential orientation. Studies have shown that 
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helium could be responsible for the sputtering of PTFE.21–23 For instance, the treatment of PTFE by a glow discharge supplied in helium 

induced the ejection of solid polymer and a mass loss of the polymer.22 The main product identified in the helium plasma-induced 

decomposition of PTFE was the TFE monomer (CF2=CF2). Moreover, the RF plasma sputtering of PTFE is considered to involve scission 

of –(CF2)n– chains yielding smaller – (CF2)m– (m << n) segments, which are deposited at the substrate surfaces and form a structure 

dominated by –(CF2)– groups.74 The scission of –(CF2)– chains is therefore supposed to be due to the highly energetic helium metastable 

atoms. Indeed, the helium metastable species, being consumed by the reaction with oxygen through the Penning ionization, are not 

available any more to etch the PTFE surface.74,75 The increase in the oxygen flow rate leads therefore to a reduction of mass losses 

and of species detected onto the aluminum foil. To have a better understanding and visualization, the two processes are depicted in a 

schematic representation in Fig. 7. 

 

 

 

 

FIG. 7. Scheme of the two 

possible etching processes. In a 

pure helium plasma, the most 

important fragment produced is 

CF2. 

 

3.2. Plasma deposition of hydrophobic fluorinated coatings by DBD at atmospheric pressure 
 

3.2.1. Characterization of the plasma phase 

 

The second method using plasmas to create (super)-hydrophobic surfaces is the Plasma-Enhanced Chemical Vapor Deposition (PECVD) 

of precursors containing hydrophobic groups such as CFx groups which present the lower surface energy. Two liquid precursors, namely, 

perfluoro-2-methyl-2-pentene (C6F12) and perfluorohexane (C6F14) were used to deposit coatings in argon and helium. The films 

produced by both precursors have shown similar properties when comparing treatments in argon and helium. 

 

The study of the plasma phase by MS and optical spectroscopy, completed by electrical measurements highlighted the influence of the 

gas nature and of the discharge regime (filamentary versus glow) on the fragmentation of the precursors.39 Figure 8 presents the 

evolution of the intensity of some significant m/z fragments detected my MS, in a He (dashed curves) or Ar (full curves) plasma. The 

energetic streamers present in the filamentary argon discharge induce a higher fragmentation evidenced by the decrease in the main 

fragments intensity in the mass spectrometer as seen in Fig. 8(a). In helium, the effect of the plasma is less pronounced, but all the 

intensities of the detected fragments increase when the discharge is turned on, as shown by the dashed curves in Fig. 8(a). C6F14 is held 

up as an example since all its main fragments are detected in the mass spectrometer range, but a similar behavior has been observed 

for C6F12. 
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Despite the complexity of the reactions in the discharges, differences between the two systems (“MS” versus “plasma 1 MS”) are briefly 

illustrated in the following scheme (Fig. 9). As the fragmentation of the precursor is carried out upstream of the mass spectrometer, 

some of the C3F7
+, CF3

+, and C3F5
+ ions are already present in the discharge (especially with an Ar plasma) and would be even more 

fragmented by the mass spectrometer, explaining their decreasing intensity and the increasing intensity of smaller fragments such as 

CF or CF2. 

 

FIG. 8. Intensity of the (a) CF3
+, C2F5

+, C3F5
+ and C3F7

+ and (b) CO2
+, COF+, COF2

+ 

fragments generated during the atmospheric pressure PECVD of C6F14 as a 

function of time, in argon (____ full curves) and helium (- - - dashed curves). 

(0.2 L/min C6F14-carrier gas, 5 L/min carrier gas total, 50 W). 

 

 

 

FIG. 9. Scheme of the possible fragmentation of C6F14 (left) in the mass 

spectrometer and (right) in the plasma, followed by the mass spectrometer 

(CxFy
+ and CwFz

+ assuming to be CF3
+, C3F7

+ and C3F5
+ according to MS results). 

