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The orthogonalized harmonic decomposition of symmetric fourth-order tensors (i.e. hav-
ing major and minor indicial symmetries, such as elasticity tensors) is completed by a 
representation of harmonic fourth-order tensors H by means of two second-order har-
monic (symmetric deviatoric) tensors only. A similar decomposition is obtained for non-
symmetric tensors (i.e. having minor indicial symmetry only, such as photo-elasticity ten-
sors or elasto-plasticity tangent operators) introducing a fourth-order major antisymmetric 
traceless tensor Z. The tensor Z is represented by means of one harmonic second-order 
tensor and one antisymmetric second-order tensor only. Representations of totally sym-
metric (rari-constant), symmetric and major antisymmetric fourth-order tensors are simple 
particular cases of the proposed general representation. Closed-form expressions for ten-
sor decomposition are given in the monoclinic case. Practical applications to elasticity and 
photo-elasticity monoclinic tensors are finally presented.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

La décomposition harmonique orthogonalisée des tenseurs symétriques d’ordre quatre 
(ayant les symétries majeures et mineures, tels que le tenseur d’élasticité) est complé-
tée par une représentation des tenseurs harmoniques d’ordre quatre H à l’aide de deux 
tenseurs harmoniques (symétriques déviatoriques) d’ordre deux. Une décomposition si-
milaire est obtenue pour les tenseurs non symétriques (ayant uniquement la symétrie 
mineure, tels que ceux rencontrés en photo-élasticité et en élasto-plasticité), introduisant 
un tenseur antisymétrique majeur à traces nulles Z. Le tenseur Z est représenté par deux 
tenseurs d’ordre deux, le premier harmonique et le second antisymétrique. Les représenta-
tions des tenseurs d’ordre quatre complètement symétriques (rari-constants), symétriques 
et antisymétriques majeurs sont des cas particuliers simples de la représentation proposée. 
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Les expressions analytiques de la décomposition correspondante dans le cas monoclinique 
sont obtenues et appliquées à l’élasticité et à la photo-élasticité monocliniques.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fourth-order tensors are symmetric in elasticity (the corresponding vector space is denoted Ela [1,2]); they are possibly 
non-symmetric in rate form elasto-plasticity or in photo-elasticity (the corresponding vector space is denoted by Gel [3]). 
Even if they are commonly used in mechanics of materials, their inner structure still needs to be more precisely described 
in 3D.

In 3D, the well-known harmonic decomposition [4–8,1,9] is often completed by the Cartan decomposition of its fourth-
order harmonic part H (traceless totally symmetric fourth-order tensor, the corresponding vector space being denoted by 
Hrm): this decomposition, quite complex,1 has been useful for the determination of the irreducible symmetry classes of 
elastic and piezoelectric solids [1,13]. An integrity basis of tensor spaces is given in [14]. It is defined using group represen-
tation and polynomial invariants [15–17]. Reference [18] gives a direct application to harmonic fourth-order tensors.

In 2D, alternative descriptions have been introduced [19–22], shown to be related both to the harmonic decomposition 
[23] and to the Kelvin decomposition of the harmonic tensor [24]. It is nevertheless important to point out that among those 
descriptions, the so-called polar decomposition of 2D symmetric fourth-order tensors of Verchery implicitly contains the 
inner structure of 2D harmonic fourth-order tensors. For instance, the corresponding rewriting of 2D harmonic fourth-order 
tensors ∈Hrm(2D) recently performed in [24] simply reads

H = h0 ⊗ h0 − 1

2
h0 : h0 J

2D tr12 H = tr13 H = 0 (1)

giving the general expression of any 2D harmonic fourth-order tensor as a function of one traceless symmetric 
(harmonic) second-order tensor h0 = h′

0 only. In Eq. (1), the fourth-order tensor J2D = I − 1
2 111 ⊗ 111 is such that 

(.)′ = J2D : (.) = (.) − 1
2 tr(.)111 stands for the 2D deviatoric part of second-order tensors.

Combined with standard harmonic decomposition, Eq. (1) of Tensorial Polar Decomposition implies that any 2D sym-
metric fourth-order tensor can be expressed by means of two scalar invariants (frame independent) and of two symmetric 
deviatoric (harmonic) second-order tensors only h0, h1 ∈ Dev(2D), with no remaining strictly fourth-order tensorial part – as 
thanks to Eq. (1), H ∈ Hrm(2D) is expressed by means of the single second-order tensor h0. Using direct sums, this means 
that Ela(2D) = R ⊕ R ⊕ Dev(2D) ⊕ Dev(2D) (with Hrm(2D) = Dev(2D)) [24] instead of the standard harmonic decomposition 
R ⊕ R ⊕ Dev(2D) ⊕Hrm(2D) for 2D symmetric fourth-order tensors, if R denotes the real (scalar) vector space.

The 2D polar decomposition as well as its tensorial rewriting make explicitly appear polar invariants and their link with 
symmetry classes [21]. This property also stands for non-symmetric tensors, as shown in [25] by means of complex variables 
changes for the two cases i) of fourth-order tensors having major indicial symmetry only and ii) of fourth-order tensors 
having minor indicial symmetry only (case recalled next, Eq. (5)). As the polar decomposition method for non-symmetric 
tensors had no tensorial writing counterpart, our first action will be to give such a 2D formula (as novel Eq. (6)). The 
question then will be how to extend to 3D the refined results (Eq. (1)) on the inner structure of 2D harmonic tensors, and 
more generally how to extend the refined results of Tensorial Polar Decomposition (Eqs. (4) and (6)) to 3D elasticity tensor 
∈ Ela and to 3D non-symmetric tensors ∈ Gel.

Those questions have a close link with the description of elasticity symmetry classes [21,18,23] and with the definition 
of invariants for fourth-order tensors. It is not the purpose here to debate this point in the 3D case. Note nevertheless 
that in 2D, the definition of polar invariants by Verchery and Vannucci is strongly related to the orthonormalization of the 
harmonic decomposition performed for 2D tensors [24] (section 2.3). In order to extend polar decomposition to 3D, in a 
tensorial framework, one proposes therefore:

1. to make appear polar moduli rn in Backus orthogonalized harmonic decomposition for symmetric tensors S (having 
minor and major indicial symmetries, section 4),

2. to express the harmonic tensors H by means of symmetric deviatoric second-order tensors only (section 5, generaliza-
tion to 3D of Eq. (1)),

3. to apply the same procedure to (major) antisymmetric tensors A (having minor indicial symmetry, section 6).

1 See [10–12] for its link with group representation theory.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. 2D case: Tensorial Polar Decomposition

In 2D, such as in the case of planar elasticity, a symmetric tensor S having both minor and major indicial symmetries 
has six independent components Sijkl . A 2D tensor T having only minor symmetries has nine independent components Tijkl . 
Polar formalism defines in a closed form their dependency with respect to the frame angle θ by making appear invariants of 
two types: polar moduli or angular differences [20]. Scalars tn , rn , ϕn are the notations used next for the material parameters 
of 2D anisotropic elasticity or photo-elasticity (see [25]). The First question is then how to define a tensorial representation 
that makes directly appear the parameters (and the invariants) of polar decomposition theory both in the symmetric case 
(problem recently solved [24], Eq. (4)) and in the case with minor indicial symmetry only.

