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Abstract

The rise of bacterial resistance to antibiotics is a major Public Health
concern. It is the result of two interacting processes: the selection of
resistant bacterial strains under exposure to antibiotics and the dissemi-
nation of bacterial strains throughout the population by contact between
colonized and uncolonized individuals. To investigate the resulting time
evolution of bacterial resistance, Temime et al (2003) developed a stochas-
tic SIS model, which was structured by the level of resistance of bacterial
strains. Here we study the asymptotic properties of this model when
the population size is large. To this end, we cast the model within the
framework of measure valued processes, using point measures to repre-
sent the pattern of bacterial resistance in the compartments of colonized
individuals. We first show that the suitably normalized model tends in
probability to the solution of a deterministic differential system. Then we
prove that the process of fluctuations around this limit tends in law to a
Gaussian process in a space of distributions. These results, which gener-
alize those of Kurtz (1981, chap. 8) on SIR models, support the validity
of the deterministic approximation and quantify the rate of convergence.

1 Introduction
During the last decades, bacterial resistance to antibiotics has become a ma-
jor Public Health concern (Cars et al, 2008). The case of S. Pneumoniae, a
pathogen responsible for respiratory infections, otitis, and meningitis, is partic-
ularly illustrative of the phenomenon, with prevalences of intermediate or resis-
tant pneumococcal strains exceeding 10% in 50%, and 25% in 15%, of European
countries (EARS-Network, 2012). The selection of resistant strains is the re-
sult of several interacting processes. At the bacterial level, point mutations and
horizontal transfers of genetic material lead to changes in antibiotic resistance
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with a large range of effects (Martinez, 2008). In the absence of exposure to an-
tibiotics, it is thought that most mutated strains do not give birth to significant
populations, since they are rapidly outgrown by competing antibiotic-sensitive
strains because of differences in fitness (Maher et al, 2012). In the presence
of antibiotics however, antibiotic-sensitive strains are selectively eliminated, so
that antibiotic-resistant strains will develop and colonize the available niche.
Exposure to antibiotics in human or animal populations is widespread, occuring
through prescribed or over-the-counter medical treatments, and other routes
such as food consumption. Once an antibiotic-resistant strain has been selected
in a host, it may disseminate across the population through inter-individual
contacts.

Temime et al (2003) developed a model which integrates the processes oper-
ating both at the bacterial and the human population levels, together with their
interactions. The model was cast in the form of an SIS stochastic model whose
compartments specify the status of individuals with respect to colonization by
bacteria, and exposure to antibiotics. We use the term ‘colonization’ rather than
‘infection’, since asymptomatic carriage is frequent. Each colonized individual
was further described by the level of resistance of the colonizing bacterial strain
which, in the case of penicillins, spreads over a continuum of values. Because of
this extra structure, the model belongs to the class of individual-based models,
and its properties in the large population limit cannot be investigated following
the approach of Kurtz (1981), as e.g. in Andersson and Britton (2000, chap.5).
Although a law of large numbers was suggested by heuristic reasoning (Temime
et al, 2005), no rigorously established result is yet available.

In this paper, we consider the SIS model of Temime et al (2003), and repre-
sent the resistance patterns of the colonized individuals by point measures. This
formalism allows a thorough investigation of the large population limit using the
approach of Fournier and Méléard (2004) and Méléard (1998). A similar line
of attack was used in Clémençon et al (2008) to study an SIR epidemic model
with an age structure. More specifically, we prove both a law of large numbers
and a central limit theorem for the suitably normalized model as the population
size tends to infinity.

2 Model and notations
The population is assumed to be of constant size n, and is partitioned into five
compartments as depicted in Figure 1 (see Temime et al (2003) for details): 4
compartments characterize the status of individuals with respect to both colo-
nization by S. Pneumoniae and exposure to antibiotics; the fifth compartment
corresponds to the so-called refractory phase, during which individuals cannot
be colonized due to acquired immunity with respect to the bacterial agent: such
a phase follows spontaneous decolonization but is not observed when decolo-
nization results from exposure to antibiotics (Prellner et al, 1999). Uncolonized
unexposed individuals are in compartment Xu; individuals in refractory phase
following spontaneous decolonization are in compartment Xr; uncolonized ex-
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posed individuals are in compartment Xe; colonized unexposed individuals are
in compartment Yu; and colonized exposed individuals are in compartment Ye.
Colonized individuals are further characterized by their level of resistance to
antibiotics, modeled as a continuous positive variable. Uncolonized individuals
may become colonized through contact with colonized individuals. Colonized
individuals may undergo decolonization, either spontaneously or through expo-
sure to antibiotics. If exposed, they may in addition undergo an increase of
their resistance level by selection of a population of genetically altered bacterial
strains.

Let δm denote the Dirac measure atm, andM “

!

řk
i“1 δmi ,mi ą 0, k ď n

)

denote the set of point measures on R` “ p0,8q, with total mass bounded by
n. For ν “

řk
i“1 δmi PM and f a measurable bounded function on R`, we set

xν, fy “
ş

R` νpdmqfpmq “
řk
i“1 fpmiq.

For all time t, the state of the population is described by the vector Zptq “
pZXuptq, ZXr ptq, ZXeptq, ZYuptq, ZYeptqq, which takes values in the state space
E “ t0, 1, . . . , nu3 ˆM2. More specifically,

• ZXuptq is the number of uncolonized unexposed individuals,

• ZXr ptq is the number of individuals in refractory phase,

• ZXeptq is the number of uncolonized exposed individuals,

• ZYuptq is the random measure
řNYu ptq
i“1 δaiptq, where NYuptq “ xZYuptq, 1y is

the number of colonized unexposed individuals, and a1ptq, . . . , aNYu ptqptq
denote their respective resistance levels,

• ZYeptq is the random measure
řNYe ptq
j“1 δbjptq, where NYeptq “ xZYeptq, 1y

is the number of colonized exposed individuals and b1ptq, . . . , bNYe ptqptq
denote their respective resistance levels.

The dynamics of the population are driven by the following transitions:

• An unexposed individual, colonized or uncolonized, may become exposed,
at rate αon.

• An exposed individual, colonized or uncolonized, may become unexposed,
at rate αend.

The rates αon and αend do not differ between colonized and uncolonized in-
dividuals, since the majority of S. Pneumoniae carriers are asymptomatic,
and exposure to antibiotics thus mainly results from prescription for un-
related infectious diseases.

• A colonized unexposed individual may undergo spontaneous decoloniza-
tion and enter the refractory phase, at rate λu.

• An individual in the refractory phase may leave this state and enter the
uncolonized unexposed compartment, at rate αr.
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Figure 1: Schematic description of the compartmental model, with the respec-
tive transition rates. The vertical axes in the Colonized compartments represent
the scale of resistance levels, and the dots represent Dirac masses at the resis-
tance levels of the colonized individuals.
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• A colonized exposed individual, with resistance level b, may undergo de-
colonization, at rate λepbq. The rate of decolonization under exposure to
antibiotics is the sum of the spontaneous rate λu and the rate due to treat-
ment effect. Since the latter rate decreases as the resistance level of the
colonizing strain increases, λe is a non increasing function on R`, tending
to λu at infinity. We let λ̄e “ λep0q.

• An uncolonized unexposed individual may get colonized through contact
with a given colonized individual, exposed or unexposed, at rate βu{n.
The newly colonized individual acquires the resistance level of his con-
taminating contact.

• An exposed uncolonized individual may get colonized through contact with
a given colonized individual, exposed or unexposed, with resistance level
m, at rate βepmq{n. To reflect the fact that the rate of colonization by
contact under exposure to antibiotics is higher when the resistance level of
the colonizing strain is higher, βe is a nonnegative nondecreasing function
on R`, assumed bounded from above by β̄e. The resistance level of the
newly colonized individual is m.
The normalizations βu{n and βe{n are standard in the formulation of
epidemic models (Andersson and Britton, 2000, section 2.1). They corre-
spond to the fact that in a mixing population of size n, each individual
has probability 1{pn ´ 1q » 1{n of making contact with another given
individual.
In Temime et al (2003), βepbq ranges from 0 to 2βu as b ranges from 0
to infinity. This reflects the fact that: if the transmitted strain is not
resistant to antibiotics, treatment hinders colonization of the antibiotic
exposed individual; whereas if it is highly resistant, treatment facilitates
colonization as it clears the endogenous bacterial flora.