 

Additionally to these observations, we highlighted a crucial role of the oxygen impurities in the plasma polymerization. MS results have 

shown that oxygenated fragments such as CO2
+, COF+, or COF2

+ were highly detected in the helium plasma compared to the argon 

discharge [Fig. 8(b)]. The efficiency of generating atomic oxygen in helium plasma has also been evidenced by OES.59 The emission 

intensity of the atomic oxygen lines (e.g., 777 nm) is indeed strongly increased when O2 is added to the helium discharge while small 

variations are observed in argon. This behavior towards oxygen can be explained by the excited states of helium that are energetic 

enough to ionize most atoms and molecules and are therefore very efficient to excite impurities. Indeed, metastables atoms of helium 

have energies of 19.82 and 20.62 eV while the 11.55 and 11.72 eV argon metastable atoms are too low to induce the Penning ionization 

of O2 (ionization potential of 12.07 eV76,77). 
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3.2.2. Characterization of the film properties 

 

The surface properties reflect the results obtained from the plasma phase. The deposition rates are more than 5 times higher in argon 

than in helium (i.e., 240 and 25 nm/min for C6F12 in argon and helium, respectively; 25 and 5 nm/min for C6F14). The difference between 

the two precursors is assumed to be related to the higher reactivity of the C=C double bond present in C6F12, similarly to the case of 

hydrocarbon or acrylate molecules.78–80 The surface composition of the films polymerized in both argon and helium estimated from 

XPS measurements are in good correlation with the behavior of the plasma phase. The C6F12 is held up as an example. The chemical 

structure of the pp-C6F12 film is better preserved in the case of helium since a large amount of CF3 is detected, while the argon plasma 

leads to a more disordered XPS spectrum containing a higher concentration of CF2 (Table I). 

 

TABLE I. Surface composition of pp-C6F12 films as a function of the carrier gas (0.2 L/min C6F12-carrier gas, 5 L/min carrier gas total, 50 W). 

 

Given the structure of the precursor in Fig. 1, as well as the lower electron density, the lower energy and the lower microdischarges 

density76,81–83 of the helium discharge, we suggest that the precursor structure is more preserved when using helium. Moreover, a 

small percentage of oxygen (about 3%) is detected only in the films polymerized in helium. As previously detailed, helium is known to 

be reactive toward oxygen impurities. 76 This property is important as it can explain why small amounts of oxygen are detected in the 

film and why the energetic helium species are less involved in the fragmentation/polymerization of the monomer. These species could 

indeed be consumed by the impurities. 

 

The hydrophobic and morphological properties depend on the nature of the precursor and the gas phase as shown in Fig. 10. Although 

all the coatings are hydrophobic with a WCA of at least 115°, only the filamentary argon discharge induces a significant roughening of 

the surface, hence an increase in the hydrophobicity. Indeed, WCAs of 135 and 140° associated to RRMS higher than 40 and 60 nm were 

obtained for Ar–C6F12 and Ar–C6F14, respectively, while the homogeneous helium discharge leads to a smooth, low-energy surface 

characterized by a WCA of 115° and a RRMS of about 1 nm, for similar thicknesses. 

 

 

 

FIG. 10. Advancing WCA and roughness RMS of the silicon wafer 

substrate and the pp films. Illustration of the drop behavior of (left) 

Ar–C6F14 and (right) He–C6F12 coatings. (0.2 L/min precursor-carrier 

gas, 5 L/min carrier gas total, 50 W). 
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FIG. 11. 5*5 µm2 AFM images of (a) He–C6F12, (b) Ar–C6F12 and (c) Ar–C6F14 pp-films. (0.2 L/min C6F14-carrier gas, 5 L/min carrier gas total, 50 W, 

thickness of about 300 nm). 

 

The AFM images in Fig. 11 illustrate the three typical morphologies of films deposited from He-C6F12, Ar-C6F12 or Ar-C6F14. The first 

picture [Fig. 11(a)] shows the smooth surface obtained from a He-C6F12 plasma deposition. The second is characteristic of the Ar-C6F12 

films and the last one of the Ar–C6F14 films. For a similar thickness, the Ar–C6F14 plasma seems to induce a higher roughness and 

hydrophobicity as shown in Fig. 10. Moreover, as illustrated in Fig. 11(c), this C6F14 precursor induces a roughness structure totally 

different from the C6F12 precursor. The alveolar structure of approximately 100 nm are quite regular and could be characteristic of the 

filamentary discharge inducing a localized etching of the surface in competition with the polymerization. The presence of the C=C double 

bond in C6F12 and its lower F/C ratio could promote the polymerization character instead of the etching, as it is the case for C6F14. The 

etching could be responsible for this alveolar structure observed in Ar–C6F14 coatings. Moreover, the alveolar structure could induce the 

slightly higher WCAs recorded on these coatings. 