2.1. Symmetric tensors S

Let consider a 2D symmetric fourth-order tensor S having both minor and major indicial symmetries (Sijkl = Skli j =
Sijlk = S jikl). The basic result of the polar formalism is the expression of the Cartesian components of the 2D symmetric 
tensor S in terms of polar parameters, in a frame rotated through an angle θ [20,21]:

S1111(θ) = t0 + 2t1 + r0 cos 4 (ϕ0 − θ) + 4r1 cos 2 (ϕ1 − θ)

S1112(θ) = r0 sin 4 (ϕ0 − θ) + 2r1 sin 2 (ϕ1 − θ)

S1122(θ) = −t0 + 2t1 − r0 cos 4 (ϕ0 − θ)

S1212(θ) = t0 − r0 cos 4 (ϕ0 − θ)

S1222(θ) = −r0 sin 4 (ϕ0 − θ) + 2r1 sin 2 (ϕ1 − θ)

S2222(θ) = t0 + 2t1 + r0 cos 4 (ϕ0 − θ) − 4r1 cos 2 (ϕ1 − θ)

(2)

t0 and t1 contributions are frame independent (they define the isotropic part of S as a generalization of Lamé constants to 
anisotropy), the r1 terms rotates in cos 2 (ϕ1 − θ) and sin 2 (ϕ1 − θ) as second-order tensors do (see Eq. (3)), the r0 term 
rotates twice more in cos 4 (ϕ0 − θ) and sin 4 (ϕ0 − θ). In a given frame θ , the knowledge of the six independent coefficients 
of any 2D symmetric tensor S is equivalent to the knowledge of the five invariants (t0, t1, r0, r1, ϕ0 − ϕ1) and of one angle, 
either ϕ0 − θ or ϕ1 − θ .

Introducing the two second-order deviatoric tensors (of unit J2-norm, n = 0, 1):

Rn = R′
n =

(
cos 2(ϕn − θ) sin 2(ϕn − θ)

sin 2(ϕn − θ) − cos 2(ϕn − θ)

)
with J2(R′

n) =
√

1

2
R′

n : R′
n = 1 (3)

Eq. (2) can be recast as (see [24])

S = 2t0J
2D + 2t1111 ⊗ 111 + 2r0

[
R′

0 ⊗ R′
0 − J

2D
]
+ 2r1

(
111 ⊗ R′

1 + R′
1 ⊗ 111

)
(4)

where the harmonic part (Eq. (1)) has been rewritten as H = 2r0
[
R′

0 ⊗ R′
0 − J2D

]
by making polar invariant r0 appear by 

setting h0 = √
2r0 R′

0.

2.2. Tensors T having minor indicial symmetry

Let us now consider a 2D fourth-order tensor T having only the minor indicial symmetry (Tijkl = Tijlk = T jikl), which has 
then nine independent components, parameterized by frame angle θ . Using the Polar method, such a tensor is obtained in 
[25] as

T1111(θ) = t0 + 2t1 + r0 cos 4 (ϕ0 − θ) + 2r1 cos 2 (ϕ1 − θ) + 2r2 cos 2 (ϕ2 − θ) ,

T1112(θ) = −t3 + r0 sin 4 (ϕ0 − θ) + 2r2 sin 2 (ϕ2 − θ) ,

T1122(θ) = −t0 + 2t1 − r0 cos 4 (ϕ0 − θ) + 2r1 cos 2 (ϕ1 − θ) − 2r2 cos 2 (ϕ2 − θ) ,

T1211(θ) = t3 + r0 sin 4 (ϕ0 − θ) + 2r1 sin 2 (ϕ1 − θ),

T1212(θ) = t0 − r0 cos 4 (ϕ0 − θ),

T1222(θ) = −t3 − r0 sin 4 (ϕ0 − θ) + 2r1 sin 2 (ϕ1 − θ),

T2211(θ) = −t0 + 2t1 − r0 cos 4 (ϕ0 − θ) − 2r1 cos 2 (ϕ1 − θ) + 2r2 cos 2 (ϕ2 − θ) ,

T2212(θ) = t3 − r0 sin 4 (ϕ0 − θ) + 2r2 sin 2 (ϕ2 − θ) ,

T2222(θ) = t0 + 2t1 + r0 cos 4 (ϕ0 − θ) − 2r1 cos 2 (ϕ1 − θ) − 2r2 cos 2 (ϕ2 − θ)

(5)

where polar moduli rn are positive invariants. The lack of major indicial symmetry is represented by a non-vanishing term 
in t3 and/or by two different terms in (r1, ϕ1) and (r2, ϕ2) in the set of equations (5): major indicial symmetry is recovered 
when t3 = 0, r2 = r1 and ϕ2 = ϕ1.

It can be checked that the intrinsic expression for fourth-order tensors T having minor indicial symmetry only is

T = 2t0 J
2D + 2t1111 ⊗ 111 + t3

[
111 ⊗ A + A ⊗ 111

]+ 2r0

[
R′

0 ⊗ R′
0 − J

2D
]
+ 2r1 R′

1 ⊗ 111 + 2r2 111 ⊗ R′
2 (6)
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with second-order tensors R′
0, R′

1, R′
2 all of the generic form (3). The antisymmetric (frame independent) second-order 

tensor A has been introduced, of unit J2-norm,

A =
(

0 −1
1 0

)
with J2(A) =

√
1

2
A : A = 1 (7)

The proposed (new) 2D decomposition (6) is the intrinsic rewriting of Eq. (5). One will refer to it as Tensorial Polar De-
composition of non-symmetric tensors (i.e. having minor indicial symmetry only). The major symmetry of T corresponds to 
t3 = 0, r2R′

2 = r1R′
1. This last tensorial equality is equivalent to r2 = r1 and ϕ2 = ϕ1.

2.3. Polar invariants and orthogonality

A feature included in polar decomposition of Verchery and Vannucci is the definition of the so-called polar invariants, 
of two types: moduli tn or rn , and of relative angles ϕn − ϕm . Refer to [25] for the classification of the 2D photo-elasticity 
material symmetries by means of invariants r0, r1, r2, ϕ0 − ϕ1, ϕ1 − ϕ2.