• A colonized exposed individual may undergo a genetic event, at rate µ.
As a result, the individual’s resistance level increases by an amount of h,
where h is a positive random variable with distribution Rpdhq “ ρphqdh.
While genetic events may lead to drops in resistance level, such events are
not observed, since, under exposure to antibiotics, bacterial strains with
lower resistance will not be able to establish as the dominant strain.

In the sequel, the components of a generic process U with values in E will
be denoted by UXu , UXr , UXe , UYu , and UYe , respectively. For f, g : R` Ñ R
measurable and bounded, we define

Uf,g “ pUXu , UXr , UXe , U
f
Yu
, UgYeq,

where UfYu “ xUYu , fy and U
g
Ye
“ xUYe , gy.

For f : RÑ R, and h ě 0, we let τhfp¨q “ fp¨ ` hq.
The notation 1A stands for the indicator function of the set A.
Throughout the paper, K will denote a generic constant, whose meaning

may change from line to line.
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2.1 Poisson measure representation
The process pZptqqtě0 will be realized as the solution of a system of stochas-
tic differential equations driven by Poisson measures. On a probability space
pΩ,F ,Pq we consider the following independent random elements:

1. The initial state Zp0q P E, which is specified through

• The vector pZXup0q, ZXr p0q, ZXep0q, NYup0q, NYep0qq, giving the ini-
tial numbers of individuals in the compartments, assumed to be
multinomial with index n, and probabilities pθXu , θXr , θXe , θYu , θYeq.

• The initial point measures ZYup0q “
řNYu p0q
i“1 δai and ZYep0q “

řNYe p0q
j“1 δbj , where paiqiě1, and pbjqjě1 are two sequences of i.i.d.

positive random variables with respective distributions Pu and Pe.

2. The following Poisson measures:

• exposure onset Poisson measures QonXupds, diq and QonYupds, diq, with
common intensity measure αondsb di,

• exposure ending Poisson measuresQendXe
pds, diq andQendYe

pds, diq, with
common intensity measure αenddsb di,

• decolonization Poisson measures QdecolYu
pds, diq and QdecolYe

pds, di, dvq,
with respective intensity measures λudsb di and λ̄edsb dib dv,

• colonization Poisson measures QcolXupds, di, djq and Q
col
Xe
pds, di, dj, dvq,

with respective intensity measures βu
n ds b di b dj and β̄e

n ds b di b
dj b dv,

• a refractory phase exit Poisson measure QexitXr
pds, diq, with intensity

measure αrdsb di,
• a mutation Poisson measure QmutYe

pds, di, dhq, with intensity measure
µdsb dib ρphqdh,

where ds and dh are Lebesgue measure on R`, di and dj are counting measures
on N˚, and dv is Lebesgue measure on r0, 1s. We let pFtqtě0 denote the canonical
filtration generated by Zp0q and the above Poisson measures.

The model pZptqqtě0 is defined as the pFtq-Markov process, which is the
unique solution of the system of stochastic differential equations

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ZXuptq “ ZXup0q ´ I
on
Xuptq ` I

end
Xe ptq ` I

exit
Xr ptq ´ xI

col
Xuptq, 1y

ZXr ptq “ ZXr p0q ` xI
decol
Yu ptq, 1y ´ IexitXr ptq

ZXeptq “ ZXep0q ` I
on
Xuptq ´ I

end
Xe ptq ` xI

decol
Ye ptq, 1y ´ xIcolXe ptq, 1y

ZYuptq “ ZYup0q ´ I
on
Yu ptq ` I

end
Ye ptq ´ I

decol
Yu ptq ` IcolXuptq

ZYeptq “ ZYep0q ` I
on
Yu ptq ´ I

end
Ye ptq ´ I

decol
Ye ptq ` IcolXe ptq ` I

mut
Ye ptq

(2.1)

where

IonXuptq “

ż t

0

ż

N˚
1tiďZXu ps´qu

QonXupds, diq
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IonYu ptq “

ż t

0

ż

N˚
1tiďNYu ps´qu

δaips´qQ
on
Yupds, diq

IendXe ptq “

ż t

0

ż

N˚
1tiďZXe ps´qu

QendXe pds, diq

IendYe ptq “

ż t

0

ż

N˚
1tiďNYe ps´qu

δbips´qQ
end
Ye pds, diq

IexitXr ptq “

ż t

0

ż

N˚
1tiďZXr ps´qu

QexitXr pds, diq

IcolXuptq “

ż t

0

ż

N˚

ż

N˚
1tiďZXu ps´qu

`

1tjďNYu ps´qu
δajps´q

` 1t1ďj´NYu ps´qďNYe ps´qu
δbj´NYu ps´qps´q

˘

QcolXupds, di, djq

IcolXe ptq “

ż t

0

ż

N˚

ż

N˚

ż 1

0

1tiďZXe ps´qu

`

1tjďNYu ps´qu
1tvďβepajps´qq{β̄euδajps´q

` 1t1ďj´NYu ps´qďNYe ps´qu
1tvďβepbj´NYu ps´q

ps´qq{β̄eu

ˆ δbj´NYu ps´qps´q
˘

QcolXepds, di, dj, dvq

IdecolYu ptq “

ż t

0

ż

N˚
1tiďNYu ps´qu

δaips´qQ
decol
Yu pds, diq

IdecolYe ptq “

ż t

0

ż

N˚

ż 1

0

1tiďNYe ps´qu
1tvďλepbips´qq{λ̄euδbips´qQ

decol
Ye pds, di, dvq

ImutYe ptq “

ż t

0

ż

N˚

ż 1

0

ż

R`
1tiďNYe ps´qu

pδbips´q`h ´ δbips´qqQ
mut
Ye pds, di, dhq.

Note that the above representation of pZptqqtě0 yields a straightforward
algorithm for pathwise simulation of the process.

3 Law of large numbers
To establish a law of large numbers, as n Ñ 8, we consider the normalized
process Zn “ 1

nZ, with state space E1 “ r0, 1s3 ˆ pM1q
2, where M1 is the

space of subprobability measures on R`. On E1 we put the product topology
induced by the usual topology on r0, 1s, and the topology of weak convergence
onM1.

If S is a metric space, and T ą 0, Cpr0, T s, Sq denotes the space of continuous
functions from r0, T s to S, equipped with the topology of uniform convergence,
and Dpr0, T s, Sq denotes the space of càdlàg functions from r0, T s to S, equipped
with the Skorohod topology (see e.g. Jacod and Shiryaev (2003, Chaper VI)).

To keep notations as concise as possible, given f, g : R` Ñ R measurable
and bounded, we define two mappings, Ψf,g and Ψ̂f,g.

The map Ψf,g “ pΨXu ,ΨXr ,ΨXe ,Ψ
f
Yu
,Ψg

Ye
q, is defined from Dpr0, T s, E1q
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to Dpr0, T s,R5q as

ΨXupUqptq “

ż t

0

ds
´

´αonUXupsq ` αrUXr psq ` αendUXepsq

´ βuUXupsqxUYupsq ` UYepsq, 1y
¯

ΨXr pUqptq “

ż t

0

ds
´

´αrUXr psq ` λuxUYupsq, 1y
¯

ΨXepUqptq “

ż t

0

ds
´

αonUXupsq ´ αendUXepsq ` xUYepsq, λey

´ UXepsqxUYupsq ` UYepsq, βey
¯

Ψf
Yu
pUqptq “

ż t

0

ds
´

´pαon ` λuqxUYupsq, fy ` αendxUYepsq, fy

` βuUXupsqxUYupsq ` UYepsq, fy
¯

Ψg
Ye
pUqptq “

ż t

0

ds
´

αonxUYupsq, gy ´ xUYepsq, pαend ` λeqgy

` UXepsqxUYupsq ` UYepsq, βegy

` µxUYepsq,

ż 8

0

ρphqdhpτhg ´ gqy
¯

.