 

3.3. Effect of nanoparticles on the hydrophobic fluorinated coatings properties 
 

3.3.1. Effect of nanoparticles: Enhancement of the hydrophobic property 

The results shown before confirm that a high roughness combined with a low-energy surface is required to produce (super)-hydrophobic 

coatings. The low-energy surface was brought by the fluorinated groups of the coatings but the intrinsic roughness resulting from the 

filamentary argon discharge was not high enough to reach a super-hydrophobic state, i.e. a WCA higher than 150°. Indeed, the highest 

advancing WCA obtained was about 140° with a high contact angle hysteresis of 20–30°. Therefore, we developed a new process in 

which the addition of nanoparticles enhanced the surface texturization. Typical double-scale roughness is usually required to obtain 

super-hydrophobic surfaces with similar wettability properties to the lotus leaf present in nature84,85 Neinhuis and Barthlott, in 1997, 

obtained pictures of a lotus leaf as seen where the structures consist of a combination of a two-scale roughness: 10 lm (rough structure) 

and 100 nm (fine structure).86,87 Additional studies showed that particles with a mean diameter of 60 and 70 nm were efficient to 

increase the hydrophobicity of the surface.55,88  

 

In this study, nanoparticles were deposited on a silicon substrate through the evaporation of a 0.05 g/L dispersion of 80 nm SiO2 

nanoparticles (volume of the solution 1.5 mL for a substrate surface of about 20 cm2). After evaporation of the solvent (water), the 

substrate was covered by a C6F12 film synthesized by atmospheric plasma using argon or helium as carrier gas. The C6F12 precursor has 
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been chosen for this study because of its higher deposition rate and therefore the more accurate characterization of the deposited 

films. WCAs were measured to study the influence of the additional roughness on the wettability properties of the film. 

 

As presented in Fig. 12, higher WCAs are observed when nanoparticles are located under the plasma synthesized film. An increase in 

the contact angle value of about 15° was measured with the nanoparticles when helium was used as carrier gas while only a rise of 8° 

was measured with argon, for an identical deposition time. Since the deposition rates are different for the two gases (i.e., 240 and 25 

nm/min for argon and helium, respectively), we also report the WCA values for coatings with a similar thickness. From Fig. 12, we show 

that the argon plasma leads to higher WCAs as the presence of nanoparticles with helium plasma reaches a maximum WCA of about 

130°. 

 

 

 

 

FIG. 12. Advancing WCA of the pp films 

without nanoparticles (light gray) and 

with nanoparticles (red) for an identical 

deposition time of 2 min (left) and a 

similar thickness of about 200 nm 

(right). (0.2 L/min C6F12-carrier gas, 5 

L/min carrier gas total, 50 W). 

 

To discriminate between the two factors responsible for those wettability properties (surface roughness and the coating chemical 

composition), we carried out XPS measurements. As shown in the C1s high resolution spectra represented in Fig. 13, the presence of 

nanoparticles has no significant influence on the chemical properties of the upper layer of the plasma synthesized film. This absence of 

chemical variations has been observed regardless of the carrier gas (argon or helium), and could indicate that the main part of the 

polymerization occurs in the plasma phase and does not depend on the substrate and/or that the SiO2 nanoparticles are not reactive 

towards the fluorinated precursor. According to those results, the increase in WCAs does not result from a change in chemical 

composition. 

 

 

 

FIG. 13. HR C1s spectra of pp-C6F12 

films in argon with SiO2 

nanoparticles (red curve) and 

without SiO2 nanoparticles (black 

dashed curve). (0.2 L/min C6F12-

carrier gas, 5 L/min carrier gas total, 

50 W). 

Roughness measurements of the films were performed using a stylus profilometer on a 900 µm2 surface. The RRMS of the film synthesized 

in argon and helium plasma without any nanoparticles are 192 and 30 nm, respectively. The increase in the WCA with the addition of 
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nanoparticles appears to be related to the rise in the RRMS value reaching up to 434 and 396 nm for argon and helium, respectively. The 

5 and 12% WCA increase in argon and helium in presence of SiO2 nanoparticles is explained by the thickness of the coatings. Indeed, as 

previously mentioned, the deposition rate of the fluorinated precursor in helium is much lower than in argon. This variation involves a 

thinner fluorinated covering layer for an equal deposition time. Since the nanoparticles are covered by a thinner layer in the case of 

helium, their effect on the roughness will be much more significant. Additional SEM images in Fig. 14 show that the film synthesized 

from helium is initially smooth and the nanoparticles are clearly visible, leading to a higher increase in the roughness and therefore in 

the wettability. Argon films are initially rough and the presence of nanoparticles has a weaker influence on the morphology and the 

resulting properties. 