It is worth to point out that the definition of the polar invariants is strongly related to constant norms and to orthogonal-
ity – with respect to scalar product :: for fourth-order tensors, T :: T = Tijkl T i jkl – of the different tensorial terms introduced 
in Eq. (6), as each generator G(n) introduced is orthogonal to all other ones (as detailed in [24] for the symmetric case):

J
2D :: 111 ⊗ 111 = J

2D :: [111 ⊗ A + A ⊗ 111
]= J

2D ::
[

R′
0 ⊗ R′

0 − J
2D
]

= J
2D :: R′

1 ⊗ 111 = J
2D :: 111 ⊗ R′

2 = 0 (8)

111 ⊗ 111 :: [111 ⊗ A + A ⊗ 111
]= 111 ⊗ 111 ::

[
R′

0 ⊗ R′
0 − J

2D
]

= 111 ⊗ 111 :: R′
1 ⊗ 111 = 111 ⊗ 111 :: 111 ⊗ R′

2 = 0 (9)[
111 ⊗ A + A ⊗ 111

] :: [R′
0 ⊗ R′

0 − J
2D
]

= [111 ⊗ A + A ⊗ 111
] :: R′

1 ⊗ 111 = [111 ⊗ A + A ⊗ 111
] :: 111 ⊗ R′

2 = 0 (10)[
R′

0 ⊗ R′
0 − J

2D
]

:: R′
1 ⊗ 111 =

[
R′

0 ⊗ R′
0 − J

2D
]

:: 111 ⊗ R′
2 = R′

1 ⊗ 111 :: 111 ⊗ R′
2 = 0 (11)

Note last that using Eq. (3), angular invariants are naturally defined from Tensorial Polar Decomposition as scalar products:

R′
n : R′

m = 2 cos 2(ϕn − ϕm) (12)

3. Notations for the 3D case

All the fourth-order tensors considered in the present note exhibit minor indicial symmetry. We therefore denote:

• T as fourth-order tensors having only minor indicial symmetries (non-symmetric fourth-order tensors T ∈ vector space 
Gel, using notations of [3]), such as Tijkl = Tijlk = T jikl ,

• S as symmetric fourth-order tensors (S ∈ vector space Ela using notations of [1,18]), such as Sijkl = Skli j = Sijlk = S jikl ,
• R as rari-constant fourth-order tensors (totally symmetric [26], vector space Rar), having Cauchy indicial symmetries 

Rijkl = Rikjl ,
• H as harmonic fourth-order tensors (H ∈ vector space Hrm, using notations of [1]), such as Hijkl = Hikjl , Hkki j =

Hkikj = 0: harmonic tensors are totally symmetric traceless tensors,
• A as antisymmetric fourth-order tensors, Aijkl = Aijlk = A jikl = −Akli j ,
• Z as traceless antisymmetric fourth-order tensors, Zijkl = Zijlk = Z jikl = −Zkli j , Zkki j = Zkikj = 0.

A 3D non-symmetric tensor T (having only minor indicial symmetries) has three independent tensorial traces e = tr12 T, 
v = tr13 T and d = tr34 T, defining three second-order tensors e, v, d (of components ei j = Tkki j , vij = Tkikj , dij = Tijkk) with 
the following names and properties:

– left and right dilatation tensors e = e(T) and d = d(T) are symmetric second-order tensors for any T, with e �= d when 
T is non-symmetric and e = d when T is symmetric,

– Voigt tensor v = v(T) is non-symmetric, of antisymmetric part vA of components vA
i j = 1

2

(
Tkikj − Tkjki

) =
1
2

(
Akikj − Akjki

)
, with therefore v symmetric when T is symmetric,

– scalar traces of tensors e and d are always equal, tr e = tr d = Tkkll = Skkll; they usually differ from the scalar trace 
tr v = Tklkl (note that tr vA = 0).

The tensorial products ⊗, ⊗, ⊗ are defined as follows:

(X ⊗ Y)i jkl = XikY jl, (X ⊗ Y)i jkl = XilY jk, X ⊗ Y = 1

2
(X ⊗ Y + X ⊗ Y) (13)



406 R. Desmorat, B. Desmorat / C. R. Mecanique 344 (2016) 402–417
We also define the special tensorial product � as

X � Y = 1

3

(
X ⊗ Y + X ⊗ Y + X ⊗ Y

)= 1

3

(
X ⊗ Y + 2 X ⊗ Y

)
(14)

The totally symmetric (rari-constant) part ∈ Rar of tensor X ⊗ X is therefore X � X, so that decomposition of X ⊗ X into a 
rari-constant part and an “anti-rari-constant” part is

X ⊗ X = X � X + 2

3

(
X ⊗ X − X ⊗ X

)
(15)

with the fundamental orthogonality property X � X :: (X ⊗ X − X ⊗ X
) = 0, using scalar product for fourth-order tensors, 

T :: T = Tijkl T i jkl .

Remark. X � Y is a tensor, it satisfies the change of basis rule (∀g orthogonal)

g � (X � Y) = (g � X)� (g � Y) = (g · X · gT)� (g · Y · gT) (16)

in which, for any second-order tensor (g � X)i j = gip g jq Xpq , and for any fourth-order tensor (g �T)i jkl = gip g jq gkr gls T pqrs . In 
the rest of the paper, g� will denote the action of any rotation2 g. We will refer to Eq. (16) and to its following particular 
cases

g � (111 � X) = 111 � (g � X) g � (X �111) = (g � X)�111 g � (111 �111) = 111 �111 (17)

at the end of section 5.

4. Orthogonalized harmonic decomposition of 3D symmetric tensors

Harmonic decomposition of any symmetric fourth-order tensor S – or of the symmetric part of tensor T – is its decom-
position R ⊕ R ⊕ Dev ⊕ Dev ⊕Hrm in terms of unit second-order tensor 111, by means of two scalar invariants λ, μ ∈ R , of 
harmonic second-order tensors ααα′, βββ ′ ∈ Dev and of a remaining harmonic fourth order harmonic part H ∈ Hrm [4–7]. Using 
the expression given in [8,1], it is

S = λ111 ⊗ 111 + 2μ111 ⊗ 111 + 111 ⊗ααα′ +ααα′ ⊗ 111 + 111 ⊗βββ ′ +βββ ′ ⊗ 111 + 111 ⊗βββ ′ +βββ ′ ⊗ 111 +H (18)

harmonic meaning symmetric and traceless, as already mentioned, the harmonic second-order tensors being therefore 
symmetric and deviatoric. Invariants λ, μ, generalize Lamé constants to anisotropy (111 ⊗ 111 = I is the identity tensor for 
symmetric fourth-order tensors), the two harmonic second-order tensors ααα′ and βββ ′ can be derived from the dilatation 
tensor d = d(S) = tr12 S and from the Voigt tensor v = v(S) = tr13 S (see [7,18]).

According to Backus [5] and using the special tensorial product � (defined by Eq. (14)), one has for Lamé’s λ and μ
terms the equality

λ111 ⊗ 111 + 2μ111 ⊗ 111 = rc111 �111 + 2r̄c
(
111 ⊗ 111 − 111 ⊗ 111

)
(19)

if one sets

rc = λ + 2μ = 1

15
(tr d + 2 tr v) r̄c = λ − μ

3
= 1

18
(tr d − tr v) (20)

This defines invariants rc and r̄c – equivalent to the couple λ, μ – for constant terms, the subscript c standing for constant, 
meaning here frame independent. The chosen first letters r and r̄ – used instead of the letter t for the 2D constant moduli tn
of section 2 – highlight the fact that rc111�111 is rari-constant (totally symmetric) and 2r̄c

(
111 ⊗ 111 − 111 ⊗ 111

)
is anti-rari-constant 

(it is denoted as asymmetric in reference [5]). The orthogonality property 111 �111 :: (111 ⊗ 111 − 111 ⊗ 111
)= 0 stands.