The map Ψ̂f,g is defined from Dpr0, T s, E1q into Dpr0, T s,S5q, where S5 is
the space of real 5ˆ 5 symmetric matrices, as follows. Let

ψ̂f,g “

¨

˚

˚

˚

˚

˚

˝

ψ̂Xu ψ̂Xu,Xr ψ̂Xu,Xe ψ̂fXu,Yu 0

ψ̂Xu,Xr ψ̂Xr 0 ψ̂fXr,Yu 0

ψ̂Xu,Xe 0 ψ̂Xe 0 ψ̂gXe,Ye
ψ̂fXu,Yu ψ̂fXr,Yu 0 ψ̂fYu ψ̂f,gYu,Ye

0 0 ψ̂gXe,Ye ψ̂f,gYu,Ye ψ̂gYe

˛

‹

‹

‹

‹

‹

‚
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with
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’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ψ̂XupUpsqq “ αonUXupsq ` αrUXr psq ` αendUXepsq

` βuUXupsqxUYupsq ` UYepsq, 1y

ψ̂Xr pUpsqq “ αrUXr psq ` λuxUYupsq, 1y

ψ̂XepUpsqq “ αonUXupsq ` αendUXepsq ` xUYepsq, λey

` UXepsqxUYupsq ` UYepsq, βey

ψ̂fYupUpsqq “ pαon ` λuqxUYupsq, f
2y ` αendxUYepsq, f

2y

` βuUXupsqxUYupsq ` UYepsq, f
2y

ψ̂gYepUpsqq “ αonxUYupsq, g
2y ` xUYepsq, pαend ` λeqg

2y

` UXepsqxUYupsq ` UYepsq, βeg
2y ` µxUYepsq,

ż 8

0

ρphqdhpτhg ´ gq
2y

ψ̂Xu,Xr pUpsqq “ ´αrUXr psq

ψ̂Xu,XepUpsqq “ ´
`

αonUXupsq ` αendUXepsq
˘

ψ̂fXu,YupUpsqq “ ´βuUXupsqxUYupsq ` UYepsq, fy

ψ̂fXr,YupUpsqq “ ´λuxUYupsq, fy

ψ̂gXe,YepUpsqq “ ´
`

xUYepsq, λegy ` UXepsqxUYupsq ` UYepsq, βegy
˘

ψ̂f,gYu,YepUpsqq “ ´
`

αonxUYupsq, fgy ` αendxUYepsq, fgy
˘

(3.1)

Then Ψ̂pUqptq “
şt

0
ψ̂pUpsqqds, where integration is componentwise.

The following proposition states a semi-martingale decomposition which is
at the heart of the proofs.

Proposition 3.1. For all measurable bounded f, g : R` Ñ R, we may write

Zn,f,g “ V n,f,g `Mn,f,g,

where
V n,f,gptq “ Zn,f,gp0q `Ψf,gpZnqptq

is a continuous finite variation process, and Mn,f,g is a bounded càdlàg martin-
gale, with predictable quadratic variation process

!Mn,f,g "“
1

n
Ψ̂f,gpZnq (3.2)

Proof. Let Ln denote the infinitesimal generator of the Markov process Zn. By
Ethier and Kurtz (2005, Proposition 4.1.7), for all measurable bounded function
φ : E1 Ñ R, the process

φpZnptqq ´ φpZnp0qq ´

ż t

0

LnφpZnpsqqds

9



is a bounded martingale. This implies in particular that Mn,f,g is a martingale.
Taking φpx1, x2, x3, ν1, ν2q “ x2

1, the process

U1ptq “ ZnXuptq
2 ´ ZnXup0q

2

´

ż t

0

ds
´

αonZ
n
Xupsqp

1

n
´ 2ZnXupsqq ` αendZ

n
Xepsqp

1

n
` 2ZnXupsqq

` αrZ
n
Xr psqp

1

n
` 2ZnXupsqq

` βuZ
n
Xupsqp

1

n
´ 2ZnXupsqqxZ

n
Yupsq ` Z

n
Yepsq, 1y

¯

is thus a martingale.
Now, applying Itô’s formula to the semi-martingale ZnXu and the function

x ÞÑ x2, we find that the process

U2ptq “ ZnXuptq
2 ´ ZnXup0q

2

´ 2

ż t

0

dsZnXupsq
´

´αonZ
n
Xupsq ` αendZ

n
Xepsq ` αrZ

n
Xr psq

´ βuZ
n
XupsqxZ

n
Yupsq ` Z

n
Yepsq, 1y

¯

´ ăMn
Xu ą ptq

is also a martingale. Since a finite variation predictable martingale is a.s. con-
stant, we have U2 ´ U1 “ 0 a.s., hence the expression for ăMn

Xu
ą.

The other components are found likewise, using appropriate functions.

3.1 Convergence of the normalized process
Since the predictable variation process ! Mn,f,g " is a.s. Op1{nq, it is reason-
able to expect that the noise process Mn,f,g will tend to 0 as nÑ8, and that
the normalized sequence will tend to a deterministic limit.

First we note that the initial condition vector, as defined in Section 2.1,
tends to a deterministic limit.

Lemma 3.2. As nÑ8, Znp0q tends to

zp0q “ pθXu , θXr , θXe , θYuPu, θYePeq

a.s. in E1.

Theorem 3.3. For all T ą 0, the sequence pZnqně1 converges in probability in
Dpr0, T s, E1q to the deterministic process z “ pxu, xr, xe, ξu, ξeq P Cpr0, T s, E1q,
which is the unique solution to the following equation

zf,gptq “ zf,gp0q `Ψf,gpzqptq (3.3)

for all measurable bounded functions f, g : R` Ñ R.
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Proof. Since the limit is deterministic, it is enough to prove convergence in law.
The uniqueness of solutions, and the characterization of limit points of

pZnqně1 as solutions of (3.3) are established as in Fournier and Méléard (2004).
C-tightness (see Jacod and Shiryaev, 2003, Definition VI.3.25) of the se-

quence pZnqně1 in Dpr0, T s, E1q is equivalent to C-tightness of each component
(Jacod and Shiryaev, 2003, Corollary VI.3.33).

1. By Aldous’ criterion (Aldous, 1978), pZnXuqně1, pZnXr qně1, and pZnXeqně1

are tight in Dpr0, T s, r0, 1sq. Since they have a.s. jumps of order 1{n they
are C-tight (Jacod and Shiryaev, 2003, Proposition VI.3.26).

2. Similarly, for all f measurable and bounded, pxZnYu , fyqně1 and
pxZnYe , fyqně1 are C-tight in Dpr0, T s,Rq. It follows that pZnYuqně1 and
pZnYeqně1 are C-tight in Dpr0, T s,Mv

1q, whereMv
1 denotes the spaceM1

endowed with the vague topology (Roelly-Coppoletta, 1986).

3. Thus pZnqně1 is C-tight in Dpr0, T s, Ev1 q, where Ev1 “ r0, 1s3 ˆ pMv
1q

2. If
Z̄ is a limit point in law of pZnqně1 in Dpr0, T s, Ev1 q, it can be shown that
xZ̄Yu , 1y and xZ̄Ye , 1y are limit points in law inDpr0, T s,Rq of pxZnYu , 1yqně1

and pxZnYu , 1yqně1, respectively. The method of proof, similar to that in
Méléard and Tran (2012), relies on approximating the functions 1rk,`8q,
k P N, by continuous functions such as

ψkpmq “

$

’

&

’

%

0 if m ď k,
m´ k if k ă m ď k ` 1,
1 if m ą k ` 1,

noticing that the functions 1´ψk and
ş8

0
ρphqdhpτhψk´ψkq have compact

support.

