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Abstract

The rise of bacterial resistance to antibiotics is a major Public Health
concern. It is the result of two interacting processes: the selection of
resistant bacterial strains under exposure to antibiotics and the dissemi-
nation of bacterial strains throughout the population by contact between
colonized and uncolonized individuals. To investigate the resulting time
evolution of bacterial resistance, [Temime et al| (2003) developed a stochas-
tic SIS model, which was structured by the level of resistance of bacterial
strains. Here we study the asymptotic properties of this model when
the population size is large. To this end, we cast the model within the
framework of measure valued processes, using point measures to repre-
sent the pattern of bacterial resistance in the compartments of colonized
individuals. We first show that the suitably normalized model tends in
probability to the solution of a deterministic differential system. Then we
prove that the process of fluctuations around this limit tends in law to a
Gaussian process in a space of distributions. These results, which gener-
alize those of [Kurtz| (1981], chap. 8) on SIR models, support the validity
of the deterministic approximation and quantify the rate of convergence.

1 Introduction

During the last decades, bacterial resistance to antibiotics has become a ma-
jor Public Health concern (Cars et al, [2008)). The case of S. Pneumoniae, a
pathogen responsible for respiratory infections, otitis, and meningitis, is partic-
ularly illustrative of the phenomenon, with prevalences of intermediate or resis-
tant pneumococcal strains exceeding 10% in 50%, and 25% in 15%, of European
countries (EARS-Network, 2012). The selection of resistant strains is the re-
sult of several interacting processes. At the bacterial level, point mutations and
horizontal transfers of genetic material lead to changes in antibiotic resistance



with a large range of effects (Martinez, |2008]). In the absence of exposure to an-
tibiotics, it is thought that most mutated strains do not give birth to significant
populations, since they are rapidly outgrown by competing antibiotic-sensitive
strains because of differences in fitness (Maher et al, [2012). In the presence
of antibiotics however, antibiotic-sensitive strains are selectively eliminated, so
that antibiotic-resistant strains will develop and colonize the available niche.
Exposure to antibiotics in human or animal populations is widespread, occuring
through prescribed or over-the-counter medical treatments, and other routes
such as food consumption. Once an antibiotic-resistant strain has been selected
in a host, it may disseminate across the population through inter-individual
contacts.

Temime et al (2003) developed a model which integrates the processes oper-
ating both at the bacterial and the human population levels, together with their
interactions. The model was cast in the form of an SIS stochastic model whose
compartments specify the status of individuals with respect to colonization by
bacteria, and exposure to antibiotics. We use the term ‘colonization’ rather than
‘infection’, since asymptomatic carriage is frequent. Each colonized individual
was further described by the level of resistance of the colonizing bacterial strain
which, in the case of penicillins, spreads over a continuum of values. Because of
this extra structure, the model belongs to the class of individual-based models,
and its properties in the large population limit cannot be investigated following
the approach of Kurtz (1981)), as e.g. in|Andersson and Britton (2000}, chap.5).
Although a law of large numbers was suggested by heuristic reasoning (Temime
et all 2005]), no rigorously established result is yet available.

In this paper, we consider the SIS model of [Temime et al (2003), and repre-
sent the resistance patterns of the colonized individuals by point measures. This
formalism allows a thorough investigation of the large population limit using the
approach of [Fournier and Méléard| (2004) and |[Méléard| (1998). A similar line
of attack was used in |Clémencon et al| (2008)) to study an SIR epidemic model
with an age structure. More specifically, we prove both a law of large numbers
and a central limit theorem for the suitably normalized model as the population
size tends to infinity.

2 Model and notations

The population is assumed to be of constant size n, and is partitioned into five
compartments as depicted in Figure [1| (see [Temime et all (2003)) for details): 4
compartments characterize the status of individuals with respect to both colo-
nization by S. Pneumoniae and exposure to antibiotics; the fifth compartment
corresponds to the so-called refractory phase, during which individuals cannot
be colonized due to acquired immunity with respect to the bacterial agent: such
a phase follows spontaneous decolonization but is not observed when decolo-
nization results from exposure to antibiotics (Prellner et al, [1999). Uncolonized
unexposed individuals are in compartment X, ; individuals in refractory phase
following spontaneous decolonization are in compartment X,.; uncolonized ex-



posed individuals are in compartment X.; colonized unexposed individuals are
in compartment Y,,; and colonized exposed individuals are in compartment Y.
Colonized individuals are further characterized by their level of resistance to
antibiotics, modeled as a continuous positive variable. Uncolonized individuals
may become colonized through contact with colonized individuals. Colonized
individuals may undergo decolonization, either spontaneously or through expo-
sure to antibiotics. If exposed, they may in addition undergo an increase of
their resistance level by selection of a population of genetically altered bacterial
strains.

Let 4,,, denote the Dirac measure at m, and M = {Zle Om;,m; >0,k <n
denote the set of point measures on R, = (0,00), with total mass bounded by
n. For v = Zle Om; € M and f a measurable bounded function on R, we set
W, [y = S, v(dm)f(m) = S, f(mi).

For all time ¢, the state of the population is described by the vector Z(t) =

(Zx,(t), Zx,(t), Zx, (t), Zy,(t), Zy,(t)), which takes values in the state space
E =1{0,1,...,n}® x M2. More specifically,

e Zx,(t) is the number of uncolonized unexposed individuals,
e Zx (t) is the number of individuals in refractory phase,

e Zx, (t) is the number of uncolonized exposed individuals,

e Zy, (t) is the random measure fvzyl“ ®) 0a; (1), where Ny, (t) = (Zy, (t),1) is

the number of colonized unexposed individuals, and ai(t),...,any. () (t)
denote their respective resistance levels,

e 7y (t) is the random measure Z;V:yf(t) Oy, (1), where Ny, (t) = (Zy,(t),1)
is the number of colonized exposed individuals and by(t),...,bny, (1) (t)
denote their respective resistance levels.

The dynamics of the population are driven by the following transitions:

e An unexposed individual, colonized or uncolonized, may become exposed,
at rate ayy,.

e An exposed individual, colonized or uncolonized, may become unexposed,
at rate aeng.

