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Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance

) developed a stochastic SIS model, which was structured by the level of resistance of bacterial strains. Here we study the asymptotic properties of this model when the population size is large. To this end, we cast the model within the framework of measure valued processes, using point measures to represent the pattern of bacterial resistance in the compartments of colonized individuals. We first show that the suitably normalized model tends in probability to the solution of a deterministic differential system. Then we prove that the process of fluctuations around this limit tends in law to a Gaussian process in a space of distributions. These results, which generalize those of Kurtz (1981, chap. 8) on SIR models, support the validity of the deterministic approximation and quantify the rate of convergence.

Introduction

During the last decades, bacterial resistance to antibiotics has become a major Public Health concern (Cars et al, 2008). The case of S. Pneumoniae, a pathogen responsible for respiratory infections, otitis, and meningitis, is particularly illustrative of the phenomenon, with prevalences of intermediate or resistant pneumococcal strains exceeding 10% in 50%, and 25% in 15%, of European countries (EARS-Network, 2012). The selection of resistant strains is the result of several interacting processes. At the bacterial level, point mutations and horizontal transfers of genetic material lead to changes in antibiotic resistance with a large range of effects [START_REF] Martinez | Antibiotics and antibiotic resistance genes in natural environments[END_REF]. In the absence of exposure to antibiotics, it is thought that most mutated strains do not give birth to significant populations, since they are rapidly outgrown by competing antibiotic-sensitive strains because of differences in fitness [START_REF] Maher | The fitness cost of antibiotic resistance in streptococcus pneumoniae: insight from the field[END_REF]. In the presence of antibiotics however, antibiotic-sensitive strains are selectively eliminated, so that antibiotic-resistant strains will develop and colonize the available niche. Exposure to antibiotics in human or animal populations is widespread, occuring through prescribed or over-the-counter medical treatments, and other routes such as food consumption. Once an antibiotic-resistant strain has been selected in a host, it may disseminate across the population through inter-individual contacts. [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF] developed a model which integrates the processes operating both at the bacterial and the human population levels, together with their interactions. The model was cast in the form of an SIS stochastic model whose compartments specify the status of individuals with respect to colonization by bacteria, and exposure to antibiotics. We use the term 'colonization' rather than 'infection', since asymptomatic carriage is frequent. Each colonized individual was further described by the level of resistance of the colonizing bacterial strain which, in the case of penicillins, spreads over a continuum of values. Because of this extra structure, the model belongs to the class of individual-based models, and its properties in the large population limit cannot be investigated following the approach of [START_REF] Kurtz | Approximation of population processes[END_REF], as e.g. in Andersson and Britton (2000, chap.5). Although a law of large numbers was suggested by heuristic reasoning [START_REF] Temime | Deterministic and stochastic modeling of pneumococcal resistance to penicillin[END_REF], no rigorously established result is yet available.

In this paper, we consider the SIS model of [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF], and represent the resistance patterns of the colonized individuals by point measures. This formalism allows a thorough investigation of the large population limit using the approach of [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] and [START_REF] Méléard | Convergence of the fluctuations for interacting diffusions with jumps associated with Boltzmann equations[END_REF]. A similar line of attack was used in [START_REF] Clémençon | A stochastic SIR model with contact-tracing: large population limits and statistical inference[END_REF] to study an SIR epidemic model with an age structure. More specifically, we prove both a law of large numbers and a central limit theorem for the suitably normalized model as the population size tends to infinity.

Model and notations

The population is assumed to be of constant size n, and is partitioned into five compartments as depicted in Figure 1 (see [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF] for details): 4 compartments characterize the status of individuals with respect to both colonization by S. Pneumoniae and exposure to antibiotics; the fifth compartment corresponds to the so-called refractory phase, during which individuals cannot be colonized due to acquired immunity with respect to the bacterial agent: such a phase follows spontaneous decolonization but is not observed when decolonization results from exposure to antibiotics [START_REF] Prellner | Immunization and protection in pneumococcal otitis media studied in a rat model[END_REF]. Uncolonized unexposed individuals are in compartment X u ; individuals in refractory phase following spontaneous decolonization are in compartment X r ; uncolonized ex-posed individuals are in compartment X e ; colonized unexposed individuals are in compartment Y u ; and colonized exposed individuals are in compartment Y e . Colonized individuals are further characterized by their level of resistance to antibiotics, modeled as a continuous positive variable. Uncolonized individuals may become colonized through contact with colonized individuals. Colonized individuals may undergo decolonization, either spontaneously or through exposure to antibiotics. If exposed, they may in addition undergo an increase of their resistance level by selection of a population of genetically altered bacterial strains.

Let δ m denote the Dirac measure at m, and M "

! ř k i"1 δ mi , m i ą 0, k ď n )
denote the set of point measures on R `" p0, 8q, with total mass bounded by n. For ν " ř k i"1 δ mi P M and f a measurable bounded function on R `, we set xν, f y " ş R`ν pdmqf pmq "

ř k i"1 f pm i q.
For all time t, the state of the population is described by the vector Zptq " pZ Xu ptq, Z Xr ptq, Z Xe ptq, Z Yu ptq, Z Ye ptqq, which takes values in the state space E " t0, 1, . . . , nu 3 ˆM2 . More specifically,

• Z Xu ptq is the number of uncolonized unexposed individuals,

• Z Xr ptq is the number of individuals in refractory phase,

• Z Xe ptq is the number of uncolonized exposed individuals,

• Z Yu ptq is the random measure ř N Yu ptq i"1 δ aiptq , where N Yu ptq " xZ Yu ptq, 1y is the number of colonized unexposed individuals, and a 1 ptq, . . . , a N Yu ptq ptq denote their respective resistance levels,

• Z Ye ptq is the random measure ř N Ye ptq j"1 δ bj ptq , where N Ye ptq " xZ Ye ptq, 1y is the number of colonized exposed individuals and b 1 ptq, . . . , b N Ye ptq ptq denote their respective resistance levels. The dynamics of the population are driven by the following transitions:

• An unexposed individual, colonized or uncolonized, may become exposed, at rate α on .

• An exposed individual, colonized or uncolonized, may become unexposed, at rate α end .

The rates α on and α end do not differ between colonized and uncolonized individuals, since the majority of S. Pneumoniae carriers are asymptomatic, and exposure to antibiotics thus mainly results from prescription for unrelated infectious diseases.

• A colonized unexposed individual may undergo spontaneous decolonization and enter the refractory phase, at rate λ u .