Theorem 3 in (Méléard and Roelly, 1993) then implies C-tightness of
pZnYuqně1 and pZnYeqně1 in Dpr0, T s,M1q.

3.2 Absolute continuity and densities
In this section, we assume that Pu and Pe, hence ξup0q and ξep0q, are absolutely
continuous with respect to Lebesgue measure on R`.

Under these conditions, Gronwall’s lemma implies that ξuptq and ξeptq are
absolutely continuous for all t, and we let πupt,mq and πept,mq denote their
respective densities with respect to Lebesgue measure. The following corollary
then follows from (3.3) and Fubini’s theorem.

Theorem 3.4. Assume that Pu and Pe are absolutely continuous with respect
to Lebesgue measure on R`, and that βe, λe and ρ are bounded and continuous.
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Then pxu, xr, yu, πu, πeq is the solution to
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dxu
dt

“ ´αonxu ` αrxr ` αendxe ´ xu

ż 8

0

βupπupt,mq ` πept,mqqdm

dxr
dt

“ ´αrxr `

ż 8

0

λuπupt,mqdm

dxe
dt

“ αonxu ´ αendxe `

ż 8

0

λepmqπept,mqdm

´ xe

ż 8

0

βepmqpπupt,mq ` πept,mqqdm

B

Bt
πupt,mq “ ´pλu ` αonqπupt,mq ` xuβupπupt,mq ` πept,mqq

` αendπept,mq

B

Bt
πept,mq “ αonπupt,mq ´ pαend ` λepmqqπept,mq

` xeβepmqpπupt,mq ` πept,mqq

` µ

ż m

0

πept, hqρpm´ hqdh´ µπept,mq

(3.4)

with initial condition pθXu , θXr , θXe , θYu
dPu
dm , θYe

dPe
dm q.

This is the system of ordinary and partial integro-differential equations that
was derived heuristically in Temime et al (2005). The main interest of the sys-
tem of equations (3.4), in contrast to equation (3.3), is that it can be integrated
numerically, and used to analyze the long term trends of antibiotic resistance.
In this respect, Theorems 3.3 and 3.4 confer theoretical validity to the simu-
lations presented in Temime et al (2005, section 5.3), which show that, in the
long term, the respective numbers of individuals in the five compartments tend
to a steady-state equilibrium, whereas the level of resistance in colonized indi-
viduals increases with time. Likewise, system (3.4) may be used to estimate
the distribution of resistance levels in colonized individuals after a given period
of time (Temime et al, 2005, section 6.2). The approximation of the stochastic
model by its deterministic limit was observed to be acceptable for population
sizes above 5000.

4 Central limit theorem
In this section, we prove a central limit theorem for the sequence pηnqně1 “

p
?
npZn ´ zqqně1 of fluctuation processes.
Writing as above ηn “ pηnXu , η

n
Xr
, ηnXe , η

n
Yu
, ηnYeq, we note that ηnYuptq and

ηnYeptq are signed measures, whose limits, as n Ñ 8, are not measure valued
in general. Thus, following the approach of Métivier (1987) and Oelschläger
(1990), we are led to chose as state space for pηnptqqtě0 a space of distributions
which is the dual of a weighted Sobolev space.
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4.1 Notations, definitions, and preliminary results
Although the level of resistance to antibiotics is a positive variable, it will be
convenient to consider that the support of the measures ηnYuptq and η

n
Ye
ptq is the

whole of R. Likewise, we shall also consider that the support of the measures
Pu, Pe, ZnYuptq, Z

n
Ye
ptq, ξuptq, and ξeptq is R, and that the functions λe and βe

are defined on R.
For k P N and γ ě 0, let W k,γ denote the space of functions φ : RÑ R, such

that
}φ}2Wk,γ “

ż

R

ÿ

jďk

|Djφpmq|2
dm

1` |m|2γ
ă `8,

where Djφ is the weak jth derivative of φ. Equipped with the ‖¨‖Wk,γ norm,
W k,γ is a separable Hilbert space, whose dual is denoted by W´k,γ , with dual
norm ‖¨‖W´k,γ . In the present context, the space of compactly supported
smooth functions on R is dense in W k,γ (Kufner and Opic, 1984).

We also define the space Ck,γ of k-times continuously differentiable functions
on R, such that

lim
|m|Ñ8

|Djfpmq|

1` |m|γ
“ 0 @j ď k,

with norm

‖f‖Ck,γ “
ÿ

jďk

sup
mPR

|Djfpmq|

1` |m|γ
.

Clearly, if f P Ck,γ , |fpmq| ď ‖f‖Ck,γ p1 ` |m|γq. Moreover for k ě 0, l ě 1,
γ ě 0, and α ą 1{2, the inclusions

W k`l,γ ãÑ Ck,γ ãÑW k,γ`α (4.1)

are continuous (Métivier, 1987), i.e. there exist constants K and L such that
}f}Wk,γ`α ď K}f}Ck,γ ď L}f}Wk`l,γ .

The following Proposition is proved as in Méléard (1998, Lemma A, section
3.2), using the continuity of the inclusion W k,γ ãÑ C0,γ for k ě 1.

Proposition 4.1. Let k P N˚ and γ ě 0. For fixed m P R and h ě 0, the
mappings

Dm : φ PW k,γ ÞÑ φpmq

Dmh : φ PW k,γ ÞÑ pτhφ´ φqpmq

are linear and continuous. Moreover

‖Dm‖W´k,γ ď Kp1` |m|γq
‖Dmh‖W´k,γ ď Kp1` |m|γ ` hγq.

By Parseval’s identity, we deduce

13



Corollary 4.2. Let pφjqjě1 be a Hilbert basis of W k,γ . Then
ÿ

jě1

φjpmq
2 ď Kp1` |m|2γq

ÿ

jě1

ppτhφj ´ φjqpmqq
2 ď Kp1` |m|2γ ` h2γq.

For k P N and γ ě 0, let rE´k,γ “ R3 ˆ pW´k,γq2, equipped with the
Hibertian product norm

‖ζ‖´k,γ “
`

|ζXu |2 ` |ζXr |2 ` |ζXe |2 ` ‖ζYu‖2W´k,γ ` ‖ζYe‖2W´k,γ

˘1{2
.

The motivation for considering weighted Sobolev spaces is that we need
constant functions to belong to the space of test functions. While any γ ą 1{2
would thus be adequate, we have chosen γ “ 1 for simplicity. The choice of k
was guided by two considerations: first, k ě 1 is required for continuity of the
map m ÞÑ δm; and second, tightness of pηnqně1 will be proved using the fact
that the dual inclusion W´k,γ`α ãÑ W´pk`1q,γ is a Hilbert-Schmidt operator
for α ą 1{2. Overall this led to the choice of W´2,1 as state space for ηnYu and
ηnYe , and of W´1,1`α, α ą 1{2 as an auxiliary state space.

Now, the measures ZnYuptq, Z
n
Ye
ptq, ξuptq and ξeptq belong toW´1,1`α as soon

as they have moments of order q “ 2p1 ` αq ą 3. However, the existence of
moments of order q ą 5 is needed in order to deal with the quadratic variation
processes, whose expressions contain products of test functions.

For p ě 0, let χp denote the function m ÞÑ |m|p, and let ρp “
ş8

0
hpρphqdh.

Hypothesis 1. There exists q ą 5 such that

xPu, χ
qy ă `8, xPe, χ

qy ă `8, and ρq ă `8.

The proof of the following Lemma, which shows that the above moment
hypothesis propagates in time, is analogous to that of Theorem 3.1 in Fournier
and Méléard (2004).

Lemma 4.3. Under Hypothesis 1,

sup
0ďtďT

xξuptq ` ξeptq, χ
qy ă `8,

sup
n

E sup
0ďtďT

xZnYuptq ` Z
n
Yeptq, χ

qy ă `8.

The above lemma shows in particular that the mappings Ψφ,ψ and Ψ̂φ,ψ are
well defined for all φ, ψ PW 1,q.