Here we first aim at rewriting the constant and linear terms of the harmonic decomposition in a consistent manner 
with orthogonalization and notations introduced in 2D Tensorial Polar Decomposition [24]. In order to do so, instead of 
expression (18), we prefer to start from the (equivalent) Backus fully orthogonalized expression [5,7]

S = rc111 �111 + 2r̄c
(
111 ⊗ 111 − 111 ⊗ 111

)+ 111 � s′
1 + s′

1 �111 + 111 ⊗ s′
2 + s′

2 ⊗ 111 − s′
2 ⊗ 111 − 111 ⊗ s′

2 +H (21)

introducing two harmonic (symmetric deviatoric) second-order tensors s′
1 and s′

2 related to ααα′ and βββ ′ . We make appear 
moduli rl , r̄l (generalizing to 3D the 2D polar modulus r1) by defining the 3D symmetric deviatoric tensors S′

rl and S̄′̄
rl of 

unit norm J2(S′
rl) = J2(S̄′̄

rl) = 1 as

rlS
′
rl = s′

1 =ααα′ + 2βββ ′ = 1

7

(
d′ + 2v′) r̄lS̄

′̄
rl = 1

2
s′

2 = 1

3

(
ααα′ −βββ ′)= 1

3

(
d′ − v′) (22)

2 SO(3) = {g / g−1 = gT, det g = 1} is the group of rotations in 3D.
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The tensors rnS′
n generalize to 3D the 2D symmetric deviatoric tensors rnR′

n of section 2. In the present work, the J2-norm 
is defined as J2(X) = ( 1

2 X′ : X′)1/2. Eq. (22) makes appear the J2-norms:

rl = 1

7
J2(d′ + 2v′) r̄l = 1

3
J2(d′ − v′) (23)

As norms of tensors, the moduli rl and r̄l are positive invariants.
We therefore start from orthogonalized harmonic decomposition of any symmetric tensor S rewritten as:

S = rc111 �111 + 2r̄c
(
111 ⊗ 111 − 111 ⊗ 111

)+ rl
(
111 � S′

rl + S′
rl �111

)+ 2r̄l
(
111 ⊗ S̄′̄

rl + S̄′̄
rl ⊗ 111 − S̄′̄

rl ⊗ 111 − 111 ⊗ S̄′̄
rl

)+H (24)

Any rari-constant rc or rl term is orthogonal to any anti-rari-constant r̄c or r̄l term, orthogonality being defined in sense 
of scalar product :: for fourth-order tensors. Last two scalar products

111 �111 :: (111 � S′
rl + S′

rl �111
)= (111 ⊗ 111 − 111 ⊗ 111

) :: (111 ⊗ S̄′̄
rl + S̄′̄

rl ⊗ 111 − S̄′̄
rl ⊗ 111 − 111 ⊗ S̄′̄

rl

)= 0 (25)

vanish because of S′ : 111 = tr S′ = 0. It can last be checked that harmonic tensor H is orthogonal to each rc, r̄c, rl , r̄l term of 
Eq. (24).

Compared to Backus orthogonalized decomposition, note that the extension of Tensorial Polar Decomposition to 3D 
further makes appear two scalar invariants rl and r̄l of fourth-order tensor S. The extension of Tensorial Polar Decomposition 
to 3D also needs a decomposition of harmonic part H generalizing Eq. (1) to 3D. This important point is addressed in the 
next section.

5. 3D harmonic tensor H expressed by means of two symmetric deviatoric second-order tensors

If h1 and h2 are harmonic second-order tensors (symmetric and deviatoric), we define the bilinear tensorial expression

H(h1,h2) = 1

2
(h1 � h2 + h2 � h1) + 2

35
(h1 : h2)111 �111

− 1

7
[111 � (h1 · h2 + h2 · h1) + (h1 · h2 + h2 · h1)�111] (26)

It is easily checked that it defines a family of harmonic fourth-order tensor, traceless, and rari-constant. Bilinear expression 
(26) extends to two independent second-order tensors hk the expression obtained in [27] for the coaxial cases h2 = h1
and h2 = (h2

1)
′ . For any couple of symmetric deviatoric tensors (h1, h2) the harmonic tensor H(h1, h2) is orthogonal – 

with respect to the scalar product :: for fourth-order tensors – to constant rc, r̄c terms and to linear rl , r̄l terms of the 
orthogonalized harmonic decomposition (24).

In order to represent H, Böhlke and Bertram [27] have introduced three generators G(α) , G(β) , G(γ ) , all three built 
from the single-unit deviatoric tensor h = h′ . The harmonic tensor H has been considered as the sum of three terms 
H = gα G(α) + gβ G

(β) + gγ G(γ ) with gk = gk(det h) functions of the only non-constant principal invariant det h of h, with 
G(α) = H(h, h), G(β) = H((h2)′, (h2)′), G(γ ) = H((h2)′, h), which are function of the same harmonic tensor h and where 
the bilinear form H(., .) is the one defined in Eq. (26).

Instead, we propose to define each elementary harmonic generator as a function of a different deviatoric second-order 
tensor hk ,

G
(qk) = H(hk,hk) = hk � hk + 2

35
(hk : hk)111 �111 − 2

7

(
111 � h2

k + h2
k �111

)
(27)

the upperscript q standing for “quadratic”. Tensors hk are chosen next to the unit J2-norm, J2(hk) = 1. Each fourth-order 
tensor G(qk) introduces four parameters : one invariant, the determinant det hk of the normalized deviatoric tensor hk , and 
three frame angles. We propose to describe H ∈Hrm as the sum H =∑2

k=1 hqkG
(qk) , with hqk ad hoc moduli, with only two 

terms, which introduces 10 parameters (while the dimension of harmonic vector space Hrm is 9).
To sum up, we describe at this stage the harmonic fourth-order tensor H by the general form

H = hq1G
(q1) + hq2G

(q2) = hq1

[
h1 � h1 + 2

35
(h1 : h1)111 �111 − 2

7

(
111 � h2

1 + h2
1 �111

)]

+ hq2

[
h2 � h2 + 2

35
(h2 : h2)111 �111 − 2

7

(
111 � h2

2 + h2
2 �111

)]
(28)

which,

• is orthogonal to linear and constant terms, i.e. to the difference S −H obtained from harmonic decomposition (18) (or 
from orthogonalized harmonic decomposition (24)),

• introduces 10 parameters.
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If combined with an additional condition, equation (28) has nine independent parameters, i.e. as much as the dimension 
of the harmonic vector space Hrm. Nevertheless, we do not seek in our approach such a condition as equation (28) will 
leave us with a useful degree of freedom to perform the practical decomposition, see section 8. Instead we propose next a 
nine-parameter representation based on equation (28), which does not need any ad hoc condition.