 

 

 

 

FIG. 14. SEM images (magnification 

5000) and summary of the effect of the 

nanoparticles on the properties of 

coatings synthesized from argon and 

helium plasmas. 

 

3.3.2. Effect of nanoparticles: Synthesis of super-hydrophobic surfaces 

 

Super-hydrophobic films were synthesized by increasing the concentration of nanoparticles in the evaporated solutions. The influence 

of the concentration of nanoparticles was investigated by using 0.05, 0.5, 1, 2, and 5 g/L dispersions. Higher concentrations of 

nanoparticles lead to higher film roughness as shown in Fig. 15. The roughness RMS measured for a film of C6F12 synthesized by 

atmospheric plasma without any nanoparticles is of 192 nm while the presence of nanoparticles induces roughness of 434, 1503, and 

3322 nm for concentrations of 0.05, 1, and 5 g/L, respectively. 
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FIG. 15. Advancing WCAs and 

roughness RMS as a function of the 

SiO2 nanoparticles concentration for 

C6F12 coatings (Ar–C6F12 50 W, 2 min). 

 

According to the wettability measurements, the roughness obtained with nanoparticles dispersions of 0.5 g/L or higher concentrations 

leads to a super-hydrophobic character of the surface. Indeed, for those plasma depositions, the advancing and receding WCAs are 

higher than 160° with a very low contact angle hysteresis (<5°). The surface is slippery since the water droplet does not adhere and roll 

across the surface of the sample as shown on Fig. 15. This result shows that the combination of rough surface morphology and low 

surface energy coatings required to obtain a super-hydrophobic surface is brought by the presence of nanoparticles and the low surface 

energy CxFy coating, respectively. 

 

The process of overcoating nanoparticles by fluorocarbon films at atmospheric pressure appears to be efficient to create super-

hydrophobic surfaces. Kylian et al. reported the formation of slippery surfaces from a similar process but operated at low pressure 

through a magnetron sputtering of PTFE with lower deposition rates (50 nm/min versus 240 nm/min) than those presented in this 

article.55 This work shows that a simple and rapid process operated at atmospheric pressure, without constraints from vacuum systems 

and using only water as a solvent, can lead to promising results. Further studies using hydrocarbon precursors instead of fluorocarbon 

should be performed since CH2 and CH3 chemical groups are known to be hydrophobic. Indeed, Fanelli et al. showed that super-

hydrophobic thin films could be obtained from aerosol-assisted atmospheric cold plasma deposition.89 

4. Conclusion 
 

The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma were investigated and presented 

through an integrated study of both the plasma phase and the resulting material surface. Three methods producing super-hydrophobic 

surfaces and/or enhancing their hydrophobicity were evaluated: 

(1) the modification of a fluorinated PTFE surface by the post-discharge of a RF plasma torch, 

(2) the plasma deposition of fluorinated coatings by a DBD, and 

(3) the incorporation of nanoparticles into those fluorinated films.  

In the first approach, the addition of oxygen to the helium carrier gas showed a different behavior towards the surface properties. 

Oxygen is indeed required to enhance the hydrophobicity of the PTFE through its roughness increase but does not induce any change 

on the chemical composition. Atomic oxygen has been assumed to be responsible for this morphology modification since it etches 
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preferably the amorphous phase; while the highly energetic helium metastables are supposed to be the main species responsible for 

the scission of –(CF2)– chains involving a higher etching without any preferential orientation. 

 

The second approach focused on the deposition and intrinsic texturization of CxFy films by PECVD in a DBD. We showed that the nature 

of the carrier gas is a crucial parameter since argon and helium plasmas induce different chemical composition, morphology and 

therefore hydrophobicity. Indeed, only argon could induce WCA higher than 115° by the creation of alveolar structure in the films while 

in helium, the films remain smooth. The characterization of the discharges allowed us to correlate the gas phase behavior and the 

surface properties since we identified a higher fragmentation in argon and the presence of oxygen in helium. 

 

Finally, the results obtained from the PECVD of fluorocarbon precursors were compared with the hybrid coatings made of nanoparticles 

covered by a fluorinated film deposited by the DBD. The addition of nanoparticles induces an enhancement of the hydrophobicity 

through the roughness increase but does not alter the chemical composition of the film. Moreover, super-hydrophobic coatings 

characterized by the nonadherence of the water droplet at their surfaces were produced for high concentrations of nanoparticles. 
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