The rates «,, and a¢,q do not differ between colonized and uncolonized in-
dividuals, since the majority of S. Pneumoniae carriers are asymptomatic,
and exposure to antibiotics thus mainly results from prescription for un-
related infectious diseases.

e A colonized unexposed individual may undergo spontaneous decoloniza-
tion and enter the refractory phase, at rate \,.

e An individual in the refractory phase may leave this state and enter the
uncolonized unexposed compartment, at rate c,..
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Figure 1: Schematic description of the compartmental model, with the respec-
tive transition rates. The vertical axes in the Colonized compartments represent
the scale of resistance levels, and the dots represent Dirac masses at the resis-
tance levels of the colonized individuals.



e A colonized exposed individual, with resistance level b, may undergo de-
colonization, at rate A.(b). The rate of decolonization under exposure to
antibiotics is the sum of the spontaneous rate A, and the rate due to treat-
ment effect. Since the latter rate decreases as the resistance level of the
colonizing strain increases, A, is a non increasing function on R, tending
to A, at infinity. We let Ao = A.(0).

e An uncolonized unexposed individual may get colonized through contact
with a given colonized individual, exposed or unexposed, at rate (,/n.
The newly colonized individual acquires the resistance level of his con-
taminating contact.

e An exposed uncolonized individual may get colonized through contact with
a given colonized individual, exposed or unexposed, with resistance level
m, at rate f.(m)/n. To reflect the fact that the rate of colonization by
contact under exposure to antibiotics is higher when the resistance level of
the colonizing strain is higher, . is a nonnegative nondecreasing function
on R, assumed bounded from above by (.. The resistance level of the
newly colonized individual is m.

The normalizations 3,/n and S./n are standard in the formulation of
epidemic models (Andersson and Britton, 2000, section 2.1). They corre-
spond to the fact that in a mixing population of size n, each individual
has probability 1/(n — 1) ~ 1/n of making contact with another given
individual.

In {Temime et all (2003)), 5.(b) ranges from 0 to 28, as b ranges from 0
to infinity. This reflects the fact that: if the transmitted strain is not
resistant to antibiotics, treatment hinders colonization of the antibiotic
exposed individual; whereas if it is highly resistant, treatment facilitates
colonization as it clears the endogenous bacterial flora.

e A colonized exposed individual may undergo a genetic event, at rate u.
As a result, the individual’s resistance level increases by an amount of h,
where h is a positive random variable with distribution R(dh) = p(h)dh.
While genetic events may lead to drops in resistance level, such events are
not, observed, since, under exposure to antibiotics, bacterial strains with
lower resistance will not be able to establish as the dominant strain.

In the sequel, the components of a generic process U with values in F will
be denoted by Ux,,Ux,,Ux,,Uy,, and Uy,, respectively. For f,g: Ry — R
measurable and bounded, we define

Uﬁg = (UXu 5 UX7~3 UXe 5 U}ffu 5 U}gfe)7

where U{. = (Uy,, f) and U{. = (Uy,, g).
For f: R — R, and h > 0, we let 7, f(-) = f(- + h).
The notation 1 4 stands for the indicator function of the set A.
Throughout the paper, K will denote a generic constant, whose meaning
may change from line to line.



2.1 Poisson measure representation

The process (Z(t))i=o will be realized as the solution of a system of stochas-
tic differential equations driven by Poisson measures. On a probability space
(Q2, F,P) we consider the following independent random elements:

1. The initial state Z(0) € E, which is specified through

e The vector (Zx,(0), Zx,.(0), Zx,(0), Ny, (0), Ny, (0)), giving the ini-
tial numbers of individuals in the compartments, assumed to be
multinomial with index n, and probabilities (6x,,0x,,0x.,0y,,0y.).

e The initial point measures Zy,(0) = Zij\f{‘(o) dq, and Zy, (0) =
Z?{:Yf(o) dy,, where (a;)i>1, and (b;);>1 are two sequences of ii.d.
positive random variables with respective distributions P, and P..

2. The following Poisson measures:

e exposure onset Poisson measures Q%" (ds,di) and Q" (ds, di), with
common intensity measure a,,ds ® di,

e exposure ending Poisson measures Qﬁ?ﬁd(ds, di) and Q%};d(ds, di), with
common intensity measure cenpqds ® di,

e decolonization Poisson measures Qg,iwl(ds, di) and Q‘{,iwl(ds, di, dv),
with respective intensity measures \,ds ® di and A\.ds ® di ® dv,

e colonization Poisson measures Q%' (ds, di, dj) and Q¢ (ds, di, dj, dv),
with respective intensity measures %ds ® di ® dj and %ds ®di ®
dj ® dv,

e a refractory phase exit Poisson measure Qﬁ?jt(ds, di), with intensity
measure «,.ds ® di,

e a mutation Poisson measure Q?ﬂ“t(ds, di, dh), with intensity measure
pds ® di ® p(h)dh

where ds and dh are Lebesgue measure on R*, di and dj are counting measures
on N* and dv is Lebesgue measure on [0, 1]. We let (F}):>0 denote the canonical
filtration generated by Z(0) and the above Poisson measures.

The model (Z(t)):>o is defined as the (F%)-Markov process, which is the
unique solution of the system of stochastic differential equations

Zx,(t) = Zx,(0) = I (8) + IR (1) + IS () — (IR (D), 1)

Zx,(t) = Zx,(0) + (I (1), 1) = I (1)

Zx,(t) = Zx,(0) + I (t) = I (8) + (Iyeee' (1), 1) = ILL(1), 1) (2.1)
Zy, (1) = Zy, (0) — I () + IS4(8) — I () + IS (2)

Zy, (t) = Zy, (0) + I (8) — I9() — I3 () + IS/ () + I3 (¢)
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Note that the above representation of (Z(t)):>o yields a straightforward
algorithm for pathwise simulation of the process.

3 Law of large numbers

To establish a law of large numbers, as n — oo, we consider the normalized
process Z" = 17 with state space E; = [0,1]* x (M;)?, where M is the
space of subprobability measures on Ry. On E; we put the product topology
induced by the usual topology on [0, 1], and the topology of weak convergence
on Ml.

If S is a metric space, and T' > 0, C([0,T7], S) denotes the space of continuous
functions from [0, T] to S, equipped with the topology of uniform convergence,
and D([0,T],S) denotes the space of cadlag functions from [0, T'] to S, equipped
with the Skorohod topology (see e.g. |Jacod and Shiryaev| (2003, Chaper VI)).