• An individual in the refractory phase may leave this state and enter the uncolonized unexposed compartment, at rate α r . • A colonized exposed individual, with resistance level b, may undergo decolonization, at rate λ e pbq. The rate of decolonization under exposure to antibiotics is the sum of the spontaneous rate λ u and the rate due to treatment effect. Since the latter rate decreases as the resistance level of the colonizing strain increases, λ e is a non increasing function on R `, tending to λ u at infinity. We let λe " λ e p0q.

UNEXPOSED

• An uncolonized unexposed individual may get colonized through contact with a given colonized individual, exposed or unexposed, at rate β u {n.

The newly colonized individual acquires the resistance level of his contaminating contact.

• An exposed uncolonized individual may get colonized through contact with a given colonized individual, exposed or unexposed, with resistance level m, at rate β e pmq{n. To reflect the fact that the rate of colonization by contact under exposure to antibiotics is higher when the resistance level of the colonizing strain is higher, β e is a nonnegative nondecreasing function on R `, assumed bounded from above by βe . The resistance level of the newly colonized individual is m.

The normalizations β u {n and β e {n are standard in the formulation of epidemic models [START_REF] Andersson | Stochastic epidemic models and their statistical analysis[END_REF], section 2.1). They correspond to the fact that in a mixing population of size n, each individual has probability 1{pn ´1q » 1{n of making contact with another given individual.

In [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF], β e pbq ranges from 0 to 2β u as b ranges from 0 to infinity. This reflects the fact that: if the transmitted strain is not resistant to antibiotics, treatment hinders colonization of the antibiotic exposed individual; whereas if it is highly resistant, treatment facilitates colonization as it clears the endogenous bacterial flora.

• A colonized exposed individual may undergo a genetic event, at rate µ.

As a result, the individual's resistance level increases by an amount of h, where h is a positive random variable with distribution Rpdhq " ρphqdh.

While genetic events may lead to drops in resistance level, such events are not observed, since, under exposure to antibiotics, bacterial strains with lower resistance will not be able to establish as the dominant strain.

In the sequel, the components of a generic process U with values in E will be denoted by U Xu , U Xr , U Xe , U Yu , and U Ye , respectively. For f, g : R `Ñ R measurable and bounded, we define

U f,g " pU Xu , U Xr , U Xe , U f Yu , U g Ye q,
where U f Yu " xU Yu , f y and U g Ye " xU Ye , gy. For f : R Ñ R, and h ě 0, we let τ h f p¨q " f p¨`hq.

The notation 1 A stands for the indicator function of the set A.

Throughout the paper, K will denote a generic constant, whose meaning may change from line to line.

Poisson measure representation

The process pZptqq tě0 will be realized as the solution of a system of stochastic differential equations driven by Poisson measures. On a probability space pΩ, F, Pq we consider the following independent random elements:

1. The initial state Zp0q P E, which is specified through

• The vector pZ Xu p0q, Z Xr p0q, Z Xe p0q, N Yu p0q, N Ye p0qq, giving the initial numbers of individuals in the compartments, assumed to be multinomial with index n, and probabilities pθ Xu , θ Xr , θ Xe , θ Yu , θ Ye q.

• The initial point measures Z Yu p0q " ř N Yu p0q

i"1 δ ai and Z Ye p0q " ř N Ye p0q j"1 δ bj , where pa i q iě1 , and pb j q jě1 are two sequences of i.i.d. positive random variables with respective distributions P u and P e . where ds and dh are Lebesgue measure on R `, di and dj are counting measures on N ˚, and dv is Lebesgue measure on r0, 1s. We let pF t q tě0 denote the canonical filtration generated by Zp0q and the above Poisson measures.

The following

The model pZptqq tě0 is defined as the pF t q-Markov process, which is the unique solution of the system of stochastic differential equations 

ż t 0 ż N ˚1tiďN Yu ps´qu δ aips´q Q decol Yu pds, diq I decol Ye ptq " ż t 0 ż N ˚ż 1 0 1 tiďN Ye ps´qu 1 tvďλepbips´qq{ λeu δ bips´q Q decol Ye pds, di, dvq I mut Ye ptq " ż t 0 ż N ˚ż 1 0 ż R`1
tiďN Ye ps´qu pδ bips´q`h ´δbips´q q Q mut Ye pds, di, dhq.

Note that the above representation of pZptqq tě0 yields a straightforward algorithm for pathwise simulation of the process.

Law of large numbers

To establish a law of large numbers, as n Ñ 8, we consider the normalized process Z n " 1 n Z, with state space E 1 " r0, 1s 3 ˆpM 1 q 2 , where M 1 is the space of subprobability measures on R `. On E 1 we put the product topology induced by the usual topology on r0, 1s, and the topology of weak convergence on M 1 .

If S is a metric space, and T ą 0, Cpr0, T s, Sq denotes the space of continuous functions from r0, T s to S, equipped with the topology of uniform convergence, and Dpr0, T s, Sq denotes the space of càdlàg functions from r0, T s to S, equipped with the Skorohod topology (see e.g. Jacod and Shiryaev (2003, Chaper VI)).

To keep notations as concise as possible, given f, g : R `Ñ R measurable and bounded, we define two mappings, Ψ f,g and Ψf,g .

The map Ψ f,g " pΨ Xu , Ψ Xr , Ψ Xe , Ψ f Yu , Ψ g Ye q, is defined from Dpr0, T s, E 1 q to Dpr0, T s, R 5 q as Ψ Xu pU qptq " 

ż
ż 8 0 ρphqdhpτ h g ´gqy ¯.
The map Ψf,g is defined from Dpr0, T s, E 1 q into Dpr0, T s, S 5 q, where S 5 is the space of real 5 ˆ5 symmetric matrices, as follows. Let 

˘(3.1)
Then ΨpU qptq " ş t 0 ψpU psqqds, where integration is componentwise. The following proposition states a semi-martingale decomposition which is at the heart of the proofs.