When the moduli hq1, hq2 are of opposite signs, one has, due to the symmetrization made by H(., .), here with hq1 > 0:

H = H
(√

hq1 h1 +
√

−hq2 h2,

√
hq1 h1 −

√
−hq2 h2

)
(29)

If hq1 < 0 and hq2 > 0, one has to simply swap the corresponding terms to enforce a novel hq1 > 0.
Let us norm such a bilinear H by making appear the J2-norm of second-order tensors 

√
hq1 h1 ±√−hq2 h2 and the 

quadratic norm ‖H‖ = √
H ::H of the harmonic tensor itself, defining symmetric deviatoric (harmonic) second-order tensors 

of unit J2-norms

S′
rq1 =

√
hq1 h1 +√−hq2 h2

J2(
√

hq1 h1 +√−hq2 h2)
S′

rq2 =
√

hq1 h1 −√−hq2 h2

J2(
√

hq1 h1 −√−hq2 h2)
J2(S′

rq1) = J2(S′
rq2) = 1 (30)

and defining modulus rq as the norm of H

rq = ‖H‖ =
∥∥∥∥H
(√

hq1 h1 +
√

−hq2 h2,

√
hq1 h1 −

√
−hq2 h2

)∥∥∥∥ (31)

This defines rq as a scalar invariant of the symmetric fourth-order tensor S. One has then, using definition (26),

H = rqG
(q) = rq

H
(

S′
rq1,S′

rq2

)
‖H
(

S′
rq1,S′

rq2

)
‖

(no sum) (32)

By the proposed change of variables, the novel expression (32) now expresses the harmonic part H of the symmetric tensor 
S as a function of one scalar invariant (rq, the norm of H) and of two symmetric deviatoric second-order unit tensors 
(S′

rq1, S
′
rq2). This expression has the nice property to directly make appear the nine independent parameters of H as one for 

modulus rq and as two times the four parameters of symmetric deviatoric tensors S′
rqk of unit J2-norm.

The same result (an expression with nine independent parameters) is derived when hq1 and hq2 are of the same sign, 
still as Eq. (32), real, but with S′

rq1 replaced by the complex symmetric deviatoric second-order tensor S′
rq and with S′

rq2

replaced by the complex conjugate tensor S�′
rq, setting i2 = −1 and defining the complex deviatoric symmetric second-order 

tensor

S′
rq =

√
hq1 h1 + i

√
hq2 h2

J2(
√

hq1 h1 + i
√

hq2 h2)
J2(S′

rq) = J2(S�′
rq) =

√
1

2
S′

rq : S�′
rq = 1 (33)

Section 8 shows how to perform the proposed decomposition for monoclinic tensors.

Remark. Properties (16)–(17) imply that the action of any rotation g is such that3

g �

2∑
k=1

hqkH(hk,hk) =
2∑

k=1

hqkH(g � hk,g � hk) =
2∑

k=1

hqkH(g · hk · gT,g · hk · gT)

g �H
(

S′
rq1,S′

rq2

)
= H

(
g � S′

rq1,g � S′
rq2

)
= H

(
g · S′

rq1 · gT,g · S′
rq2 · gT

)
‖g �H

(
S′

rq1,S′
rq2

)
‖ = ‖H

(
S′

rq1,S′
rq2

)
‖ (34)

which implies that the scalars rq, hq1 and hq2 are frame independent.

6. Extension to antisymmetric tensors A

Irreductible harmonic decomposition of the 3D non-symmetric fourth-order tensor T ∈ Gel (having minor indicial sym-
metry only) is the decomposition [3]

R ⊕ R ⊕ V ⊕ Dev ⊕ Dev ⊕ Dev ⊕ Hrm ⊕Hrm (35)

3 The action of rotation group SO(3) commutes with H. Proposed representation of harmonic tensors is SO(3) equivariant.
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of tensor T into two scalar invariants ∈ R , one vector v ∈ vector space V (of component vi ), three symmetric devi-
atoric (harmonic) second-order tensors ∈ Dev, one totally symmetric traceless (harmonic) third order tensor H ∈ Hrm
(Hi jk = Hikj = H jik , Hkki = 0) and one harmonic fourth-order tensor H ∈ Hrm. For antisymmetric part A = 1

2 (T − TT), it 
is classically [3]

V ⊕ Dev ⊕ Hrm (36)

A is (major) antisymmetric, i.e. it has minor indicial symmetries Aijkl = Aijlk = A jikl and is such that Aijkl = −Akli j .
A third- and a fourth-order tensors are present within the harmonic decomposition (35), a third-order tensor in Eq. (36), 

as irreducibility is meant in the sense of linearity of vector spaces. The harmonic fourth-order tensor H and the symmetric 
part S = 1

2 (T + TT) have been just expressed by means of second-order tensors only (as quadratic expression (28) for 
harmonic term, loosing the linearity feature). In a manner similar to the case of H, the purpose next is to derive the inner 
nonlinear structure of the antisymmetric fourth-order tensor A and of its traceless part Z, Zkki j = Zkikj = 0, as a function of 
second-order tensors only, possibly antisymmetric.

6.1. Case of 2D antisymmetric tensors

In 2D, the harmonic decomposition of (major) antisymmetric tensors is R ⊕ Dev(2D), recast from Eq. (6) as

A = t3
[
111 ⊗ A + A ⊗ 111

]+ 2r3
(
111 ⊗ R′

3 − R′
3 ⊗ 111

)
with A =

(
0 −1
1 0

)
(37)

There is one constant term (of polar modulus t3), and one linear term defined using one polar modulus r3 and one second-
order tensor R′

3, which is symmetric deviatoric and of unit J2-norm. There is no quadratic term.

6.2. Linear terms in 3D

Any 3D antisymmetric fourth-order tensor A having minor indicial symmetries only has two independent traces,

e(A) = tr12 A= − tr34 A= −d(A) = 3 s′ v(A) = vA = tr13 A= 5 a (38)

where vA = 1
2 (v − vT) is the antisymmetric part of the Voigt tensor v = v(T) of T. Two second-order tensors are defined: a 

symmetric deviatoric tensor s′ and an antisymmetric tensor a = a′ = −aT. A rewriting of the harmonic decomposition (36)
of antisymmetric tensors reads then

A = 111 ⊗ s′ − s′ ⊗ 111 + 111 ⊗ a + 111 ⊗ a + a ⊗ 111 + a ⊗ 111 +Z (39)

with 111 ⊗ s′ − s′ ⊗ 111 and 111 ⊗ a + 111 ⊗ a + a ⊗ 111 + a ⊗ 111 = 2 (111 ⊗ a + a ⊗ 111), both being major antisymmetric (having minor 
indicial symmetry), with Z a major antisymmetric and traceless tensor (having minor indicial symmetry), tri j Z = 0, ∀i �= j. 
As needed for an antisymmetric tensor with minor symmetries, there are 15 independent parameters introduced: five by 
symmetric deviatoric s′ , three by antisymmetric a (which is isomorphic to vector v), and seven by Z (which is isomorphic 
to the harmonic third-order tensor H).

Note that in 3D there is no constant term (such as the 2D term in t3) and contrary to 2D, there is a traceless term Z, 
which will be next interpreted as a quadratic term, as we did for H in the case of symmetric tensors.

In the same manner as for Tensorial Polar Decomposition, we now make the J2-norms of the second-order tensors 
appear, setting s′ = aSl S′

al (symmetric deviatoric) and a = aAl Aal (antisymmetric) with tensors S′
al and Aal of unit J2-norm. 