We have the semimartingale decomposition

ηn,φ,ψptq “ rV n,φ,ψptq ` ĂMn,φ,ψptq,

where
rV n,φ,ψptq “

?
npV n,φ,ψptq ´ zφ,ψptqq

“ ηn,φ,ψp0q `
?
npΨφ,ψpZnqptq ´Ψφ,ψpzqptqq

14



is a continuous finite variation process, and

ĂMn,φ,ψptq “
?
nMn,φ,ψptq

is a square integrable martingale with predictable quadratic variation process
! ĂMn,φ,ψ "“ Ψ̂φ,ψpZnq.

In obvious notations, we consider the processes rV n and ĂMn, which, as shown
below, may be considered as rE´1,q{2 valued processes.

4.2 The martingale term

Proposition 4.4. The process ĂMn “ pĂMn
Xu
,ĂMn

Xr
,ĂMn

Xe
,ĂMn

Yu
,ĂMn

Ye
q is a.s.

a càdlàg square integrable martingale, taking its values in the Hilbert space
rE´1,q{2. Moreover

sup
n

E
ˆ

sup
0ďtďT

}ĂMnptq}2´1,q{2

˙

ă `8. (4.2)

Proof. Let pφjqjě1 be a Hilbert basis of W 1,q{2. By Parseval’s identity,

‖ĂMnptq‖2´1,q{2 “ p
ĂMn
Xuptqq

2 ` pĂMn
Xr ptqq

2 ` pĂMn
Xeptqq

2

`
ÿ

jě1

ĂM
n,φj
Yu

ptq2 `
ÿ

jě1

ĂM
n,φj
Ye

ptq2.

By Doob’s inequality, Proposition 3.1 and Corollary 4.2, we have

E
´

sup
0ďtďT

ĂMn
Xuptq

2 ` sup
0ďtďT

ĂMn
Xr ptq

2 ` sup
0ďtďT

ĂMn
Xeptq

2

`
ÿ

jě1

sup
0ďtďT

ĂM
n,φj
Yu

ptq2 `
ÿ

jě1

sup
0ďtďT

ĂM
n,φj
Ye

ptq2
¯

ă 4T
`

K1 `K2E sup
0ďtďT

xZnYu ` Z
n
Ye , χ

qy
˘

and the last line is bounded uniformly in n, by Hypothesis 1 and Lemma 4.3.
Moreover ĂMn is a martingale in the separable Hilbert space rE´1,q{2, since

ĂMn,φj ,φk is a martingale for all j and k, and Epsupj,k‖ĂMn,φj ,φk‖R5q ă 8 (see
Badrikian, 1996)).

Finally, mimicking the proof of Ferland et al (1992, Proposition 3.5) shows
that ĂMn has a.s. càdlàg paths.

The definitions of the scalar Doob-Meyer processes of a square integrable
Hilbert-valued martingale may be found in (Badrikian, 1996) or (Métivier,
1982).

Proposition 4.5. The scalar Doob-Meyer process ć ĂMn č of the square inte-
grable martingale ĂMn is given by

ć ĂMn č “ă ĂMn
Xu ą ` ă

ĂMn
Xr ą ` ă

ĂMn
Xe ą ` ć

ĂMn
Yu č ` ć

ĂMn
Ye č

(4.3)
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where

ć ĂMn
Yu č ptq “

ż t

0

ds
´

pλu ` αonqxZ
n
Yupsq, ‖Dm‖2W´1,q{2y

` βuZ
n
XupsqxZ

n
Yupsq ` Z

n
Yepsq, ‖Dm‖2W´1,q{2y

` αendxZ
n
Yepsq, ‖Dm‖2W´1,q{2y

¯

and

ć ĂMn
Ye č ptq “

ż t

0

ds
´

αonxZ
n
Yupsq, ‖Dm‖2W´1,q{2y

` xZnYepsq, pλe ` αendq‖Dm‖2W´1,q{2y

` ZnXepsqxZ
n
Yupsq ` Z

n
Yepsq, βe‖Dm‖2W´1,q{2y

` xZnYepsq, µ‖Dmh‖2W´1,q{2y

¯

.

4.3 The drift term
We now consider the continuous finite variation process Ṽ n.

The following assumption ensures that the mappings φ ÞÑ λeφ and φ ÞÑ βeφ
are bounded operators from W 1,q{2 to W 1,q{2, and from W 2,1 to W 2,1.

Hypothesis 2. The functions λe and βe are twice differentiable, and their
derivatives are bounded a.e.

Lemma 4.6. Let T ą 0. Under Hypotheses 1 and 2,

‖rV nptq‖´1,q{2 ď ‖ηnp0q‖´1,q{2 ` JT

ż t

0

ds‖ηnpsq‖´1,q{2 (4.4)

where JT is a deterministic constant that is independent of n and t for t ď T .

Proof. Writing vn “ rV n ´ ηnp0q, we have

‖rV nptq‖´1,q{2 ď ‖ηnp0q‖´1,q{2 ` ‖vnptq‖´1,q{2

ď ‖ηnp0q‖´1,q{2 ` |vnXuptq|` |v
n
Xr ptq|` |v

n
Xeptq|

` ‖vnYuptq‖W´1,q{2 ` ‖vnYeptq‖W´1,q{2 .
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Let φ, ψ PW 1,q{2. Since vn,φ,ψ “
?
npΨφ,ψpZnq ´Ψφ,ψpzqq, we get

| vnXuptq| ď
ż t

0

ds
´

αon|ηnXupsq|` αr|η
n
Xr psq|` αend|η

n
Xepsq|

` p‖ηnYupsq‖W´1,q{2 ` ‖ηnYepsq‖W´1,q{2q‖βu‖W 1,q{2 ` βu|ηnXupsq|
¯

|vnXr ptq| ď
ż t

0

ds
´

αr|ηnXr psq|` ‖η
n
Yupsq‖W´1,q{2‖λu‖W 1,q{2

¯

|vnXeptq| ď
ż t

0

ds
´

αon|ηnXupsq|` αend|η
n
Xepsq|` ‖η

n
Ye‖W´1,q{2‖λe‖W 1,q{2

` p‖ηnYupsq‖W´1,q{2 ` ‖ηnYepsq‖W´1,q{2q‖βe‖W 1,q{2 ` β̄e|ηnXepsq|
¯

|vn,φYu ptq| ď
ż t

0

ds
´

pαon ` λuq‖ηnYupsq‖W´1,q{2‖φ‖W 1,q{2

` αend‖ηnYepsq‖W´1,q{2‖φ‖W 1,q{2

` βup‖ηnYupsq‖W´1,q{2 ` ‖ηnYepsq‖W´1,q{2q‖φ‖W 1,q{2

` βu|ηnXupsq|‖ξupsq ` ξepsq‖W´1,q{2‖φ‖W 1,q{2

¯

|vn,ψYe ptq| ď
ż t

0

ds
´

αon‖ηnYupsq‖W´1,q{2‖ψ‖W 1,q{2

` ‖ηnYepsq‖W´1,q{2‖pαend ` λeqψ‖W 1,q{2

` p‖ηnYupsq‖W´1,q{2 ` ‖ηnYepsq‖W´1,q{2q‖βeψ‖W 1,q{2

` |ηnXepsq|‖ξupsq ` ξepsq‖W´1,q{2‖βeψ‖W 1,q{2

` µ‖ηnYepsq‖W´1,q{2

∥∥∥ż 8
´8

ρphqdhpτhψ ´ ψq
∥∥∥
W 1,q{2

¯

.

Now observe that

• Constants βu and λu belong to W 1,q{2.

• By Hypothesis 2, functions βe and λe belong to W 1,q{2, and there ex-
ist constants Kβ and Kλ such that ‖βeφ‖W 1,q{2 ď Kβ‖φ‖W 1,q{2 and
‖λeφ‖W 1,q{2 ď Kλ‖φ‖W 1,q{2 for all φ PW 1,q{2.