To keep notations as concise as possible, given f,g: Ry — R measurable
and bounded, we define two mappings, U/9 and Ui,

The map /9 = (U \I!XT,\I/XE,\I!{,“,\I/*;],F), is defined from D([0,T7], E1)

uw?



to D([0,T],R?) as

t

v, 0)(0) = |

ds (—aonUxu (s) + a,Ux, (s) + aenaUx, (s)
0

~ BuUx, (s)Uy, (s) + Uy, (5), 1))

vy, )0 - |

ds (—a,«UXT(s) + \a(Uy, (5), 1>)

T U)(0) = | s (00U () = GenalUx (5) + U (9. o)

~ Ux, (5)(Uy, (5) + Uy, (5), B.))

t

W[, ()0 = [ ds (~(0un + A (5).0) + QenaT 5). 1)

0

+ BuUx, (s)(Uy, (5) + Uy, (5). )

w00 -

s (on(Uy, (5),9) = O, (5), (ena + 2c)9)

+ Ux, (s)(Uy, () + Uy,(5), Beg)

O, (91, [ pltdhtrg — ).

The map ¥/9 is defined from D([0,T], E1) into D([0,T],Ss), where Ss is
the space of real 5 x 5 symmetric matrices, as follows. Let

\ - 2 o
Yx. o UxLx, Pxuxe Yx, v, 0

Ux.x,  Ux, 0 oy, 0
P19 = | dx, x. 0 ¥x. 0 zﬁﬁgc,yc
1/;§(u,yu 1[’;(“1@ 0 }ﬁ}ffu A{f;g,yc

0 0 Py W WY



with

Px, (U(s)) = aonUx, (s) + arUx, (S) + ttenaUx, ()

+ BuUx, (s)(Uy, (s) + Uy, (s), 1)
Ux, (U(s)) = axUx, () + Au(Uy, (5), 1)
1Z)Xe (U(s)) = aonUx, (s) + QendUx, (s) + <UYe (8), Ae)

+ Ux, (s)(Uy, (s) + Uy, (s), Be)

W (U(9)) = (Con + M)y, (5), 12 + enalUy, (), £

+ BuUx, (5)(Uy, (s) + Uy (5), f%)
U5 (U(s)) = aonUv, (), g% + Uy, (8), (Qena + Ae)g”)

$ - (3.1)

T Ux, (5)Uy, (5) + Uy, (5), Beg®> + iUy, (5), j p(h)dh(rhg — 9))

Ux, x, (U(s)) = —a,Ux, (s)

wXu,X (U(S)) (aonUXu (5) + QenaUx, (5))

Ly, (U(s)) = =BuUx, (s)Uy, (s) + Uy.(s), [)

wx v, ([U(s)) = =AUy, (5), )

%y, (U(5)) = =(Uy,(5), Xeg) + Ux, (s)Uy, (s) + Uy, (5), Beg))
L2y, (U () = = (aon(Uy, (5), f9) + enalUv..(s), f9))

Then \If SO ))ds, where integration is componentwise.

The followmg pr0p0s1t10n states a semi-martingale decomposition which is
at the heart of the proofs.

Proposition 3.1. For all measurable bounded f,g: R, — R, we may write

znhe — ynfg 4 ]\4714’,97

where
vty = zm59(0) + BH9(Z) (1)

is a continuous finite variation process, and M™19 is a bounded cadlag martin-
gale, with predictable quadratic variation process

1 -
« M™9 »= —uh9(zm) (3.2)
n
Proof. Let L™ denote the infinitesimal generator of the Markov process Z". By

Ethier and Kurtz| (2005|, Proposition 4.1.7), for all measurable bounded function
¢ : B4 — R, the process

HZ" (1)) — B(27(0)) — j Lmo(27(s))ds



is a bounded martingale. This implies in particular that M ™79 is a martingale.
Taking ¢(x1,x2,x3,V1,02) = x%, the process

Ui(t) = Z%, (t)* - Z%,(0)?

= | (0023, (51 = 2%, 5)) + Qe Z3, 5)( + 228, ()

a2} (5)( + 228, (5))
BT (5) (- = 228 (N, (5) + 23, (), 1)

is thus a martingale.

Now, applying Itd’s formula to the semi-martingale Z% and the function

x — 22, we find that the process

Ua(t) = Zx, (t)* — Z%,(0)*

t
2 J 4575, (5) (~0on 78, (5) + enaZ%. (5) + 00 2% (5)
0

— BuZ% (SKZY () + 23 (5), 1)) = < M, > (1

is also a martingale. Since a finite variation predictable martingale is a.s. con-
stant, we have Uy — Uy = 0 a.s., hence the expression for < MYy >.

The other components are found likewise, using appropriate functions.
O

3.1 Convergence of the normalized process

Since the predictable variation process « M™/9 » is a.s. O(1/n), it is reason-
able to expect that the noise process M™% 9 will tend to 0 as n — o0, and that
the normalized sequence will tend to a deterministic limit.

First we note that the initial condition vector, as defined in Section [2.1]
tends to a deterministic limit.

Lemma 3.2. Asn — o0, Z™(0) tends to
Z(O) = (eXua GXTa 0X679Yupua 0Y€Pe)
a.s. in Fn.

Theorem 3.3. For all T > 0, the sequence (Z™),>1 converges in probability in
D([0,T], E1) to the deterministic process z = (Xy, Ty, Te, &y, &) € C([0,T], E1),
which is the unique solution to the following equation

219(t) = 219(0) + 09 (2)(1) (3.3)

for all measurable bounded functions f,g: R, — R.

10



Proof. Since the limit is deterministic, it is enough to prove convergence in law.
The uniqueness of solutions, and the characterization of limit points of
(Zn)n=1 as solutions of are established as in [Fournier and Méléard| (2004)).
C-tightness (see |Jacod and Shiryaev, 2003, Definition VI.3.25) of the se-
quence (Z™)p>1 in D([0,T1], E1) is equivalent to C-tightness of each component
(Jacod and Shiryaev, 2003 Corollary VI.3.33).

L. By Aldous’ criterion (Aldous, [1978), (2% )n>1, (Z%, Jn=1, and (2%, )n>1
are tight in D([0,T1],[0,1]). Since they have a.s. jumps of order 1/n they

are C-tight (Jacod and Shiryaev] 2003, Proposition VI1.3.26).

2. Similarly, for all f measurable and bounded, ((Z§, ,f))n>1 and
(Z%, f))n=1 are C-tight in D([0,T],R). It follows that (Z§ )n>1 and
(Z3 )n=1 are C-tight in D([0,T], MY), where M7 denotes the space M,
endowed with the vague topology (Roelly-Coppolettal [1986)).