This defines scalars aSl and aAl as positive invariant (frame independent) moduli,

aSl = J2(s′), aAl = J2(a), J2(S′
al) = J2(Aal) = 1 (40)

Subscript l means “linear term”. Subscript S for aSl and A for aAl refer to the capital letter of the corresponding unit 
second-order tensor (either S′

al or A′
al). Letters a stand for “antisymmetric contribution”, they recall that the fourth-order 

tensor A built with second-order tensors aSlS′
al and aAlA′

al is (major) antisymmetric.
The decomposition (39) is therefore recast as

A = aSl
(
111 ⊗ S′

al − S′
al ⊗ 111

)+ 2aAl
(
111 ⊗ Aal + Aal ⊗ 111

)+Z (41)

in a form that makes appear (major) antisymmetric generators, orthogonal to any fourth-order symmetric tensor S, orthog-
onal to each other,(

111 ⊗ S′
al − S′

al ⊗ 111
) :: (111 ⊗ Aal + Aal ⊗ 111

)= 0 (42)

and orthogonal to the traceless tensor Z as(
111 ⊗ S′

al − S′
al ⊗ 111

) :: Z = (111 ⊗ Aal + Aal ⊗ 111
) :: Z = 0 (43)
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6.3. Quadratic term: the antisymmetric traceless tensor Z

Our aim is to generalize the 2D Tensorial Polar Decomposition (Eq. (5)) to 3D non-symmetric tensors (having minor 
indicial symmetries only). It is to express fourth-order tensors having minor indicial symmetries by means of second-order 
tensors only by making orthogonal contributions appear (and related invariants), i.e. to make appear the (linear) terms that 
rotate as second-order tensors do and the (quadratic) terms that rotate as only fourth-order tensors can do.

The expressions for the fourth-order harmonic tensor H have been derived in section 5 thanks to orthogonality to 
constant and linear terms of the harmonic decomposition for symmetric tensors. The same derivations can be followed 
for Z, starting from the property that tensor S′ ⊗ A + A ⊗ S′ is antisymmetric for any symmetric deviatoric second-order 
tensor S′ and any antisymmetric second-order tensor A. A most important feature is that, with S′ and A, of unit norms, 
this is the only tensorial antisymmetric bilinear term built from tensorial products ⊗, ⊗, ⊗ between second-order tensors, 
which introduces exactly six parameters. The needed number of seven parameters for the tensor Z – equal to the dimension 
of the vector space of antisymmetric traceless fourth-order tensors – is recovered if a multiplicative factor (related to the 
quadratic norm ‖Z‖ = √

Z :: Z) is furthermore considered. Such a multiplicative invariant modulus aq will next be taken as 
positive (as r0 for 2D polar decomposition, as rq for the 3D decomposition of H).

One has the following equalities:

tr12
(
S′ ⊗ A + A ⊗ S′)= − tr34

(
S′ ⊗ A + A ⊗ S′)= S′ · A − A · S′ (44)

tr13
(
S′ ⊗ A + A ⊗ S′)= S′ · A + A · S′ (45)

with traces 12 and 34 symmetric and opposite, and with trace 13 antisymmetric.
To get the representation of Z by aq, S′ = S′

aq and A = Aaq (subscripts q standing for quadratic and a highlighting major 
antisymmetry), one has then

i) to define a traceless bilinear form from the term S′ ⊗ A + A ⊗ S′ (as tr12 Z = tr34 Z = tr13 Z = 0), i.e.

Z(S′,A) = S′ ⊗ A + A ⊗ S′

− 1

3

[
111 ⊗ (S′ · A − A · S′)− (S′ · A − A · S′)⊗ 111

]
− 1

5

[
111 ⊗ (S′ · A + A · S′)+ (S′ · A + A · S′)⊗ 111

]
(46)

which is effectively traceless, as tri j Z(S′, A) = 0 ∀i �= j. This expression is the antisymmetric counterpart of the bilinear 
expression H(h′

1, h
′
2) (Eq. (26)) for traceless totally symmetric fourth-order tensors;

ii) to check that expression (46) is antisymmetric (therefore orthogonal to the fourth-order symmetric part S): this is 
the case because of the symmetry of S′ and of the antisymmetry of A, i.e. the symmetry of the second-order tensor 
S′ · A − A · S′ and the antisymmetry of the second-order tensor S′ · A + A · S′;

iii) to check that expression (46) is orthogonal to the linear aSl and aAl terms of decomposition (41). This is found to be 
the case.

If the positive scalar invariant aq is set as

aq = ‖Z‖ (47)

the proposed general representation of the traceless antisymmetric tensor Z = aq
Z(S′

aq,Aaq)

‖Z(S′
aq,Aaq)‖ is therefore the novel expres-

sion4

Z = aq

‖Z(S′
aq,Aaq)‖

{
S′

aq ⊗ Aaq + Aaq ⊗ S′
aq − 1

3

[
111 ⊗ (S′

aq · Aaq − Aaq · S′
aq

)− (S′
aq · Aaq − Aaq · S′

aq

)⊗ 111
]

− 1

5

[
111 ⊗ (S′

aq · Aaq + Aaq · S′
aq

)+ (S′
aq · Aaq + Aaq · S′

aq

)⊗ 111
]}

(48)

introducing, as needed, seven independent parameters if S′ = S′
aq and A′ = Aaq are taken of unit J2-norm, J2(S′

aq) =
J2(Aaq) = 1. The subscripts q are introduced to emphasize the fact that Z can be interpreted as a quadratic term of decom-
position (41), compared to aSl and aAl terms linear with respect to the second-order tensors S′

al and Aal.
Eq. (48) is the sought general representation of the antisymmetric traceless (possibly triclinic) fourth-order tensor Z by 

means of a scalar invariant aq (its norm), of a harmonic second-order tensor S′
aq, and of an antisymmetric second-order 

tensor Aaq (each second-order tensor of unit norm).
It is shown in section 8.2 how to perform the proposed decomposition for monoclinic tensors.

4 Proposed representation of Z is SO(3) equivariant.
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7. Summary of the proposed decomposition

Expressions (24) and (41) allow us to write tensors T having minor indicial symmetry only as either classical sum of 
a (major) symmetric tensor S and of a (major) antisymmetric tensor A or as the sum of a rari-constant tensor R (having 
all indicial symmetries), of a so-called anti-rari-constant tensor R (having major symmetry) and of a (major) antisymmetric 
tensor A,

T = S+A = R+R+A (49)

The possibly triclinic tensor T is expressed by means of second-order tensors only, with the following general decomposi-
tion5

R = rc111 �111 + rl
(
111 � S′

rl + S′
rl �111

)+H(rq,S′
rq1,S′

rq2)
(
H(rq,S′

rq1,S′
rq2) given by Eq. (32)

)
R= 2r̄c

(
111 ⊗ 111 − 111 ⊗ 111

)+ 2r̄l
(
111 ⊗ S̄′̄

rl + S̄′̄
rl ⊗ 111 − S̄′̄

rl ⊗ 111 − 111 ⊗ S̄′̄
rl

)
A = aSl

(
111 ⊗ S′

al − S′
al ⊗ 111

)+ 2aAl
(
111 ⊗ Aal + Aal ⊗ 111

)+Z(aq,S′
aq,A′

aq)
(
Z(aq,S′

aq,A′
aq) given by Eq. (48)

)
(50)

All the second-order tensors considered are of unit J2 norm

J2(S′
rl) = J2(S̄′̄

rl) = J2(S′
rq1) = J2(S′

rq2) = J2(hk) = J2(S′
al) = J2(A′

al) = J2(S′
aq) = J2(A′

aq) = 1 (51)

The correct number of 36 parameters is well introduced: 15 for the rari-constant tensor R (including nine for H), six for 
the anti-rari-constant part R, fifteen for the antisymmetric tensor A (including seven for Z).