Proposition 3.1. For all measurable bounded f, g : R `Ñ R, we may write

Z n,f,g " V n,f,g `M n,f,g ,

where

V n,f,g ptq " Z n,f,g p0q `Ψf,g pZ n qptq is a continuous finite variation process, and M n,f,g is a bounded càdlàg martingale, with predictable quadratic variation process

! M n,f,g "" 1 n Ψf,g pZ n q (3.2)
Proof. Let L n denote the infinitesimal generator of the Markov process Z n . By Ethier and Kurtz (2005, Proposition 4.1.7), for all measurable bounded function φ : E 1 Ñ R, the process

φpZ n ptqq ´φpZ n p0qq ´ż t 0 L n φpZ n psqqds
is a bounded martingale. This implies in particular that M n,f,g is a martingale. Taking φpx 1 , x 2 , x 3 , ν 1 , ν 2 q " x 2 1 , the process is also a martingale. Since a finite variation predictable martingale is a.s. constant, we have U 2 ´U1 " 0 a.s., hence the expression for ă M n Xu ą. The other components are found likewise, using appropriate functions.

U 1 ptq " Z n

Convergence of the normalized process

Since the predictable variation process ! M n,f,g " is a.s. Op1{nq, it is reasonable to expect that the noise process M n,f,g will tend to 0 as n Ñ 8, and that the normalized sequence will tend to a deterministic limit.

First we note that the initial condition vector, as defined in Section 2.1, tends to a deterministic limit. Lemma 3.2. As n Ñ 8, Z n p0q tends to zp0q " pθ Xu , θ Xr , θ Xe , θ Yu P u , θ Ye P e q a.s. in E 1 .

Theorem 3.3. For all T ą 0, the sequence pZ n q ně1 converges in probability in Dpr0, T s, E 1 q to the deterministic process z " px u , x r , x e , ξ u , ξ e q P Cpr0, T s, E 1 q, which is the unique solution to the following equation

z f,g ptq " z f,g p0q `Ψf,g pzqptq (3.3)
for all measurable bounded functions f, g : R `Ñ R.

Proof. Since the limit is deterministic, it is enough to prove convergence in law. The uniqueness of solutions, and the characterization of limit points of pZ n q ně1 as solutions of (3.3) are established as in [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF].

C-tightness (see Jacod and Shiryaev, 2003, Definition VI.3.25) of the sequence pZ n q ně1 in Dpr0, T s, E 1 q is equivalent to C-tightness of each component (Jacod and Shiryaev, 2003, Corollary VI.3.33).

1. By Aldous' criterion [START_REF] Aldous | Stopping times and tightness[END_REF], pZ n Xu q ně1 , pZ n Xr q ně1 , and pZ n Xe q ně1 are tight in Dpr0, T s, r0, 1sq. Since they have a.s. jumps of order 1{n they are C-tight (Jacod and Shiryaev, 2003, Proposition VI.3.26).

2. Similarly, for all f measurable and bounded, pxZ n Yu , f yq ně1 and pxZ n Ye , f yq ně1 are C-tight in Dpr0, T s, Rq. It follows that pZ n Yu q ně1 and pZ n Ye q ně1 are C-tight in Dpr0, T s, M v 1 q, where M v 1 denotes the space M 1 endowed with the vague topology (Roelly-Coppoletta, 1986).

Thus pZ

n q ně1 is C-tight in Dpr0, T s, E v 1 q, where E v 1 " r0, 1s 3 ˆpM v 1 q 2 . If Z is a limit point in law of pZ n q ně1 in Dpr0, T s, E v
1 q, it can be shown that x ZYu , 1y and x ZYe , 1y are limit points in law in Dpr0, T s, Rq of pxZ n Yu , 1yq ně1 and pxZ n Yu , 1yq ně1 , respectively. The method of proof, similar to that in [START_REF] Méléard | Slow and fast scales for superprocess limits of agestructured populations[END_REF], relies on approximating the functions 1 rk,`8q , k P N, by continuous functions such as

ψ k pmq " $ ' & ' % 0 if m ď k, m ´k if k ă m ď k `1, 1 if m ą k `1,
noticing that the functions 1´ψ k and ş 8 0 ρphqdhpτ h ψ k ´ψk q have compact support.

Theorem 3 in [START_REF] Méléard | Sur les convergences étroite ou vague de processus à valeurs mesures[END_REF] then implies C-tightness of pZ n Yu q ně1 and pZ n Ye q ně1 in Dpr0, T s, M 1 q.

Absolute continuity and densities

In this section, we assume that P u and P e , hence ξ u p0q and ξ e p0q, are absolutely continuous with respect to Lebesgue measure on R `. Under these conditions, Gronwall's lemma implies that ξ u ptq and ξ e ptq are absolutely continuous for all t, and we let π u pt, mq and π e pt, mq denote their respective densities with respect to Lebesgue measure. The following corollary then follows from (3.3) and Fubini's theorem.

Theorem 3.4. Assume that P u and P e are absolutely continuous with respect to Lebesgue measure on R `, and that β e , λ e and ρ are bounded and continuous. q. This is the system of ordinary and partial integro-differential equations that was derived heuristically in [START_REF] Temime | Deterministic and stochastic modeling of pneumococcal resistance to penicillin[END_REF]. The main interest of the system of equations (3.4), in contrast to equation (3.3), is that it can be integrated numerically, and used to analyze the long term trends of antibiotic resistance. In this respect, Theorems 3.3 and 3.4 confer theoretical validity to the simulations presented in Temime et al (2005, section 5.3), which show that, in the long term, the respective numbers of individuals in the five compartments tend to a steady-state equilibrium, whereas the level of resistance in colonized individuals increases with time. Likewise, system (3.4) may be used to estimate the distribution of resistance levels in colonized individuals after a given period of time [START_REF] Temime | Deterministic and stochastic modeling of pneumococcal resistance to penicillin[END_REF], section 6.2). The approximation of the stochastic model by its deterministic limit was observed to be acceptable for population sizes above 5000.

β u pπ u pt,

Central limit theorem

In this section, we prove a central limit theorem for the sequence pη n q ně1 " p ?

npZ n ´zqq ně1 of fluctuation processes. Writing as above η n " pη n Xu , η n Xr , η n Xe , η n Yu , η n Ye q, we note that η n Yu ptq and η n Ye ptq are signed measures, whose limits, as n Ñ 8, are not measure valued in general. Thus, following the approach of [START_REF] Métivier | Weak convergence of measure valued processes using Sobolevimbedding techniques[END_REF] and [START_REF] Oelschläger | Limit theorems for age-structured populations[END_REF], we are led to chose as state space for pη n ptqq tě0 a space of distributions which is the dual of a weighted Sobolev space.