3. Thus (Z™),>1 is C-tight in D([0,T], EV), where EY = [0,1]® x (M?)2. If
7 is a limit point in law of (Z"),>1 in D([0,T], E}), it can be shown that
(Zy,, 1y and (Zy, , 1) are limit points in law in D([0, 7], R) of (Z%,, 1))n=1
and ((Z3 ,1))n>1, respectively. The method of proof, similar to that in
Méléard and Tran| (2012), relies on approximating the functions 1y 1o,
k € N, by continuous functions such as

0 if m <k,
Ye(m)=<m—k ifk<m<k+1,
1 if m>k+1,

noticing that the functions 1 —1; and Sgo p(h)dh(Tht)r —r) have compact
support.

Theorem 3 in (Méléard and Roelly, 1993) then implies C-tightness of
(Z% )n=1 and (Z3 )n=1 in D([0,T], My).

O

3.2 Absolute continuity and densities

In this section, we assume that P, and P,, hence £, (0) and £.(0), are absolutely
continuous with respect to Lebesgue measure on R .

Under these conditions, Gronwall’s lemma implies that &,(¢) and &.(¢) are
absolutely continuous for all ¢, and we let m,(¢,m) and 7.(t,m) denote their
respective densities with respect to Lebesgue measure. The following corollary
then follows from and Fubini’s theorem.

Theorem 3.4. Assume that P, and P. are absolutely continuous with respect
to Lebesgue measure on Ry, and that B., A\e and p are bounded and continuous.

11



Then (Lo, Tr, Yu, Tu, Te) @8 the solution to

dx,, 0
% = —QonTy + QrTy + QendTe — xuf 6u(ﬂ'u(t, m) + 7T'e(t, m))dm
0

dz, «©

(Z = —Q;Ty +f0 ATy (t,m)dm
dx, o

> = QonTy — UendTe + J )\e(m)ﬂ-e(t7 m)dm

dt .

=3 " Belm)(ma(t, m) + o, m))dm
0 (3.4)
Lt m) =~ on)alt,m) + 0 (mltym) + 7, m)
+ Qename(t,m)
Cet,m) = gt m) — (ena + Aol (1, m)
+ 2o Bom)(ma(tym) + 7oty m))

| " et B)plm — R)dh — e (t,m)

with initial condition (0x,,0x,,0x.,0y, %, Oy, ‘éijz ).

This is the system of ordinary and partial integro-differential equations that
was derived heuristically in [Temime et al (2005)). The main interest of the sys-
tem of equations , in contrast to equation , is that it can be integrated
numerically, and used to analyze the long term trends of antibiotic resistance.
In this respect, Theorems [3.3] and [3.4] confer theoretical validity to the simu-
lations presented in [Temime et al (2005, section 5.3), which show that, in the
long term, the respective numbers of individuals in the five compartments tend
to a steady-state equilibrium, whereas the level of resistance in colonized indi-
viduals increases with time. Likewise, system may be used to estimate
the distribution of resistance levels in colonized individuals after a given period
of time (Temime et al, 2005, section 6.2). The approximation of the stochastic
model by its deterministic limit was observed to be acceptable for population
sizes above 5000.

4 Central limit theorem

In this section, we prove a central limit theorem for the sequence (n"),>1 =
(v/n(Z™ — 2z))n>1 of fluctuation processes.

Writing as above n™ = (0% ,n% 7.0y, My,), we note that ny (t) and
Ny, (t) are signed measures, whose limits, as n — 0, are not measure valued
in general. Thus, following the approach of Métivier (1987) and Oelschliger
(1990), we are led to chose as state space for (n™(t))i=0 a space of distributions
which is the dual of a weighted Sobolev space.

12



4.1 Notations, definitions, and preliminary results

Although the level of resistance to antibiotics is a positive variable, it will be
convenient to consider that the support of the measures 7y (t) and ny. (t) is the
whole of R. Likewise, we shall also consider that the support of the measures
Py, Pe, Z¢ (t), Z3. (1), &u(t), and & () is R, and that the functions A and .
are defined on R.

For ke N and v > 0, let W57 denote the space of functions ¢: R — R, such

that
m
1612, = f S |Dig(m < +o0,

2
R 1 1+ |m[>

where D7¢ is the weak jth derivative of ¢. Equipped with the ||-||y»~ norm,
Wk is a separable Hilbert space, whose dual is denoted by W %7, with dual
norm |-||y-»~. In the present context, the space of compactly supported
smooth functions on R is dense in W*?7 (Kufner and Opic, 1984).

We also define the space C*7 of k-times continuously differentiable functions
on R, such that

DI
im 2o
|m|—o0 1+ |m|’Y
with norm | Fm)|
DI
||f||Cl""'V - Z sup 1+ |m|,y .

<k‘ meR

Clearly, if f e C*7, |f(m)] < ||fllgr~ (1 + |m|Y). Moreover for k > 0,1 > 1,
v =0, and « > 1/2, the inclusions

WkJrl,'y SN Ck,fy . Wk.,'y+a (41)

are continuous (Métivier} [1987)), i.e. there exist constants K and L such that

1flwrove < K| florn < L flweers.
The following Proposition is proved as in |[Méléard| (1998], Lemma A, section

3.2), using the continuity of the inclusion W*7 < C%7 for k > 1.

Proposition 4.1. Let k € N* and v = 0. For fited m € R and h > 0, the
mappings

Dp: e WY — p(m)
Dmh: ¢ € Wk”y = (Th(rZS - ¢)(m)
are linear and continuous. Moreover

(L4 |m|7)
(1+|m|” + h").

1D llw—+ < K
[1Dmnllw - < K

By Parseval’s identity, we deduce
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Corollary 4.2. Let (¢;);>1 be a Hilbert basis of Wk, Then
> 65(m)* < K(1+|m[*)
i>1
2 ((They — ¢5)(m)* < K(1+ [m[* + h*).
j=1
For k € N and v > 0, let E=%7 = R3 x (W~%7)2, equipped with the
Hibertian product norm

%/[/7k,‘y) 1/2.

1€l =k = (ICxul? + 1Cx, 1 + 1Cx P+ ISy l3y—rn + [ISy,

The motivation for considering weighted Sobolev spaces is that we need
constant functions to belong to the space of test functions. While any v > 1/2
would thus be adequate, we have chosen v = 1 for simplicity. The choice of k
was guided by two considerations: first, £ > 1 is required for continuity of the
map m — d,,; and second, tightness of (n,,),>1 will be proved using the fact
that the dual inclusion W—F7+e s W=+ g 5 Hilbert-Schmidt operator
for & > 1/2. Overall this led to the choice of W' as state space for n{. and
ny., and of W-L1lta o > 1/2 as an auxiliary state space.