The rari-constant fourth-order tensors T = R, i.e. the totally symmetric tensors having all indicial symmetries Rikjl = Rijkl
correspond to the case r̄c = r̄l = aSl = aAl = aq = 0. The symmetric tensors T = S correspond to the case aSl = aAl = aq = 0
and antisymmetric fourth-order tensors T = A to rc = r̄c = rl = r̄l = rq = 0.

8. Practical applications to monoclinic tensors

Let us address two applications: a first one concerning the decomposition of the monoclinic symmetric Hooke elasticity 
tensor E = S, having both minor and major symmetries, a second one concerning monoclinic non-symmetric Pockels tensor 
of photo-elasticity (or elasto-optics) P = S + A, having minor indicial symmetry only. Monoclinic symmetry reduces in 
natural anisotropy basis to 13 the number of independent elasticity parameters Eijkl and to 20 the number of independent 
photo-elasticity parameters Pijkl .

For monoclinic tensors, the decomposition in Eqs. (49)–(50) is gained first from the harmonic decomposition for constant 
and linear terms (Eqs. (20), (22), (23)) and second, which is a novel result, from the invert of expressions (28) and (48). 
In the following, we will use the six-dimensional matrix representation of fourth-order tensor T having minor indicial 
symmetry,

[T] =

⎡
⎢⎢⎢⎢⎢⎢⎣

T1111 T1122 T1133 T1123 T1113 T1112

T2211 T2222 T2233 T2223 T2213 T2212

T3311 T3322 T3333 T3323 T3313 T3312

T2311 T2322 T2333 T2323 T2313 T2312

T1311 T1322 T1333 T1323 T1313 T1312

T1211 T1222 T1233 T1223 T1213 T1212

⎤
⎥⎥⎥⎥⎥⎥⎦

(52)

[T] is symmetric when T = S has major indicial symmetry.
The harmonic (possibly triclinic) fourth-order tensor H has the following matrix representation (see [18] for its expres-

sions for the different symmetry classes):

[H] =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(	2 + 	3) 	3 	2 X1 −(Y1 + Y2) Z2

	3 −(	1 + 	3) 	1 X2 Y1 −(Z1 + Z2)

	2 	1 −(	1 + 	2) −(X1 + X2) Y2 Z1

X1 X2 −(X1 + X2) 	1 Z1 Y1

−(Y1 + Y2) Y1 Y2 Z1 	2 X1

Z2 −(Z1 + Z2) Z1 Y1 X1 	3

⎤
⎥⎥⎥⎥⎥⎥⎦

(53)

5 Proposed decomposition of T is SO(3) equivariant.
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The traceless antisymmetric (possibly triclinic) fourth-order tensor Z has the following matrix representation:

[Z] =

⎡
⎢⎢⎢⎢⎢⎣

0 
0 −
0 −(x1 + x2) y2 z1
−
0 0 
0 x1 −(y1 + y2) z2

0 −
0 0 x2 y1 −(z1 + z2)

x1 + x2 −x1 −x2 0 z1 − z2 y2 − y1
−y2 y1 + y2 −y1 z2 − z1 0 x1 − x2
−z1 −z2 z1 + z2 y1 − y2 x2 − x1 0

⎤
⎥⎥⎥⎥⎥⎦ (54)

In the monoclinic case, when the normal to the single symmetry plane is direction 1:

• H has five independent parameters 	1, 	2, 	3, X1, X2, the other parameters vanishing (Y1 = Y2 = Z1 = Z2 = 0),
• Z has three independent parameters 
0, x1, x2, the other ones vanishing (y1 = y2 = z1 = z2 = 0).

The cases for which the normal to the single symmetry plane are direction 2 or 3 are detailed in the Appendix.

8.1. Decomposition of H in the monoclinic case

Let us consider the monoclinic case when the normal to the single symmetry plane is direction 1 (see Appendix A for 
directions 2 or 3). Using the following parametrization for h1 and h2 within Eq. (28),

h1 = 2√
3

QT
1 ·
⎛
⎝ cos θ1 0 0

0 cos(θ1 − 2π
3 ) 0

0 0 cos(θ1 + 2π
3 )

⎞
⎠ · Q1 with Q1 =

⎛
⎝ 1 0 0

0 cosϕ1 − sinϕ1
0 sinϕ1 cosϕ1

⎞
⎠ (55)

h2 = 2√
3

⎛
⎝ cos θ2 0 0

0 cos(θ2 − 2π
3 ) 0

0 0 cos(θ2 + 2π
3 )

⎞
⎠ (56)

with Q1 a rotation matrix of angle ϕ1 around axis 1, we get a monoclinic tensor H of components

	1 = 1

140

[
7
(
−10hq1 sin2 θ1 cos 4ϕ1 + hq1 − 4hq2

)
+ 5hq1 cos 2θ1 + 40hq2 cos 2θ2

]
	2 = 1

35

[
−7(hq1 + hq2) − 5hq1

(√
3 sin 2θ1 cos 2ϕ1 + cos 2θ1

)
− 5hq2

(√
3 sin 2θ2 + cos 2θ2

)]
	3 = 1

35

[
−7(hq1 + hq2) + 5

√
3hq1 sin 2θ1 cos 2ϕ1 − 5hq1 cos 2θ1 + 5

√
3hq2 sin 2θ2 − 5hq2 cos 2θ2

]
X1 = −1

7

√
3hq1 sin 2θ1 sin 2ϕ1

X2 = 2

7
hq1 sin θ1 sinϕ1 cosϕ1

(√
3 cos θ1 − 7 sin θ1 cos 2ϕ1

)
Y1 = Y2 = Z1 = Z2 = 0

Those equations are inverted at given 	1, 	2, 	3, X1, X2 in the considered monoclinic case X1 + 2X2 �= 0 and X1 �= 0. We 
first determine ϕ1 by solving (X1 + 2X2 �= 0):

A3(tan 2ϕ1)
3 + A2(tan 2ϕ1)

2 + A1(tan 2ϕ1) + A0 = 0 (57)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A3 = (X1 + 2X2)
3

A2 = 2(X1 + 2X2)
2 (3	1 − 4(	2 + 	3))

A1 = (X1 + 2X2)
(
8	2

1 − 33	1(	2 + 	3) + 8	2
2 − 33	2	3 + 8	2

3 + 4(3X1 − X2)(4X1 + X2)
)

A0 = 2
(

X2
1(97	1 − 8	2 + 41	3) − 4X1 X2(	1 + 8	2) + 66	3 X1 X2 + X2

2(17(	2 + 	3) − 4	1)
) (58)

Being a third-order polynomial, it always has at least one real solution. Then let us determine θ1, θ2, hq1 and hq2 using

θ1 = arctan

[√
3

7

X1 + 2X2

X1 cos 2ϕ1

]
(59)

θ2 = arctan

[√
3

7

8	1 + 	2 + 	3 − 4(X1 + 2X2) cot 4ϕ1

	2 − 	3 − 2X1 cot 2ϕ1

]
(60)
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hq1 = −2(X1 + 2X2)

sin 4ϕ1
− 7X1√

3 sin 2ϕ1 tan 2θ1
(61)

hq2 = 2(X1 + 2X2)

tan 4ϕ1
− 8	1 + 	2 + 	3

2
+ 7√

3 tan 2θ2

(
X1

tan 2ϕ1
− 	2 − 	3

2

)
(62)

Finally, rq, S′
rq1 and S′

rq2 are obtained using Eqs. (30) and (31).
Remarks: The solution may be non-unique. Divisions by zeros occur when X1 = 0 and/or when X1 + 2 X2 = 0, as in 

orthotropy case. Closed-form formulae are also obtained in such cases, simpler; they are not given in present note.