Notations, definitions, and preliminary results

Although the level of resistance to antibiotics is a positive variable, it will be convenient to consider that the support of the measures η n Yu ptq and η n Ye ptq is the whole of R. Likewise, we shall also consider that the support of the measures P u , P e , Z n Yu ptq, Z n Ye ptq, ξ u ptq, and ξ e ptq is R, and that the functions λ e and β e are defined on R.

For k P N and γ ě 0, let W k,γ denote the space of functions φ : R Ñ R, such that

}φ} 2 W k,γ " ż R ÿ jďk |D j φpmq| 2 dm 1 `|m| 2γ ă `8,
where D j φ is the weak jth derivative of φ. Equipped with the ¨ W k,γ norm, W k,γ is a separable Hilbert space, whose dual is denoted by W ´k,γ , with dual norm ¨ W ´k,γ . In the present context, the space of compactly supported smooth functions on R is dense in W k,γ [START_REF] Kufner | How to define reasonably weighted Sobolev spaces[END_REF].

We also define the space C k,γ of k-times continuously differentiable functions on R, such that

lim |m|Ñ8 |D j f pmq| 1 `|m| γ " 0 @j ď k, with norm f C k,γ " ÿ jďk sup mPR |D j f pmq| 1 `|m| γ .
Clearly, if f P C k,γ , |f pmq| ď f C k,γ p1 `|m| γ q. Moreover for k ě 0, l ě 1, γ ě 0, and α ą 1{2, the inclusions

W k`l,γ ãÑ C k,γ ãÑ W k,γ`α (4.1)
are continuous [START_REF] Métivier | Weak convergence of measure valued processes using Sobolevimbedding techniques[END_REF], i.e. there exist constants K and L such that

}f } W k,γ`α ď K}f } C k,γ ď L}f } W k`l,γ .
The following Proposition is proved as in Méléard (1998, Lemma A, section 3.2), using the continuity of the inclusion W k,γ ãÑ C 0,γ for k ě 1.

Proposition 4.1. Let k P N ˚and γ ě 0. For fixed m P R and h ě 0, the mappings

D m : φ P W k,γ Þ Ñ φpmq D mh : φ P W k,γ Þ Ñ pτ h φ ´φqpmq
are linear and continuous. Moreover

D m W ´k,γ ď Kp1 `|m| γ q D mh W ´k,γ ď Kp1 `|m| γ `hγ q.
By Parseval's identity, we deduce Corollary 4.2. Let pφ j q jě1 be a Hilbert basis of W k,γ . Then ÿ jě1 φ j pmq 2 ď Kp1 `|m| 2γ q ÿ jě1 ppτ h φ j ´φj qpmqq 2 ď Kp1 `|m| 2γ `h2γ q.

For k P N and γ ě 0, let r E ´k,γ " R 3 ˆpW ´k,γ q 2 , equipped with the Hibertian product norm

ζ ´k,γ " `|ζ Xu | 2 `|ζ Xr | 2 `|ζ Xe | 2 ` ζ Yu 2 W ´k,γ ` ζ Ye 2 W ´k,γ ˘1{2 .
The motivation for considering weighted Sobolev spaces is that we need constant functions to belong to the space of test functions. While any γ ą 1{2 would thus be adequate, we have chosen γ " 1 for simplicity. The choice of k was guided by two considerations: first, k ě 1 is required for continuity of the map m Þ Ñ δ m ; and second, tightness of pη n q ně1 will be proved using the fact that the dual inclusion W ´k,γ`α ãÑ W ´pk`1q,γ is a Hilbert-Schmidt operator for α ą 1{2. Overall this led to the choice of W ´2,1 as state space for η n Yu and η n Ye , and of W ´1,1`α , α ą 1{2 as an auxiliary state space. Now, the measures Z n Yu ptq, Z n Ye ptq, ξ u ptq and ξ e ptq belong to W ´1,1`α as soon as they have moments of order q " 2p1 `αq ą 3. However, the existence of moments of order q ą 5 is needed in order to deal with the quadratic variation processes, whose expressions contain products of test functions.

For p ě 0, let χ p denote the function m Þ Ñ |m| p , and let ρ p " ş 8 0 h p ρphqdh. Hypothesis 1. There exists q ą 5 such that xP u , χ q y ă `8, xP e , χ q y ă `8, and ρ q ă `8.

The proof of the following Lemma, which shows that the above moment hypothesis propagates in time, is analogous to that of Theorem 3.1 in [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF].

Lemma 4.3. Under Hypothesis 1, sup 0ďtďT xξ u ptq `ξe ptq, χ q y ă `8,

sup n E sup 0ďtďT xZ n
Yu ptq `Zn Ye ptq, χ q y ă `8.

The above lemma shows in particular that the mappings Ψ φ,ψ and Ψφ,ψ are well defined for all φ, ψ P W 1,q .

We have the semimartingale decomposition η n,φ,ψ ptq " r V n,φ,ψ ptq `Ă M n,φ,ψ ptq, where r V n,φ,ψ ptq " ? npV n,φ,ψ ptq ´zφ,ψ ptqq " η n,φ,ψ p0q `?npΨ φ,ψ pZ n qptq ´Ψφ,ψ pzqptqq is a continuous finite variation process, and Ă M n,φ,ψ ptq " ? nM n,φ,ψ ptq is a square integrable martingale with predictable quadratic variation process ! Ă M n,φ,ψ "" Ψφ,ψ pZ n q.

In obvious notations, we consider the processes r V n and Ă M n , which, as shown below, may be considered as r E ´1,q{2 valued processes.

The martingale term

Proposition 4.4. The process Ă

M n " p Ă M n Xu , Ă M n Xr , Ă M n Xe , Ă M n Yu , Ă M n
Ye q is a.s. a càdlàg square integrable martingale, taking its values in the Hilbert space r E ´1,q{2 . Moreover

sup n E ˆsup 0ďtďT } Ă M n ptq} 2 ´1,q{2 ˙ă `8. (4.2)
Proof. Let pφ j q jě1 be a Hilbert basis of W 1,q{2 . By Parseval's identity, 

Ă M n ptq 2 ´1,q{2 " p Ă M n Xu ptqq 2 `p Ă M n Xr ptqq 2 `p Ă M n Xe ptqq 2 `ÿ jě1 Ă M n,φj Yu ptq 2 `ÿ jě1 Ă M n,

`Zn

Ye , χ q y ȃnd the last line is bounded uniformly in n, by Hypothesis 1 and Lemma 4.3. Moreover Ă M n is a martingale in the separable Hilbert space r E ´1,q{2 , since Ă M n,φj ,φ k is a martingale for all j and k, and Epsup j,k Ă M n,φj ,φ k R 5 q ă 8 (see [START_REF] Badrikian | Martingales hilbertiennes[END_REF]).