• By Hypothesis 1, there exists a constant Kq{2 such that∥∥ş8
´8

ρphqdhτhψ
∥∥
W 1,q{2 ď Kq{2‖ψ‖W 1,q{2 for all ψ PW 1,q{2.

• By continuity of the inclusion W 1,q{2 ãÑ C0,q{2 and Hypothesis 1,

Ξq{2pT q “ sup
0ďsďT

‖ξupsq ` ξepsq‖W´1,q{2 ă `8.

This proves the Lemma with e.g.

JT “ 2pαon ` αr ` αendq

` βu ` β̄e ` pβu `Kβqp1` Ξq{2pT qq ` ‖βu‖W 1,q{2 ` ‖βe‖W 1,q{2

` λu `Kλ ` ‖λu‖W 1,q{2 ` ‖λe‖W 1,q{2 ` µp1`Kq{2q.
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Lemma 4.7. Under Hypothesis 1,

sup
n

Ep}ηnp0q}2´1,q{2q ă `8 (4.5)

Proof. Let pφjqjě1 be a Hilbert basis inW 1,q{2. By independence of the number
NYup0q of colonized unexposed individuals at time 0, and their resistance levels
paiqiě1, we have

E}ηnYup0q}
2
W´1,q{2 “

1

n

ÿ

jě1

E
"

´

NYu p0q
ÿ

i“1

pφjpaiq ´ xPu, φjyq
¯2
*

`nE
 `NYup0q

n
´ θYu

˘2( ÿ

jě1

xPu, φjy
2

since the crossproducts are 0. Indeed

E
”

NYu p0q
ÿ

i“1

`

φjpaiq ´ xPu, φjy
˘`NYup0q

n
´ θYu

˘

ı

“

n
ÿ

i“1

E
!

E
”

1tiďNYu p0qu

`

φjpaiq ´ xPu, φjy
˘`NYup0q

n
´ θYu

˘

ı
ˇ

ˇ

ˇ
NYup0q

)

“

n
ÿ

i“1

E
!

`NYup0q

n
´ θYu

˘

1tiďNYu p0qu
E
`

φjpaiq ´ xPu, φjy
˘

ı)

“ 0.

Now, by independence again,

1

n

ÿ

jě1

E
"

´

NYu p0q
ÿ

i“1

pφjpaiq ´ xPu, φjyq
¯2
*

“
1

n

ÿ

jě1

E
ˆNYu p0q

ÿ

i“1

pφjpaiq ´ xPu, φjyq
2

˙

ď E
ÿ

jě1

φ2
j pa1q ď KEp1` |a1|qq,

and

nE
 `NYup0q

n
´ θYu

˘2( ÿ

jě1

xPu, φjy
2 “ θYup1´ θYuq

ÿ

jě1

xPu, φjy
2

ď θYup1´ θYuqE‖Da1‖2W´1,q{2 .

A similar bound holds for E}ηnYep0q}
2
W´1,q{2 .
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4.4 Uniform estimate for the fluctuation process
Proposition 4.8. Under Hypothesis 1,

sup
n

E sup
0ďtďT

}ηnptq}2´1,q{2 ă `8 (4.6)

sup
n

E sup
0ďtďT

}ηnptq}2´2,1 ă `8 (4.7)

Proof. By convexity, we have from (4.4)

}ηnptq}2´1,q{2 ď 2}rV nptq}2´1,q{2 ` 2}ĂMnptq}2´1,q{2

ď 4}ηnp0q}2´1,q{2 ` 4J2
T t

ż t

0

ds}ηnpsq}2´1,q{2 ` 2}ĂMnptq}2´1,q{2.

Thus, we get by Gronwall’s lemma

sup
n

E sup
0ďtďT

}ηnptq}2´1,q{2

ď
`

4 sup
n

E}ηnp0q}2´1,q{2 ` 2 sup
n

E sup
0ďtďT

}ĂMnptq}2´1,q{2

˘

e4J2
TT

2

,

which is finite by (4.2) and (4.5). Inequality (4.7) follows by continuity of the
inclusion W´1,q{2 ãÑW´2,1.

4.5 Tightness in Dpr0, T s, rE´2,1q

Proposition 4.9. The sequences pηnqně1 and pĂMnqně1 are tight in
Dpr0, T s, rE´2,1q.

Proof. To show that the sequences pĂMnqně1 and pηnqně1 are tight in
Dpr0, T s, rE´2,1q, we use the Aldous-Rebolledo-Joffe-Métivier criterion (Joffe
and Métivier, 1986; Rebolledo, 1980) for Hilbert valued càdlàg semimartingales.
First (4.2) and (4.6), together with the fact that the inclusion rE´1,q{2 ãÑ rE´2,1

is a Hilbert-Schmidt operator, imply that, for fixed t P r0, T s, pĂMnptqqně1 and
pηnptqqně1 are tight in rE´2,1. It remains to prove the Aldous conditions for
ć ĂMn č and for rV n, which are easily established using Lemma 4.3.

4.6 Limit points

Lemma 4.10. All limit points of pηnqně1 and pĂMnqně1 are a.s. continuous.

Proof. Let ∆ηnpsq (respectively ∆ĂMn,φ,ψpsq) denote the jump at s of ηn,φ,ψ

(respectively ĂMn,φ,ψ). Since ĂMn and ηn have the same jumps, it is enough to
show that sup0ďtďT ‖ηnptq ´ ηnpt´q‖´2,1 tends to 0 in probability (Jacod and
Shiryaev, 2003, Proposition VI.3.26).

The jumps of ηnXu , η
n
Xr

, and ηnXe , are a.s. of size
1?
n
. Let now φ PW 2,1, and

consider the jumps of ηn,φYu and ηn,φYe . Given an arbitrary, but fixed, enumeration
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1, ¨ ¨ ¨ , n of the individuals in the population, we denote bymi,nptq the resistance
level of individual i at time t, setting mi,nptq “ 0 if i is uncolonized at t. Then,
noting that a.s. two or more individuals cannot jump at the same time, the
sizes of the possible jumps at time t of ηn,φYu and ηn,φYe are

• |φpmi,npt´qq|{
?
n if: individual i is colonized at t´, and either undergoes

decolonization, or a change in exposure status, or contaminates an uncol-
onized individual,

• |φpmi,npt´q`hq´φpmi,npt´qq|{
?
n: if individual i is exposed and colonized

at t´, and undergoes a mutation of amplitude h.

Thus in all instances the size of the jump is less than K?
n
p1` |mi,nptq|` hq.

To obtain an uniform estimate for |mi,nptq|, let 1tjPCuptq “ 1 if individual
j is in compartment C at time t, and 0 otherwise, and let k P t1, . . . , nu be
an individual of the population. Taking in account only those transitions that
increase the resistance level of individual k, we have

m2
k,nptq ď m2

k,np0q

`

ż t

0

ż

N˚

ż

N˚
1tkPXuups´q1ti“ku1tjPYuYYeups´q

ˆ
`

m2
j,nps´q ´m

2
k,nps´q

˘

QcolXupds, di, djq

`

ż t

0

ż

N˚

ż

N˚

ż 1

0

1tkPXeups´q1ti“ku1tjPYuYYeups´q1tvďβepmj,nps´q{β̄eu

ˆ
`

m2
j,nps´q ´m

2
k,nps´q

˘

QcolXepds, di, dj, dvq

`

ż t

0

ż

N˚

ż 8

0

1tkPYeups´q1ti“ku1tvďµY pmj,nps´q{µ̄u

ˆ
`

pm2
k,nps´ ` hq ´m

2
k,nps´

˘

Qmutpds, di, dhq

ď m2
k,np0q `

ż t

0

ż

N˚

ż

N˚
1ti“ku1tjPYuYYeups´qm

2
j,nps´qQ

col
Xupds, di, djq

`

ż t

0

ż

N˚

ż

N˚

ż 1

0

1ti“ku1tjPYuYYeups´qm
2
j,nps´qQ

col
Xepds, di, dj, dvq

`K

ż t

0

ż

N˚

ż 8

0

1ti“kupm
2
k,nps´q ` h

2qQmutpds, di, dhq,

whence

Ep sup
0ďtďT

m2
k,nptqq ď xθYuPu ` θYePe, χ

2y

` pβu ` β̄eq

ż T

0

dsE
´

sup
0ďuďs

xZnYupuq ` Z
n
Yepuq, χ

2y

¯

`Kµ

ż T

0

dsEp sup
0ďuďs

m2
k,npuqq `KµTρ2.
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Thus, by Lemma 4.3 and Gronwall’s lemma,

sup
n

max
1ďkďn

Ep sup
0ďtďT

m2
k,nptqq ă `8,

yielding

E sup
0ďtďT

‖ηnptq ´ ηnpt´q‖2´2,1 ď
K

n
, (4.8)

where K is independent of n and i. The Markov inequality concludes the proof.