Now, the measures Z¢: (t), Z¢ (t),&u(t) and & (t) belong to W11+ as soon
as they have moments of order ¢ = 2(1 + «) > 3. However, the existence of
moments of order ¢ > 5 is needed in order to deal with the quadratic variation
processes, whose expressions contain products of test functions.

For p = 0, let x? denote the function m — |m|P, and let p, = Sgo h?p(h)dh.

Hypothesis 1. There exists ¢ > 5 such that
(Py, x%) < 400, (Pey x?y < 400, and Pq < +00.

The proof of the following Lemma, which shows that the above moment
hypothesis propagates in time, is analogous to that of Theorem 3.1 in [Fournier
and Méléard| (2004]).

Lemma 4.3. Under Hypothesis

sup (Eu(t) +&e(t), X)) < +oo,

0<t<T
supE sup (Zy. (t) + Zy. (t),x?) < +c0.
n 0<t<T

The above lemma shows in particular that the mappings ¥%¥ and U%¥ are
well defined for all ¢, € W14,
We have the semimartingale decomposition

() = VOO () + M),
where
Vo (n) = (Ve () — 20 (1)
= 00 (0) + V(WO (Z7) (1) = WOV (2) (1)

14



is a continuous finite variation process, and

M™% (1) = /nM™ ¥ (1)
is a_square integrable martingale with predictable quadratic variation process
& MMV = Ud¥(Zm).

In obvious notations, we consider the processes V™ and M", which, as shown
below, may be considered as E~1%/2 valued processes.

4.2 The martingale term

Proposition 4.4. The process M" = (]\7}5“,]\7%,1’\\4}6,]\7%,]\7%) is a.s.
a cadlag square integrable martingale, taking its values in the Hilbert space
E~%42 Moreover

supE( sup HM (t )|2_17q/2> < +00. (4.2)

o<t<T

Proof. Let (¢;);=1 be a Hilbert basis of W49/2. By Parseval’s identity,

IV, 40 = (M, (£)? + (M (£)* + (M (1)?
i ZM“’J + EMM” £)2.

Jj=1 Jj=1

By Doob’s inequality, Proposition [3.1] and Corollary [£.2] we have

E( sup 1\7)"( (t)2 + sup 1\7)"( (t)2 + sup 1\7)"( (t)2
o<t<T ¢ ost<T ost<sT  °

+Z sup M’%() +Z sup M’¢J()>

=1 0<t<T Yo j510<t<T Ye

<AT (K1 + KoE sup (Z + 73, xD))
0<t<T

and the last line is bounded uniformly in n, by Hypothesis[I] and Lemma

Moreover M™ is a martingale in the separable Hilbert space E-1a/ 2, since
Mm99 is a martingale for all j and k, and E(sup,, k||M"’¢J Pk ||ps) < o0 (see
Badrikian, 1996)).

Finally, mimicking the proof of [Ferland et al (1992, Proposition 3.5) shows
that M™ has a.s. cadlag paths. O

The definitions of the scalar Doob-Meyer processes of a square integrable
Hilbert-valued martingale may be found in (Badrikian, [1996) or (Métivier,
1982).

Proposition 4.5. The scalar Doob-Meyer process £ M + of the square inte-
grable martingale Mn s given by

£M" 3 =< My, >+ <My >+<My >+4Mp ++ €My + (43)
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where

t

E AT 3 () = | s+ 02 (). IDia )
+ By (K28, (5) + 28, (5), 1D By v
+ Qendl 23, (5), 1D 3y 1,020

and

T
ET 4 (0) = | ds(0n(Z3, (50 1Dy
+ <Z§3€ (5), (Ae + O‘end)”DmH%/Vfl-,q/»
+ Z;L(E (S)<Z§}u (8) + Z;ﬁe (s)7ﬁeHDmH%}V*1,q/2>
(23 (), 1 Doy 1,02

4.3 The drift term

We now consider the continuous finite variation process V.
The following assumption ensures that the mappings ¢ — A.¢ and ¢ — B¢
are bounded operators from W149/2 to W14/2 and from W21 to W21,

Hypothesis 2. The functions A, and §. are twice differentiable, and their
derivatives are bounded a.e.

Lemma 4.6. Let T > 0. Under Hypotheses[1] and[3,

t
V™)l -1,9/2 < 1" (0| —1,q/2 + JTL ds||n"™ (s)]| 1,42 (4.4)

where J1 is a deterministic constant that is independent of n and t fort < T.

Proof. Writing v™ = V" — 7™(0), we have

V™)l -1,9/2 < 1" (0)| 1,92 + 0" (B) | -1,q/2
< ™ (O -1.q/2 + [0%, (O] + [V, (O] + vk, (1)]

+ oy, Ollw-ra2 + [0y, (O)[w-1.02.
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Let ¢, € WH9/2, Since v™®¥ = \/n(U¥(Z") — U (2)), we get

o (8)] < j

ds (vonl, (5)] + arln’, (5)] + aenaln, (5)]
0

+ (¥, ($)w-ra2 + 105, () lw-r.a2) | Bullwr.az + Bulnk, (S)I)

t
0%, (01 < [ dsarli, 6)] + 195, (9 h-s.am A
0

t
0%, 0] < [ ds(aon %, (9] + Qenali, ()] + 15, s X .o
0

+ (%, ($)llw-rarz + 03, () w12 | Bellw .oz + Belnk, (S)I)

t
5200 < | ds((@on+ MR, 2 [

+ Qenal|ny, () lw—1.02 [l wr.ar2
+ Bulllny, ($) w102 + 15, () lw—1.02) [ Bl wrr.ar2

+ Bule, (1€(s) + () s [@llwr.2 )

t
301 < [ d (o5, (9hws.oal¥lro
0

+ [0y, (8) lw—r.02 [ (@ena + Ae)Pllwr.ar2
+ (¥, (lw-raz + 115, () lw-1.02) | Betp [l wrr.ar2
+ 0%, (9)[[1€u(s) + Ee(8)lw—r.a2 | Betd w2

el s [ pmantme -0 L)

Now observe that

Constants 3, and )\, belong to W14/2,

By Hypothesis [2, functions 3. and ). belong to W1%/2 and there ex-
ist constants K and Ky such that ||Bed|w1a2 < Kplld|lw1.e2 and
Al a2 < Kxl|@|lyr.a2 for all ¢ e Wha/2,

By Hypothesis [l  there exists a constant K, such that
157, p(h)AhTnt)|| 1 e < Egpallto iz for all o e Wha/2,

By continuity of the inclusion W4/2 — C%/2 and Hypothesis

Zqj2(T) = 500 [[&u(s) + Ee(s)llw-1.02 < Ho0.