Finally, mimicking the proof of Ferland et al (1992, Proposition 3.5) shows that Ă

M n has a.s. càdlàg paths.

The definitions of the scalar Doob-Meyer processes of a square integrable Hilbert-valued martingale may be found in [START_REF] Badrikian | Martingales hilbertiennes[END_REF] or [START_REF] Métivier | Semimartingales[END_REF].

Proposition 4.5. The scalar Doob-Meyer process ć Ă M n č of the square integrable martingale Ă M n is given by 

ć Ă M n č "ă Ă M n Xu ą `ă Ă M n Xr ą `ă Ă M n Xe ą `ć Ă M n Yu č `ć Ă M n Ye č (4.

The drift term

We now consider the continuous finite variation process Ṽ n .

The following assumption ensures that the mappings φ Þ Ñ λ e φ and φ Þ Ñ β e φ are bounded operators from W 1,q{2 to W 1,q{2 , and from W 2,1 to W 2,1 .

Hypothesis 2. The functions λ e and β e are twice differentiable, and their derivatives are bounded a.e. Lemma 4.6. Let T ą 0. Under Hypotheses 1 and 2, r V n ptq ´1,q{2 ď η n p0q ´1,q{2 `JT

ż t 0 ds η n psq ´1,q{2 (4.4)
where J T is a deterministic constant that is independent of n and t for t ď T .

Proof. Writing v n " r V n ´ηn p0q, we have

r V n ptq ´1,q{2 ď η n p0q ´1,q{2 ` v n ptq ´1,q{2 ď η n p0q ´1,q{2 `|v n Xu ptq| `|v n Xr ptq| `|v n Xe ptq| ` v n Yu ptq W ´1,q{2 ` v n Ye ptq W ´1,q{2 .
Let φ, ψ P W 1,q{2 . Since v n,φ,ψ " ? npΨ φ,ψ pZ n q ´Ψφ,ψ pzqq, we get 

| v n
`αend η n Ye psq W ´1,q{2 φ W 1,q{2 `βu p η n Yu psq W ´1,q{2 ` η n Ye psq W ´1,q{2 q φ W 1,q{2 `βu |η n Xu psq| ξ u psq `ξe psq W ´1,q{2 φ W 1,q{2 |v n,ψ Ye ptq| ď ż t 0 ds ´αon η n Yu psq W ´1,q{2 ψ W 1,q{2 ` η n Ye psq W ´1,q{2 pα end `λe qψ W 1,q{2 `p η n Yu psq W ´1,q{2 ` η n Ye psq W ´1,q{2 q β e ψ W 1,q{2 `|η n Xe psq| ξ u psq `ξe psq W ´1,q{2 β e ψ W 1,q{2 `µ η n Ye psq W ´1,q{2 ż 8 ´8 ρphqdhpτ h ψ ´ψq W 1,q{2
¯.

Now observe that

• Constants β u and λ u belong to W 1,q{2 .

• By Hypothesis 2, functions β e and λ e belong to W 1,q{2 , and there exist constants K β and K λ such that β e φ W 1,q{2 ď K β φ W 1,q{2 and λ e φ W 1,q{2 ď K λ φ W 1,q{2 for all φ P W 1,q{2 .

• By Hypothesis 1, there exists a constant K q{2 such that

ş 8 ´8 ρphqdhτ h ψ W 1,q{2 ď K q{2 ψ W 1,q{2 for all ψ P W 1,q{2 .
• By continuity of the inclusion W 1,q{2 ãÑ C 0,q{2 and Hypothesis 1,

Ξ q{2 pT q " sup 0ďsďT ξ u psq `ξe psq W ´1,q{2 ă `8.
This proves the Lemma with e.g.

J T " 2pα on `αr `αend q `βu `β e `pβ u `Kβ qp1 `Ξq{2 pT qq ` β u W 1,q{2 ` β e W 1,q{2 `λu `Kλ ` λ u W 1,q{2 ` λ e W 1,q{2 `µp1 `Kq{2 q.
Lemma 4.7. Under Hypothesis 1, sup n Ep}η n p0q} 2 ´1,q{2 q ă `8 (4.5)

Proof. Let pφ j q jě1 be a Hilbert basis in W 1,q{2 . By independence of the number N Yu p0q of colonized unexposed individuals at time 0, and their resistance levels pa i q iě1 , we have

E}η n Yu p0q} 2 W ´1,q{2 " 1 n ÿ jě1 E " ´NYu p0q ÿ i"1 pφ j pa i q ´xP u , φ j yq ¯2* `nE `NYu p0q n ´θYu ˘2( ÿ jě1 xP u , φ j y 2
since the crossproducts are 0. Indeed

E " N Yu p0q ÿ i"1 `φj pa i q ´xP u , φ j y ˘`N Yu p0q n ´θYu ˘ı " n ÿ i"1 E ! E " 1 tiďN Yu p0qu `φj pa i q ´xP u , φ j y ˘`N Yu p0q n ´θYu ˘ıˇˇˇN Yu p0q ) " n ÿ i"1 E ! `NYu p0q n ´θYu ˘1tiďN
Yu p0qu E `φj pa i q ´xP u , φ j y ˘ı)

" 0. Now, by independence again,

1 n ÿ jě1 E " ´NYu p0q ÿ i"1 pφ j pa i q ´xP u , φ j yq ¯2* " 1 n ÿ jě1 E ˆNYu p0q ÿ i"1 pφ j pa i q ´xP u , φ j yq 2 ď E ÿ jě1 φ 2 j pa 1 q ď KEp1 `|a 1 | q q, and nE `NYu p0q n ´θYu ˘2( ÿ jě1 xP u , φ j y 2 " θ Yu p1 ´θYu q ÿ jě1 xP u , φ j y 2 ď θ Yu p1 ´θYu qE D a1 2 W ´1,q{2 .
A similar bound holds for E}η n Ye p0q} 2 W ´1,q{2 .