Proposition 4.11. For all T ą 0, the sequence pĂMnqně1 tends in law in
Dpr0, T s, rE´2,1q to the process B “ pBXu , BXr , BXe , BYu , BYeq, which is a
continuous centered square integrable Gaussian martingale, such that, for all
φ, ψ PW 2,1, the predictable quadratic variation process of Bφ,ψ is

! Bφ,ψ "“ Ψ̂φ,ψpzq.

Proof. Let B be the limit in law in Dpr0, T s, Ẽ´2,1q of a subsequence pĂMnqně1.
For φ, ψ P W 2,1, the subsequence pĂMn,φ,ψqně1 tends in law to Bφ,ψ (by the
continuous mapping theorem). Since the jumps of ĂMn,φ,ψ are those of ηn,φ,ψ,
we have

E sup
sďt
‖∆ĂMn,φ,ψpsq‖2R5 ď p3` ‖φ‖2W 2,1 ` ‖ψ‖2W 2,1qE sup

sďt
‖∆ηnpsq‖2´2,1

so that supsďt }∆ĂMn,φ,ψpsq}2R5 Ñ 0 in probability for all t by (4.8).
We deduce from (4.1) that φ, ψ P W 2,1 ñ φψ P W 1,q{2 for q ą 5. It

then follows by (4.6) and Hypothesis 1 that ! ĂMn,φ,ψ "t tends in probability
to Ψ̂φ,ψpzqptq for all fixed t. Now, the process Ψ̂φ,ψpzq is deterministic and
0 at time 0. Moreover the matrix Ψ̂φ,ψpzqptq ´ Ψ̂φ,ψpzqpsq is symmetric and
nonnegative for all s ă t.

Therefore, using Pollard (1984, Theorem VIII.13), we conclude that
pĂMn,φ,ψqně1 tends in law to the continuous Gaussian centered martingale Bφ,ψ
with predictable quadratic variation ! Bφ,ψ "“ Ψ̂φ,ψpzq.

Next, the family tĂMnptq, t P r0, T s, n ě 1u of rE´2,1-valued random variables
is uniformly integrable by (4.2). Therefore B is a martingale with respect to
the filtration it generates (Jacod and Shiryaev, 2003, Propositions IX.1.1 and
IX.1.12). Moreover, by Doob’s inequality, E sup0ďtďT ‖Bptq‖2´2,1 ă `8.

Theorem 4.12. For all T ą 0, the sequence of processes pηnqně1 tends in law in
Dpr0, T s, rE´2,1q to the process η “ pηXu , ηXr , ηXe , ηYu , ηYeq P Cpr0, T s, rE´2,1q,
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which is the unique solution of the system
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%

ηXuptq “ ηXup0q `

ż t

0

ds
´

´αonηXupsq ` αrηXr psq ` αendηXepsq

´ xupsqxηYupsq ` ηYepsq, βuy ´ ηXupsqxξupsq ` ξepsq, βuy
¯

`BXuptq

ηXr ptq “ ηXr p0q `

ż t

0

ds
´

´αrηXr psq ` xηYupsq, λuy
¯

`BXr ptq

ηXeptq “ ηXep0q `

ż t

0

ds
´

αonηXupsq ´ αendηXepsq ` xηYepsq, λey

´ xepsqxηYupsq ` ηYepsq, βey ´ ηXepsqxξupsq ` ξepsq, βey
¯

`BXeptq

ηφYuptq “ ηφYup0q `

ż t

0

ds
´

´xηYupsq, pαon ` λuqφy ` xηYepsq, αendφy

` xupsqxηYupsq ` ηYepsq, βuφy ` ηXupsqxξupsq ` ξepsq, βuφy
¯

`BφYuptq

ηψYeptq “ ηψYep0q `

ż t

0

ds
´

xηYupsq, αonψy ´ xηYepsq, pαend ` λeqψy

` xepsqxηYupsq ` η
n
Yepsq, βeψy ` ηXepsqxξupsq ` ξepsq, βeψy

` xηYepsq, µ

ż 8

0

ρphqdhpτhψ ´ ψqy
¯

`BψYeptq,

(4.9)
for all φ, ψ P W 2,1, where Bφ,ψ is the Gaussian martingale defined in Proposi-
tion 4.11.

The proof rests on the three following lemmas.

Lemma 4.13. All limit points in law of pηnqně1 are weak solutions of the
stochastic differential system (4.9).

Proof. Let η be the limit in law of a subsequence pηnqně1. For φ, ψ P W 2,1,
write (4.9) in the form

ηφ,ψptq “ ηφ,ψp0q `

ż t

0

dsLφ,ψpsqηpsq `Bφ,ψptq,

and let the mapping rΨφ,ψ : Dpr0, T s, rE´2,1q Ñ Dpr0, T s,R5q be defined by

rΨφ,ψpζqptq “ ζφ,ψp0q `

ż t

0

dsLφ,ψpsqζpsq.

We have

ĂMn,φ,ψ “ ηn,φ,ψ ´ rV n,φ,ψ

“ pηn,φ,ψ ´ rΨφ,ψpηnqq ` prΨφ,ψpηnq ´ rV n,φ,ψq.
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On the one hand, ηn,φ,ψ´ rV n,φ,ψ tends in law to Bφ,ψ, by Proposition 4.11. On
the other hand, since η is continuous (Lemma 4.10), ηn,φ,ψ ´ rΨφ,ψpηnq tends in
law to ηφ,ψ ´ rΨφ,ψpηq by the continuous mapping theorem. We now show that
rΨφ,ψpηnq ´ rV n,φ,ψ tends to zero in probability. Since

‖rΨφ,ψpηnqptq´rV n,φ,ψptq‖R5 ď
1
?
n

ż t

0

ds
´

|ηnXupsq||xη
n
Yupsq ` η

n
Yepsq, βup1` φqy|

` |ηnXepsq||xη
n
Yupsq ` η

n
Yepsq, βep1` ψqy|

¯

ď
2
?
n

ż t

0

ds‖ηnpsq‖2´2,1p‖βup1` φq‖W 2,1 ` ‖βep1` ψq‖W 2,1q,

we have, for all ε ą 0,

P
ˆ

sup
0ďtďT

|rΨφ,ψpηnqptq ´ rV n,φ,ψptq| ą ε

˙

ď
KT

ε
?
n

sup
n

E
´

sup
0ďsďT

}ηnpsq}2´2,1

¯

Ñ 0 as nÑ8 by (4.7).

Hence, ηn,φ,ψ´ rV n,φ,ψ tends in law to ηφ,ψ´ rΨφ,ψpηq (Jacod and Shiryaev, 2003,
Lemma VI.3.31). The lemma follows by uniqueness of the limit in law.

Lemma 4.14. ηp0q is defined uniquely as the limit in law in rE´2,1 of
pηnp0qqně1.