0<s<

This proves the Lemma with e.g.

Jr = 2(qon + @ + Qena)
+ Bu + Be + (Bu + Kp) (1 + Eq2(T)) + |Bullwr.arz + [|Bellwr.a
+ Au + EKx A+ [ Aullwrae + [ Aellwrae + (1 + Kqp2)-
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Lemma 4.7. Under Hypothesis

sup E([n" (02, 4/) < +0 (4.5)

Proof. Let (¢;)j>1 be a Hilbert basis in W14/2. By independence of the number
Ny, (0) of colonized unexposed individuals at time 0, and their resistance levels
(a;)i=1, we have

Ny, (0)

g, (0) 1.0 = iZE{( 3 @ite) ~ o)}
k(MO gy 1) 5167
since the crossproducts are 0. Indeed
E[N() (65(a) — Puo) (2 gy )]
= 3 E{E[1penyon (¢5(0) - ) (2 gy ) ||wse 0))

s
Il
—

I
=

E{ (NY#(O) — Hyu)]l{igj\lyu (o)}E(¢j (a;) — (Pu, ¢J>)]}

I
’ —

Now, by independence again,

- T (%m (0500~ (Paco))}
]>1 =1 Nyu(o)
= - Z ( Z (b] az) <Pu7¢j>)2>

j>1 =1
EZQZSQCM KE1+|CL1‘)
Jj=1
and
N
nE{(Y#(O) —0y,) "} Y (Pur )% = Oy, (1= 0y,) D1 (Pu, )

j=1 j=1
< Oy, (1= 0y, )E[[ Do, [[7y-1.0/2-

A similar bound holds for E||n{ (0)[2, ..,/
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4.4 Uniform estimate for the fluctuation process

Proposition 4.8. Under Hypothesis [1}
supE sup [ (t)[2, ;0 < +00 (4.6)
n  0<t<T

supE sup [n"(t)[2,, < +o0 (4.7)

0<t<T

Proof. By convexity, we have from
I @171 g2 < 2V O 1,40 + 21" (1) 1 4
t
ST O o + 4T3 [ sl @12+ AT O,
Thus, we get by Gronwall’s lemma

supE sup Hn"(ﬂ”gl,qﬂ
n

o<t<T

)

~ 2 2
< (45U B[ (0)[2, 4o + 2500 E sup [FI (1), o) HT
n n o<t<T

which is finite by (4.2) and (4.5). Inequality (4.7]) follows by continuity of the
inclusion W—14/2 — W—21, O

4.5 Tightness in D([0,T], E~2)

Proposition 4.9. The sequences (N")p>1 and (Mn)n>1 are tight in
D([0.7], B-21).

Proof. To show that the sequences (]\7")”>1 and (n™),>1 are tight in
D([0,T], E=21), we use the Aldous-Rebolledo-Joffe-Métivier criterion (Joffe
and Métivier, [1986; Rebolledo, |1980) for Hilbert valued cadlag semimartingales.
First (4.2) and (4.6)), together with the fact that the inclusion E-1a/2 <, 21
is a Hilbert-Schmidt operator, imply that, for fixed ¢ € [0,T], (Z\7 "(t))n>1 and
(™(t))n>1 are tight in E~21. It remains to prove the Aldous conditions for
£ M % and for ‘N/", which are easily established using Lemma O

4.6 Limit points

~

Lemma 4.10. All limit points of (n™)pn=1 and (M™),>1 are a.s. continuous.

Proof. Let An™(s) (respectively A]\fzn’qﬁ’w(s)) denote the jump at s of n™®¥
(respectively M™%¥). Since M™ and 5™ have the same jumps, it is enough to
show that supy<,;<r||n"(t) — n™(t—)||-2,1 tends to 0 in probability (Jacod and
Shiryaev, 2003 Proposition VI.3.26).

The jumps of 0y , n% , and n’;_, are a.s. of size ﬁ Let now ¢ € W21, and

consider the jumps of n$;¢ and nﬁf. Given an arbitrary, but fixed, enumeration

19



1,---,n of the individuals in the population, we denote by m, ,,(¢) the resistance
level of individual 7 at time ¢, setting m; ,,(¢t) = 0 if ¢ is uncolonized at ¢. Then,
noting that a.s. two or more individuals cannot jump at the same time, the
sizes of the possible jumps at time t of 77?,’4) and 7];‘,’4) are

o |p(m;n(t—))|/+/n if: individual ¢ is colonized at ¢_, and either undergoes
decolonization, or a change in exposure status, or contaminates an uncol-
onized individual,

o [p(min(t—)+h)—p(m;n(t-))|/v/n: if individual 7 is exposed and colonized
at t_, and undergoes a mutation of amplitude h.

Thus in all instances the size of the jump is less than %( + |mi o ()| + h).

To obtain an uniform estimate for |m;,(t)], let 1ecy(t) = 1 if individual
j is in compartment C' at time ¢, and 0 otherwise, and let k € {1,...,n} be
an individual of the population. Taking in account only those transitions that
increase the resistance level of individual k, we have

mi (t mk) n

J J J Liex,y (5-)Lgimry Ljey, uy.y (5-)
N JNE
( j,n( *) - k,n(‘s*» 5t (dS di dj)

+J f f f Likex, 3 (5-) Li=iy Lgevi oo} (5= ) Liv<p, (my. (s_)/Be}
0 JN* JN* JO
x (m3,(s-) = mi . (s2)) Q¥ (ds, i, dj, dv)

JJ‘N*J‘ Likeve (=)L imiy Loy (m) n(s-)/)
X ((m2 (s +h) —m2, (s-) Q"™ (ds, di, dh)

<o)+ [ ] S (- md (o)L s, )
N* JN*

T j [ J Loy Lgjevaovay (5 )me . (s ) Q52! (ds, di, dj, dv)
0 JN* JN* JO
t 00
v K J J J Loy (2, (s_) + B2)Q™(ds, di, dh),
0 JN* JO

whence

E( sup mj ,(t)) < By, Pu + Oy, Pe, x*)

0<t<T

+ (Bu + Be) LT ds]E( sup (Zy. (u) + Zy (u), X2>>

O0<u<s

T
+K,uj dsE( sup m3 ,(u)) + KuTps.
0

O<u<s
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Thus, by Lemma [£.3] and Gronwall’s lemma,

E 2 () < +oo
sup max (Ozltlngk,n( )) < +oo,

yielding
n n 2 K
E sup [In"(t) —n"({t=)[Z20 < —, (4.8)
0<t<T n

where K is independent of n and i. The Markov inequality concludes the proof.
O

Proposition 4.11. For all T > 0, the sequence (]\7”),1;1 tends in law in
D([0,T], E=%1) to the process B = (Bx,,Bx,,Bx.,By,,By,), which is a
continuous centered square integrable Gaussian martingale, such that, for all
¢, € W21, the predictable quadratic variation process of B®Y is

& BPY = 0¥ (2).