Uniform estimate for the fluctuation process

Proposition 4.8. Under Hypothesis 1,

sup n E sup 0ďtďT }η n ptq} 2 ´1,q{2 ă `8 (4.6) sup n E sup 0ďtďT }η n ptq} 2 ´2,1 ă `8 (4.7)
Proof. By convexity, we have from (4.4)

}η n ptq} 2 ´1,q{2 ď 2} r V n ptq} 2 ´1,q{2 `2} Ă M n ptq} 2 ´1,q{2 ď 4}η n p0q} 2 ´1,q{2 `4J 2 T t ż t 0 ds}η n psq} 2 ´1,q{2 `2} Ă M n ptq} 2 ´1,q{2 .
Thus, we get by Gronwall's lemma

sup n E sup 0ďtďT }η n ptq} 2 ´1,q{2 ď `4 sup n E}η n p0q} 2 ´1,q{2 `2 sup n E sup 0ďtďT } Ă M n ptq} 2 ´1,q{2 ˘e4J 2 T T 2
, which is finite by (4.2) and (4.5). Inequality (4.7) follows by continuity of the inclusion W ´1,q{2 ãÑ W ´2,1 .

4.5 Tightness in Dpr0, T s, r E ´2,1 q Proposition 4.9. The sequences pη n q ně1 and p Ă M n q ně1 are tight in Dpr0, T s, r E ´2,1 q.

Proof. To show that the sequences p Ă M n q ně1 and pη n q ně1 are tight in Dpr0, T s, r E ´2,1 q, we use the Aldous-Rebolledo-Joffe-Métivier criterion [START_REF] Joffe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF][START_REF] Rebolledo | Central limit theorems for local martingales[END_REF] for Hilbert valued càdlàg semimartingales. First (4.2) and (4.6), together with the fact that the inclusion r E ´1,q{2 ãÑ r E ´2,1 is a Hilbert-Schmidt operator, imply that, for fixed t P r0, T s, p Ă M n ptqq ně1 and pη n ptqq ně1 are tight in r E ´2,1 . It remains to prove the Aldous conditions for ć Ă

M n č and for r V n , which are easily established using Lemma 4.3.

Limit points

Lemma 4.10. All limit points of pη n q ně1 and p Ă M n q ně1 are a.s. continuous.

Proof. Let ∆η n psq (respectively ∆ Ă M n,φ,ψ psq) denote the jump at s of η n,φ,ψ (respectively Ă M n,φ,ψ ). Since Ă M n and η n have the same jumps, it is enough to show that sup 0ďtďT η n ptq ´ηn pt´q ´2,1 tends to 0 in probability (Jacod and Shiryaev, 2003, Proposition VI.3.26).

The jumps of η n Xu , η n Xr , and η n Xe , are a.s. of size 1 ? n . Let now φ P W 2,1 , and consider the jumps of η n,φ Yu and η n,φ Ye . Given an arbitrary, but fixed, enumeration 1, ¨¨¨, n of the individuals in the population, we denote by m i,n ptq the resistance level of individual i at time t, setting m i,n ptq " 0 if i is uncolonized at t. Then, noting that a.s. two or more individuals cannot jump at the same time, the sizes of the possible jumps at time t of η n,φ Yu and η n,φ Ye are

• |φpm i,n pt ´qq|{ ? n if: individual i is colonized at t ´, and either undergoes decolonization, or a change in exposure status, or contaminates an uncolonized individual,

• |φpm i,n pt ´q`hq´φpm i,n pt ´qq|{ ? n: if individual i is exposed and colonized at t ´, and undergoes a mutation of amplitude h.

Thus in all instances the size of the jump is less than K ? n p1 `|m i,n ptq| `hq.

To obtain an uniform estimate for |m i,n ptq|, let 1 tjPCu ptq " 1 if individual j is in compartment C at time t, and 0 otherwise, and let k P t1, . . . , nu be an individual of the population. Taking in account only those transitions that increase the resistance level of individual k, we have where K is independent of n and i. The Markov inequality concludes the proof.

m 2 k,n ptq ď m 2 k,n p0q `ż t 0 ż N ˚żN ˚1tkPXu u ps ´q1 ti"ku 1 tjPYuYYeu ps ´q ˆ`m 2 j,
Proposition 4.11. For all T ą 0, the sequence p Ă M n q ně1 tends in law in Dpr0, T s, r E ´2,1 q to the process B " pB Xu , B Xr , B Xe , B Yu , B Ye q, which is a continuous centered square integrable Gaussian martingale, such that, for all φ, ψ P W 2,1 , the predictable quadratic variation process of B φ,ψ is ! B φ,ψ "" Ψφ,ψ pzq.

Proof. Let B be the limit in law in Dpr0, T s, Ẽ´2,1 q of a subsequence p Ă M n q ně1 . For φ, ψ P W 2,1 , the subsequence p Ă M n,φ,ψ q ně1 tends in law to B φ,ψ (by the continuous mapping theorem). Since the jumps of Ă M n,φ,ψ are those of η n,φ,ψ , we have

E sup sďt ∆ Ă M n,φ,ψ psq 2 R 5 ď p3 ` φ 2 W 2,1 ` ψ 2 W 2,1 qE sup sďt ∆η n psq 2 ´2,1
so that sup sďt }∆ Ă M n,φ,ψ psq} 2 R 5 Ñ 0 in probability for all t by (4.8). We deduce from (4.1) that φ, ψ P W 2,1 ñ φψ P W 1,q{2 for q ą 5. It then follows by (4.6) and Hypothesis 1 that ! Ă M n,φ,ψ " t tends in probability to Ψφ,ψ pzqptq for all fixed t. Now, the process Ψφ,ψ pzq is deterministic and 0 at time 0. Moreover the matrix Ψφ,ψ pzqptq ´Ψ φ,ψ pzqpsq is symmetric and nonnegative for all s ă t.

Therefore, using Pollard (1984, Theorem VIII.13), we conclude that p Ă M n,φ,ψ q ně1 tends in law to the continuous Gaussian centered martingale B φ,ψ with predictable quadratic variation ! B φ,ψ "" Ψφ,ψ pzq.