Proof. Since η is continuous, pηnp0qqně1 is tight by projection at time 0. Now,
for all φ, ψ P W 2,1, straightforward calculations using characteristic functions
show that any convergent subsequence pηn,φ,ψp0qqně1 tends in law to a Gaussian
random variable with zero expectation and variance matrix

Ωφ,ψ “
¨

˚

˚

˚

˚

˝

θXup1´ θXuq ´θXuθXr ´θXuθXe ´θXuθYu φ̄ ´θXuθYe ψ̄
θXr p1´ θXr q ´θXrθXe ´θXrθYu φ̄ ´θXrθYe ψ̄

θXep1´ θXeq ´θXeθYu φ̄ ´θXeθYe ψ̄
θYupφ̄2 ´ θYu φ̄

2q ´θXuθXe φ̄ψ̄
θYepψ̄2 ´ θYe ψ̄

2q

˛

‹

‹

‹

‹

‚

where φ̄ “ xPu, φy, φ̄2 “ xPu, φ
2y, ψ̄ “ xPe, ψy, and ψ̄2 “ xPe, ψ

2y.

Lemma 4.15. Equation (4.9) has a unique solution in Dpr0, T s, rE´2,1q.

Proof. By Gronwall’s lemma, the solution is pathwise unique. Next, by Jacod
and Shiryaev (2003, Proposition IX.1.12), B is a martingale with respect to the
filtration generated by pη,Bq, so that pathwise uniqueness implies uniqueness in
law by the Yamada-Watanabe theorem (Revuz and Yor, 1991, Theorem IX.1.7).
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5 Statistical applications
The application of Theorem 4.12 to practical statistical issues is far from
straightforward, due to the fact that the limit processes zptq and ηptq have
measure and distribution valued components, respectively. Moreover, although
these processes may be converted to processes with real valued components by
considering zφ,ψ and ηφ,ψ for given φ, ψ P W 2,1, the latter processes cannot be
computed nor simulated from (3.3) and (4.9) in general. In this sense, theorems
3.3 and 4.12 are essentially existence theorems.

However some results can be derived under more specific assumptions.

Proposition 5.1. Assume that the functions λe and βe are constant. Then we
have

η1,1ptq “ Eptq
´

η1,1p0q `

ż t

0

Epsq´1dB1,1psq
¯

. (5.1)

where

aptq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´αon αr αend ´βuxuptq ´βuxuptq
´ βuνptq
0 ´αr 0 λu 0
αon 0 ´αend ´βexeptq ´βexeptq ` λe

´ βeνptq
βuνptq 0 0 ´pαon ` λuq αend

` βuxuptq ` βuxuptq
0 0 βeνptq αon ` βexeptq ´pαend ` λeq

` βexeptq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with νptq “ xξuptq ` ξeptq, 1y, and Eptq “ exp
`şt

0
apsqds

˘

.

Proof. It readily follows from the assumption and (4.9) that η1,1ptq is solution
to the Langevin equation

η1,1ptq “ η1,1p0q `

ż t

0

apsqη1,1psqds`B1,1ptq,

whose solution is (5.1).

Recall the definition of ψ̂f,gpUpsqq given by equations (3.1), and let A˚ de-
note the transpose of a square matrix A.

Corollary 5.2. If the functions λe and βe are constant,
?
npZn,1,1ptq´ z1,1ptqq

tends in law to the Normal distribution on R5 with zero expectation and variance
matrix

Σ1,1ptq “ Eptq
´

Ω1,1 `

ż t

0

Epsq´1ψ̂1,1pzpsqqpEpsq´1q˚ds
¯

Eptq˚.

.
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For large n, under the conditions of Theorem 4.12 and Corollary 5.2, the
distribution of

?
npZn,1,1ptq ´ z1,1ptqq can be approximated by the Normal dis-

tribution N p0,Σ1,1ptqq. In particular, we have

pV arZXuptq, V arZXr ptq, V arZXeptq, V arNYuptq, V arNYeptqq

» npV arpηXuptqq, V arpηXr ptqq, V arpηXeptqq, V arpη
1
Yuptqq, V arpη

1
Yeptqqq.

This shows that variability in the numbers of individuals in the compartments
is of order

?
n, explaining why simulations of the stochastic process in Temime

et al (2003) show high variability.
If λe or βe are not constant, but Pu and Pe are absolutely continuous with

respect to Lebesgue measure, then pxuptq, xrptq, xeptq, πupt,mq, πept,mqq can
be computed via numerical integration of (3.4). Monte Carlo simulations of
Zfn,f,gptq ´ zf,gptq can thus be performed for any measurable and bounded
functions f and g in order to evaluate quantities of interest, such as times of
emergence of resistant bacteria.

It is well known that the existence of a central limit theorem with Gaussian
limit is central to the validity of bootstrap methods (Beran and Ducharme,
1991). In a situation where model parameters (or at least some of them) are
estimated from observed data (e.g. by conditional least-squares), Theorem 4.12
may thus be invoked to establish the consistency of bootstrap methods.

6 Discussion
The issue of bacterial resistance to antibiotics is critical from a Public Health
perspective. Since the emergence of resistant strains and their dissemination
throughout the population results from the complex interaction of several pro-
cesses, it is natural to rely on mathematical modeling to investigate the possible
time course evolutions and to evaluate the impact of potential interventions.

Realistic descriptions of biological and epidemiological processes are often
conveniently achieved through individual based models involving chance events.
Numerical simulation of the resulting stochastic models using standard simula-
tion algorithms may quickly raise feasibility issues due to computational load
as the population size is increased and the structure of the compartments is
detailed. The large number of simulations required to fully explore the model
variability makes the problem even worse. For such reasons, a common practice
is to fall back on a deterministic model in place of the initial stochastic formu-
lation. Here, we showed that using the formalism of measure valued processes,
it it possible to fully justify the choice of a deterministic formulation as the
limiting case of the initial stochastic model. This is clearly an improvement on
heuristic arguments as in (Temime et al, 2005).

The law of large numbers provides a firm theoretical foundation for the de-
terministic model in the limit of a large population. Under assumptions which
allow for numerical evaluation of the deterministic limit, this limit provides a
simple means for analyzing the temporal trends of bacterial antibioresistance.
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In this respect, the law of large numbers provides a theoretical confirmation the
validity of the long term trends described in Temime et al (2005), such as con-
vergence to a steady-state of the numbers of individuals in each compartment,
together with an increase of the level of antibiotic resistance in carriers. This
shows in particular that exposure to antibiotics is critical, and that the level
of resistance will be increasing with time in the absence of intervention on this
factor.

The central limit theorem specifies the rate of convergence and provides
an explanation for the high variability of e.g. times to emergence of resistant
bacterial strains described by Temime et al (2003), since it proves that for large
n, the standard deviations of the process components are of order

?
n.

Regarding the particular model and situation studied in the present work,
we note that the deterministic model used in (Temime et al, 2005) provided
good qualitative agreement with the time trends of antibiotic resistance in the
field (Temime et al, 2003). Including age structure in the model was worth con-
sidering, since the frequency of treatment by antibiotics, and the probability of
colonization, depend on age, and since the analysis of a model with age struc-
ture raises no novel methodological issue. However, the model of Temime et al
(2003) used an effective treatment frequency that was calculated by weighting
observed frequencies of treatment with probabilities of colonization according
to age.

Here, for the sake of definiteness, the initial numbers of individuals in the five
compartments of the model were assumed to be multinomial. However, other
distributions could be assumed instead. The proof of the law of large numbers
carries over to any context in which Lemma 3.2 is valid, i.e. Znp0q tends to a
deterministic vector zp0q as n grows large. In particular, a deterministic initial
configuration is suitable. If Znp0q tends to a random limit, the convergence in
Theorem 3.3 is in law rather than in probability.

The SIS model is a standard choice to study endemic diseases (Andersson
and Britton, 2000, chapter 8). Alternatively one may use SIR models with
demography. Technically, the issue of an open population of unbounded size
is dealt with by using localizing stopping times, such as in Clémençon et al
(2008) for instance. This option would yield similar results, but at the price of
greater variability in the central limit theorem due to superimposed fluctuations
in population size.
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