Proof. Let B be the limit in law in D([0,T], E‘Q’l) of a subsequence (Mn)ngl.
For ¢,v € W21, the subsequence (M™?%¥),~; tends in law to B®Y¥ (by the

continuous mapping theorem). Since the jumps of M™#% are those of N,
we have

Esg};IIAM”"W(s)IIf@ < B+ [1¢lffy=n + ”'L/)H%/Vll)ESgI?HAnn(S)H%Zl

so that sup <, ||AA7"’¢’w(s)|\H%5 — 0 in probability for all ¢ by (4.8).

We deduce from that ¢,0 € W21 = ¢p € WH9/2 for ¢ > 5. It
then follows by and Hypothesis [1] that « M™% », tends in probability
to W% (2)(t) for all fixed t. Now, the process U#¥(z) is deterministic and
0 at time 0. Moreover the matrix W% (z)(t) — U?¥(2)(s) is symmetric and
nonnegative for all s < t.

Therefore, using [Pollard (1984, Theorem VIII.13), we conclude that
(]\7""’5"")”;1 tends in law to the continuous Gaussian centered martingale B
with predictable quadratic variation « B®% »= U9 (z).

Next, the family {M"(t),t € [0,T],n = 1} of E~2'-valued random variables
is uniformly integrable by . Therefore B is a martingale with respect to
the filtration it generates (Jacod and Shiryaev, [2003, Propositions IX.1.1 and
IX.1.12). Moreover, by Doob’s inequality, E supg<;<p||B(t)[|24, < +0. O

Theorem 4.12. For allT > 0, the sequence of processes (N™)n>1 tends in law in
D([0,T], E=*1) to the process 1 = (1x,,1x,,1x.: M., v.) € C([0,T], E~>1),
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which is the unique solution of the system

e (0) = e, (0 + [ ds (= (9 + 0, () + 0, (5
= ()M, (8) + Ny, (), Bu) — nx, (5)Eu(s) + &e(s), 5u>) + Bx, (1)
(0 =, 0+ [ ds (=, (9 + G (9. 00) + B, (1)

0 (t )+ f s (o1, (5) — Cenanx (3) + 1y, (5) Aed
— 2e(5)a (5) + v, (), Bed — 77X()<§u(5)+§e(5),5e>)+Bxe(t)

nt, (0 ) | s (= (6), @on + 2)0) + (v, (5), @enady

u

2 ()0, (5) + 1y, (), Bud) + 1, (5)Eu(5) + €c(5), Bu)) + BY, (1

Y

0l () = 7l (0) + JO ds Gy, (), aonth) — 1y, (5). (@ena + Ac))

42 (5)ny, (5) + 1, (5), Bty + mx, (1Eus) + Eels), Bty
(.1t | p(dh(rd =) + B, (1),

(4.9)
for all ¢, € W%, where B®Y is the Gaussian martingale defined in Proposi-
tion [{11

The proof rests on the three following lemmas.

Lemma 4.13. All limit points in law of (N,)n>1 are weak solutions of the
stochastic differential system (4.9)).

Proof. Let n be the limit in law of a subsequence (7,)n>1. For ¢,9 € W21,

write (4.9) in the form
¢
W) =) + | dsLPV(shn(s) + B )
0
and let the mapping U : D([0,T], E-%') — D([0,T],R?) be defined by

FOU()(t) = CPV(0) + f dSLH¥ (s)((s).

We have
MY — noeY — Ve
= (nn,¢,w — \I/¢,w(nn)) + (\w,w(nn) — Vn,aﬁ,w)_
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On the one hand, n™®¥ — Vn®? tends in law to B®¥_ by Proposition On
the other hand, since 7 is continuous (Lernrna7 Y — \T/¢’¢(77") tends in
law to n®¥ — \I/¢’w(n) by the continuous mapping theorem. We now show that
UP¥ (nn) — V9% tends to zero in probability. Since

[T (™) ()= V™% (1) |[gs < %L ds(lnh(s)ll@%(s) + 17y, (), Bu(l + &)l
I ()G, () + 1, (), Be(1 + ) )
< % j s ($)]12 51 (18u(L + &) lwr + el + ) ),

we have, for all € > 0,

~ ~ KT
P( sup B9 (") (1) — P (1)) > ) < ——swE( sup ["(5)]%,)
0<t<T 6\/7; n

0<s<T

— 0 as n — oo by (4.7).

Hence, n™»%¥ — V9% tends in law to n®¥ —\Tld”w(n) (Jacod and Shiryaev, [2003|
Lemma VI.3.31). The lemma follows by uniqueness of the limit in law. O

Lemma 4.14. n(0) is defined uniquely as the limit in law in E-21 of
(1"™(0))n>1-

Proof. Since 7 is continuous, (n™(0)),>1 is tight by projection at time 0. Now,
for all ¢, € W21, straightforward calculations using characteristic functions
show that any convergent subsequence (™% (0)),>1 tends in law to a Gaussian
random variable with zero expectation and variance matrix

QPY =
Ox,(1—6x,) —0x,0x, —0x,0x, —quﬁyuq} —HXuGYJZ)
Ox,(1-0x,) —0Ox,0x, —0x, 0y, ¢ —0x, 0y, v
Ox.(1-0x.)  —Ox.0v,¢ —Ox.0v.¢

Oy, (92 — Oy, 0*)  —Ox,0x,00
Oy, (2 — Oy, 9?)

where d_) = <Pu7 ¢>7 (52 = <Pu7 ¢2>7 QZ = <Pe>w>a and 1;2 = <Peaw2>' O
Lemma 4.15. Equation ([A.9) has a unique solution in D([0,T], E=>1).