Next, the family t Ă M n ptq, t P r0, T s, n ě 1u of r E ´2,1 -valued random variables is uniformly integrable by (4.2). Therefore B is a martingale with respect to the filtration it generates (Jacod and Shiryaev, 2003, Propositions IX.1.1 and IX.1.12). Moreover, by Doob's inequality, E sup 0ďtďT Bptq 2 ´2,1 ă `8. Theorem 4.12. For all T ą 0, the sequence of processes pη n q ně1 tends in law in Dpr0, T s, r E ´2,1 q to the process η " pη Xu , η Xr , η Xe , η Yu , η Ye q P Cpr0, T s, r E ´2,1 q, On the one hand, η n,φ,ψ ´r V n,φ,ψ tends in law to B φ,ψ , by Proposition 4.11. On the other hand, since η is continuous (Lemma 4.10), η n,φ,ψ ´r Ψ φ,ψ pη n q tends in law to η φ,ψ ´r Ψ φ,ψ pηq by the continuous mapping theorem. We now show that r Ψ φ,ψ pη n q ´r V n,φ,ψ tends to zero in probability. Since r Ψ φ,ψ pη n qptq´r V n,φ,ψ ptq R Hence, η n,φ,ψ ´r V n,φ,ψ tends in law to η φ,ψ ´r Ψ φ,ψ pηq (Jacod and Shiryaev, 2003, Lemma VI.3.31). The lemma follows by uniqueness of the limit in law.

Lemma 4.14. ηp0q is defined uniquely as the limit in law in r E ´2,1 of pη n p0qq ně1 .

Proof. Since η is continuous, pη n p0qq ně1 is tight by projection at time 0. Now, for all φ, ψ P W 2,1 , straightforward calculations using characteristic functions show that any convergent subsequence pη n,φ,ψ p0qq ně1 tends in law to a Gaussian random variable with zero expectation and variance matrix

Ω φ,ψ " ¨θXu p1 ´θXu q ´θXu θ Xr ´θXu θ Xe ´θXu θ Yu φ ´θXu θ Ye ψ θ Xr p1 ´θXr q ´θXr θ Xe ´θXr θ Yu φ ´θXr θ Ye ψ θ Xe p1 ´θXe q ´θXe θ Yu φ ´θXe θ Ye ψ θ Yu p φ2 ´θYu φ2 q ´θXu θ Xe φ ψ θ Ye p ψ2 ´θYe ψ2 q ‹ ‹ ‹ ‹ '
where φ " xP u , φy, φ2 " xP u , φ 2 y, ψ " xP e , ψy, and ψ2 " xP e , ψ 2 y.

Lemma 4.15. Equation (4.9) has a unique solution in Dpr0, T s, r E ´2,1 q.

Proof. By Gronwall's lemma, the solution is pathwise unique. Next, by Jacod and Shiryaev (2003, Proposition IX.1.12), B is a martingale with respect to the filtration generated by pη, Bq, so that pathwise uniqueness implies uniqueness in law by the Yamada-Watanabe theorem (Revuz and Yor, 1991, Theorem IX.1.7).

Statistical applications

The application of Theorem 4.12 to practical statistical issues is far from straightforward, due to the fact that the limit processes zptq and ηptq have measure and distribution valued components, respectively. Moreover, although these processes may be converted to processes with real valued components by considering z φ,ψ and η φ,ψ for given φ, ψ P W 2,1 , the latter processes cannot be computed nor simulated from (3.3) and (4.9) in general. In this sense, theorems 3.3 and 4.12 are essentially existence theorems. However some results can be derived under more specific assumptions. Proof. It readily follows from the assumption and (4.9) that η 1,1 ptq is solution to the Langevin equation η 1,1 ptq " η 1,1 p0q `ż t 0 apsqη 1,1 psqds `B1,1 ptq, whose solution is (5.1).

Recall the definition of ψf,g pU psqq given by equations (3.1), and let A ˚denote the transpose of a square matrix A.

Corollary 5.2. If the functions λ e and β e are constant, ? npZ n,1,1 ptq ´z1,1 ptqq tends in law to the Normal distribution on R 5 with zero expectation and variance matrix Σ 1,1 ptq " Eptq ´Ω1,1 `ż t 0 Epsq ´1 ψ1,1 pzpsqqpEpsq ´1q ˚ds ¯Eptq ˚.

. For large n, under the conditions of Theorem 4.12 and Corollary 5.2, the distribution of ? npZ n,1,1 ptq ´z1,1 ptqq can be approximated by the Normal distribution N p0, Σ 1,1 ptqq. In particular, we have pV arZ Xu ptq, V arZ Xr ptq, V arZ Xe ptq, V arN Yu ptq, V arN Ye ptqq » npV arpη Xu ptqq, V arpη Xr ptqq, V arpη Xe ptqq, V arpη 1 Yu ptqq, V arpη 1 Ye ptqqq.

This shows that variability in the numbers of individuals in the compartments is of order ? n, explaining why simulations of the stochastic process in [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF] show high variability.

If λ e or β e are not constant, but P u and P e are absolutely continuous with respect to Lebesgue measure, then px u ptq, x r ptq, x e ptq, π u pt, mq, π e pt, mqq can be computed via numerical integration of (3.4). Monte Carlo simulations of Z f n,f,g ptq ´zf,g ptq can thus be performed for any measurable and bounded functions f and g in order to evaluate quantities of interest, such as times of emergence of resistant bacteria.

It is well known that the existence of a central limit theorem with Gaussian limit is central to the validity of bootstrap methods [START_REF] Beran | Asymptotic theory for bootstrap methods in statistics[END_REF]. In a situation where model parameters (or at least some of them) are estimated from observed data (e.g. by conditional least-squares), Theorem 4.12 may thus be invoked to establish the consistency of bootstrap methods.

Discussion

The issue of bacterial resistance to antibiotics is critical from a Public Health perspective. Since the emergence of resistant strains and their dissemination throughout the population results from the complex interaction of several processes, it is natural to rely on mathematical modeling to investigate the possible time course evolutions and to evaluate the impact of potential interventions.

Realistic descriptions of biological and epidemiological processes are often conveniently achieved through individual based models involving chance events. Numerical simulation of the resulting stochastic models using standard simulation algorithms may quickly raise feasibility issues due to computational load as the population size is increased and the structure of the compartments is detailed. The large number of simulations required to fully explore the model variability makes the problem even worse. For such reasons, a common practice is to fall back on a deterministic model in place of the initial stochastic formulation. Here, we showed that using the formalism of measure valued processes, it it possible to fully justify the choice of a deterministic formulation as the limiting case of the initial stochastic model. This is clearly an improvement on heuristic arguments as in [START_REF] Temime | Deterministic and stochastic modeling of pneumococcal resistance to penicillin[END_REF].

The law of large numbers provides a firm theoretical foundation for the deterministic model in the limit of a large population. Under assumptions which allow for numerical evaluation of the deterministic limit, this limit provides a simple means for analyzing the temporal trends of bacterial antibioresistance.

In this respect, the law of large numbers provides a theoretical confirmation the validity of the long term trends described in [START_REF] Temime | Deterministic and stochastic modeling of pneumococcal resistance to penicillin[END_REF], such as convergence to a steady-state of the numbers of individuals in each compartment, together with an increase of the level of antibiotic resistance in carriers. This shows in particular that exposure to antibiotics is critical, and that the level of resistance will be increasing with time in the absence of intervention on this factor.

The central limit theorem specifies the rate of convergence and provides an explanation for the high variability of e.g. times to emergence of resistant bacterial strains described by [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF], since it proves that for large n, the standard deviations of the process components are of order ? n. Regarding the particular model and situation studied in the present work, we note that the deterministic model used in [START_REF] Temime | Deterministic and stochastic modeling of pneumococcal resistance to penicillin[END_REF] provided good qualitative agreement with the time trends of antibiotic resistance in the field [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF]. Including age structure in the model was worth considering, since the frequency of treatment by antibiotics, and the probability of colonization, depend on age, and since the analysis of a model with age structure raises no novel methodological issue. However, the model of [START_REF] Temime | Bacterial resistance to penicillin G by decreased affinity of penicillin-binding proteins: A mathematical model[END_REF] used an effective treatment frequency that was calculated by weighting observed frequencies of treatment with probabilities of colonization according to age.

Here, for the sake of definiteness, the initial numbers of individuals in the five compartments of the model were assumed to be multinomial. However, other distributions could be assumed instead. The proof of the law of large numbers carries over to any context in which Lemma 3.2 is valid, i.e. Z n p0q tends to a deterministic vector zp0q as n grows large. In particular, a deterministic initial configuration is suitable. If Z n p0q tends to a random limit, the convergence in Theorem 3.3 is in law rather than in probability.

The SIS model is a standard choice to study endemic diseases (Andersson and Britton, 2000, chapter 8). Alternatively one may use SIR models with demography. Technically, the issue of an open population of unbounded size is dealt with by using localizing stopping times, such as in [START_REF] Clémençon | A stochastic SIR model with contact-tracing: large population limits and statistical inference[END_REF] for instance. This option would yield similar results, but at the price of greater variability in the central limit theorem due to superimposed fluctuations in population size.
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 1 Figure 1: Schematic description of the compartmental model, with the respective transition rates. The vertical axes in the Colonized compartments represent the scale of resistance levels, and the dots represent Dirac masses at the resistance levels of the colonized individuals.
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						sup n	max 1ďkďn	Ep sup 0ďtďT	m 2 k,n ptqq ă `8,
	yielding				
						E sup 0ďtďT	η n ptq ´ηn pt´q 2 ´2,1 ď	K n	,	(4.8)
						´q˘Q col Xu pds, di, djq
	`ż t 0	ż N ˚żN	0 ˚ż 1	1 tkPXeu ps ´q1 ti"ku 1 tjPYuYYeu ps ´q1 tvďβepmj,nps´q{ βeu
						ˆ`m 2 j,n ps ´q ´m2 k,n ps ´q˘Q col Xe pds, di, dj, dvq
	`ż t 0	ż N	0 ˚ż 8	1 tkPYeu ps ´q1 ti"ku 1 tvďµ Y pmj,nps´q{μu
						ˆ`pm 2 k,n ps ´`hq ´m2 k,n ps ´˘Q mut pds, di, dhq
	ď m 2 k,n p0q	`ż t 0	ż N ˚żN	˚1ti"ku 1 tjPYuYYeu ps ´qm 2 j,n ps ´qQ col Xu pds, di, djq
		`ż t 0	ż N ˚żN	0 ˚ż 1	1 ti"ku 1 tjPYuYYeu ps ´qm 2 j,n ps ´qQ col Xe pds, di, dj, dvq
		`K ż t 0	ż	N ˚ż 8 0	1 ti"ku pm 2 k,n ps ´q `h2 qQ mut pds, di, dhq,
	whence				
	Ep sup 0ďtďT	m 2 k,n ptqq ď xθ Yu P u `θYe P e , χ 2 y
						`pβ u `β e q	ż T 0	dsE ´sup 0ďuďs xZ n Yu puq `Zn Ye puq, χ 2 y Kµ
						ż T
						0	dsEp sup 0ďuďs	m 2 k,n puqq `KµT ρ 2 .

  Proposition 5.1. Assume that the functions λ e and β e are constant. Then we have

	η 1,1 ptq " Eptq ´η1,1 p0q	`ż t	Epsq ´1dB 1,1 psq ¯.	(5.1)
				0		
	where					
	¨´α on ´βu νptq 0	α r ´αr	α end 0		´βu x u ptq λ u	´βu x u ptq 0	‹ ‹ ‹
	α on	0	´αend		´βe x e ptq	´βe x e ptq `λe	‹ ‹
	aptq "		´βe νptq	‹ ‹
	β u νptq	0	0		´pα on `λu q	α end	‹ ‹
						`βu x u ptq	`βu x u ptq	‹ ‹
	0	0	β e νptq		α on `βe x e ptq	´pα end `λe q	‹ '
							`βe x e ptq
	with νptq " xξ u ptq `ξe ptq, 1y, and Eptq " exp	`şt 0 apsqds ˘.
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Then px u , x r , y u , π u , π e q is the solution to ρphqdhpτ h ψ ´ψqy ¯`B ψ Ye ptq, (4.9) for all φ, ψ P W 2,1 , where B φ,ψ is the Gaussian martingale defined in Proposition 4.11.

The proof rests on the three following lemmas. Lemma 4.13. All limit points in law of pη n q ně1 are weak solutions of the stochastic differential system (4.9).

Proof. Let η be the limit in law of a subsequence pη n q ně1 . For φ, ψ P W 2,1 , write (4.9) in the form η φ,ψ ptq " η φ,ψ p0q `ż t 0 dsL φ,ψ psqηpsq `Bφ,ψ ptq, and let the mapping r Ψ φ,ψ : Dpr0, T s, r E ´2,1 q Ñ Dpr0, T s, R 5 q be defined by r Ψ φ,ψ pζqptq " ζ φ,ψ p0q `ż t 0 dsL φ,ψ psqζpsq.

We have Ă M n,φ,ψ " η n,φ,ψ ´r V n,φ,ψ " pη n,φ,ψ ´r Ψ φ,ψ pη n qq `p r Ψ φ,ψ pη n q ´r V n,φ,ψ q.