Proof. By Gronwall’s lemma, the solution is pathwise unique. Next, by |[Jacod
and Shiryaev| (2003, Proposition 1X.1.12), B is a martingale with respect to the
filtration generated by (1, B), so that pathwise uniqueness implies uniqueness in
law by the Yamada-Watanabe theorem (Revuz and Yor |[1991, Theorem I1X.1.7).

O
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5 Statistical applications

The application of Theorem to practical statistical issues is far from
straightforward, due to the fact that the limit processes z(t) and 7(t) have
measure and distribution valued components, respectively. Moreover, although
these processes may be converted to processes with real valued components by
considering 2% and n®¥ for given ¢,v € W2!, the latter processes cannot be
computed nor simulated from and in general. In this sense, theorems
and are essentially existence theorems.
However some results can be derived under more specific assumptions.

Proposition 5.1. Assume that the functions A\ and B, are constant. Then we
have

20 = B (0 0)+ | B(s) Bt (). (51)

where
—Qpn Qo Qend _Buxu(t) _5uxu (t)
— Buv(t)
0 —Q 0 Au 0
Qon, 0 —Qend —Bexe(t) —Bee(t) + Ae
a(t) = — Bev(2)
ﬁuu(t) 0 0 _(aon + >\u) Qend
+ Buzyu(t) + Buzu(t)
0 0 Bev(t) Qon + Bexe(t) —(end + Ae)
+ 5exe(t)

with v(t) = (€, (t) + £.(t), 1), and E(t) = exp(§; a(s)ds).

Proof. Tt readily follows from the assumption and ([4.9) that n':'(¢) is solution
to the Langevin equation

PO =00+ [ als)gts)ds + BU),

whose solution is (5.1)).
O

Recall the definition of ¢)/9(U(s)) given by equations (3.1)), and let A* de-
note the transpose of a square matrix A.

Corollary 5.2. If the functions \e and B. are constant, /n(Z™V1(t) — zb1(t))
tends in law to the Normal distribution on R® with zero expectation and variance
matrizc

U = B (20 + fo E(s) 7101 (2(5)) (B(s) ") ds ) E(1)*.
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For large n, under the conditions of Theorem and Corollary the
distribution of \/n(Z™%!(t) — 2%1(t)) can be approximated by the Normal dis-
tribution N(0, £1(¢)). In particular, we have

(VarZx,(t),VarZx, (t),VarZx,(t),VarNy,(t), VarNy,(t))
~n(Var(nx, (), Var(nx, (1)), Var(nx, (1)), Var(ny, (t), Var(ny, (t)))-

This shows that variability in the numbers of individuals in the compartments
is of order y/n, explaining why simulations of the stochastic process in [Temime
et all (2003) show high variability.

If A\¢ or . are not constant, but P, and P, are absolutely continuous with
respect to Lebesgue measure, then (z,(t),x,(t),ze(t), 7y (t,m), me(t,m)) can
be computed via numerical integration of (3.4). Monte Carlo simulations of
ZFF9(t) — zH9(t) can thus be performed for any measurable and bounded
functions f and g in order to evaluate quantities of interest, such as times of
emergence of resistant bacteria.

It is well known that the existence of a central limit theorem with Gaussian
limit is central to the validity of bootstrap methods (Beran and Ducharme,
1991). In a situation where model parameters (or at least some of them) are
estimated from observed data (e.g. by conditional least-squares), Theorem
may thus be invoked to establish the consistency of bootstrap methods.

6 Discussion

The issue of bacterial resistance to antibiotics is critical from a Public Health
perspective. Since the emergence of resistant strains and their dissemination
throughout the population results from the complex interaction of several pro-
cesses, it is natural to rely on mathematical modeling to investigate the possible
time course evolutions and to evaluate the impact of potential interventions.

Realistic descriptions of biological and epidemiological processes are often
conveniently achieved through individual based models involving chance events.
Numerical simulation of the resulting stochastic models using standard simula-
tion algorithms may quickly raise feasibility issues due to computational load
as the population size is increased and the structure of the compartments is
detailed. The large number of simulations required to fully explore the model
variability makes the problem even worse. For such reasons, a common practice
is to fall back on a deterministic model in place of the initial stochastic formu-
lation. Here, we showed that using the formalism of measure valued processes,
it it possible to fully justify the choice of a deterministic formulation as the
limiting case of the initial stochastic model. This is clearly an improvement on
heuristic arguments as in (Temime et all [2005]).

The law of large numbers provides a firm theoretical foundation for the de-
terministic model in the limit of a large population. Under assumptions which
allow for numerical evaluation of the deterministic limit, this limit provides a
simple means for analyzing the temporal trends of bacterial antibioresistance.
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In this respect, the law of large numbers provides a theoretical confirmation the
validity of the long term trends described in |Temime et al| (2005)), such as con-
vergence to a steady-state of the numbers of individuals in each compartment,
together with an increase of the level of antibiotic resistance in carriers. This
shows in particular that exposure to antibiotics is critical, and that the level
of resistance will be increasing with time in the absence of intervention on this
factor.

The central limit theorem specifies the rate of convergence and provides
an explanation for the high variability of e.g. times to emergence of resistant
bacterial strains described by Temime et al| (2003)), since it proves that for large
n, the standard deviations of the process components are of order 4/n.

Regarding the particular model and situation studied in the present work,
we note that the deterministic model used in (Temime et al, 2005) provided
good qualitative agreement with the time trends of antibiotic resistance in the
field (Temime et al, [2003)). Including age structure in the model was worth con-
sidering, since the frequency of treatment by antibiotics, and the probability of
colonization, depend on age, and since the analysis of a model with age struc-
ture raises no novel methodological issue. However, the model of [Temime et al
(2003)) used an effective treatment frequency that was calculated by weighting
observed frequencies of treatment with probabilities of colonization according
to age.

Here, for the sake of definiteness, the initial numbers of individuals in the five
compartments of the model were assumed to be multinomial. However, other
distributions could be assumed instead. The proof of the law of large numbers
carries over to any context in which Lemma is valid, i.e. Z™(0) tends to a
deterministic vector z(0) as n grows large. In particular, a deterministic initial
configuration is suitable. If Z™(0) tends to a random limit, the convergence in
Theorem is in law rather than in probability.

The SIS model is a standard choice to study endemic diseases (Andersson
and Britton, [2000, chapter 8). Alternatively one may use SIR models with
demography. Technically, the issue of an open population of unbounded size
is dealt with by using localizing stopping times, such as in [Clémencon et al
(2008)) for instance. This option would yield similar results, but at the price of
greater variability in the central limit theorem due to superimposed fluctuations
in population size.
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