8.2. Decomposition of Z in the monoclinic case

Let us consider the monoclinic case when the normal to the single symmetry plane is direction 1 (see Appendix B for 
directions 2 or 3). Using the following parametrization for S′

aq and Aaq within Eq. (48),

S′
aq = 2√

3
QT

aq ·
⎛
⎝ cos θ 0 0

0 cos(θ − 2π
3 ) 0

0 0 cos(θ + 2π
3 )

⎞
⎠ · Qaq with Qaq =

⎛
⎝ 1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ

⎞
⎠ (63)

Aaq =
⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ (64)

Recalling Eq. (47) (aq = ‖Z‖), we get, using the notation zq = aq

‖Z(S′
aq,Aaq)‖ :


0 = 2

3
zq sin 2ϕ sin θ, x1 = zq

(√
3

5
cos θ − 1

3
cos 2ϕ sin θ

)
, x2 = zq

(
−

√
3

5
cos θ + 1

3
cos 2ϕ sin θ

)
(65)

y1 = y2 = z1 = z2 = 0 (66)

These equations are solved for given 
0, x1, x2 with zq > 0 and assuming θ ∈ [0, π] and ϕ ∈ [− π
2 , π2 ]:

ϕ = 1

2
arg (−(x1 + x2) + i
0) θ = arccos

(
5

2
√

3

x1 − x2

zq

)
zq =

[
9

4

2

0 + 9

4
(x1 + x2)

2 + 25

12
(x1 − x2)

2
] 1

2

(67)

8.3. Example 1: practical decomposition of the elastic (symmetric) monoclinic tensor

The matrix representation of the elasticity tensor for feldspar (albite, NaAlSi3O8) material is [28]:

[E] =

⎡
⎢⎢⎢⎢⎢⎣

74 36.4 39.4 0 −6.6 0
131 31 0 −12.8 0

128 0 −20.0 0
17.3 0 −2.5

SYM 29.6 0
32.0

⎤
⎥⎥⎥⎥⎥⎦ GPa (68)

The corresponding moduli for constant and linear terms of symmetric decomposition (24) are:

rc = 101.88 GPa r̄c = 3.10 GPa rl = 17.7372 GPa r̄l = 3.76976 GPa (69)

S′
rl =

⎛
⎝−0.711981 0. −0.786079

0. 0.399483 0.

−0.786079 0. 0.312499

⎞
⎠ S̄′̄

rl =
⎛
⎝−0.389061 0. −0.910756

0. −0.0442114 0.

−0.910756 0. 0.433272

⎞
⎠ (70)

The harmonic part of E is then calculated from Eq. (24), at known linear and constant terms:

[H] =

⎡
⎢⎢⎢⎢⎢⎣

−2.62286 1.35429 1.26857 0 7.34286 0
1.35429 14.9486 −16.3029 0 −1.28571 0
1.26857 −16.3029 15.0343 0 −6.05714 0

0 0 0 −16.3029 0 −1.28571
7.34286 −1.28571 −6.05714 0 1.26857 0

0 0 0 −1.28571 0 1.35429

⎤
⎥⎥⎥⎥⎥⎦ GPa (71)
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with

rq = ‖H‖ = 49.5378 GPa (72)

In the present full monoclinic case, with Y1 �= 0 and Y1 + 2Y2 �= 0, Eqs. (58) to (62) (modified using permutations of 
Appendix A as the normal to single symmetry plane is direction 2) allow us to determine the parameters ϕ1 , θ1, θ2, hq1
and hq2:

ϕ1 = −0.280725 θ1 = 1.25363 θ2 = −0.508315 hq1 = −16.4682 GPa hq2 = 32.2447 GPa (73)

so that finally, using Eq. (30) (swapping hq1 and hq2 terms to enforce the novel condition hq1 > 0 gives one real solution),

S′
rq1 =

⎛
⎝−0.622783 0. 0.312225

0. 1.09345 0.

0.312225 0. −0.47067

⎞
⎠ S′

rq2 =
⎛
⎝ 0.528979 0. −0.278846

0. 0.579538 0.

−0.278846 0. −1.10852

⎞
⎠ (74)

This completes the proposed decomposition of the symmetric elasticity tensor E into representation (50). Compared to 
the applications made in [7] (following [5]), the main novelties are Eqs. (73)–(74), i.e. the decomposition of the fourth-order 
harmonic part H into the two second-order tensors S′

rq1 and S′
rq2 (and invariant rq = ‖H‖).

8.4. Example 2: practical decomposition of photo-elastic (non-symmetric) monoclinic tensor

Matrix representation of Pockels photo-elastic tensor for monoclinic taurine (C2H7NO3S) material is [29]:

[P] =

⎡
⎢⎢⎢⎢⎢⎣

0.313 0.251 0.270 0 −0.10 0
0.281 0.252 0.272 0 −0.0025 0
0.362 0.275 0.308 0 −0.003 0

0 0 0 0.0025 0 −0.0056
−0.014 0.006 0.0048 0 0.047 0

0 0 0 0.0024 0 0.0028

⎤
⎥⎥⎥⎥⎥⎦ (75)

The corresponding decomposition moduli for the constant and linear parts are:

rc = 0.302613 rl = 0.0352709 aSl = 0.0251574 (76)

r̄c = 0.0892444 r̄l = 0.00175233 aAl = 0.00702 (77)

The second-order tensors associated with the linear terms are

S′
rl =

⎛
⎝ 0.43554 0. −0.687535

0. −0.838273 0.

−0.687535 0. 0.402733

⎞
⎠ S̄′̄

rl =
⎛
⎝−0.621396 0. 0.637248

0. −0.24095 0.

0.637248 0. 0.862346

⎞
⎠ (78)

S′
al =

⎛
⎝ 0.808243 0. −0.677732

0. −0.178874 0.

−0.677732 0. −0.62937

⎞
⎠ A′

al =
⎛
⎝ 0 0 −1

0 0 0
1 0 0

⎞
⎠ (79)

The harmonic part of P is then calculated from Eq. (24)

[H] =

⎡
⎢⎢⎢⎢⎢⎣

−0.0203371 −0.00560286 0.02594 0 −0.03275 0
−0.00560286 0.00852 −0.00291714 0 0.0076 0

0.02594 −0.00291714 −0.0230229 0 0.02515 0
0 0 0 −0.00291714 0 0.0076

−0.03275 0.0076 0.02515 0 0.02594 0
0 0 0 0.0076 0 −0.00560286

⎤
⎥⎥⎥⎥⎥⎦ (80)

with

rq = ‖H‖ = 0.113165 (81)

In the present full monoclinic case, with Y1 �= 0 and Y1 + 2Y2 �= 0, Eqs. (58) to (62) (modified using Appendix A as the 
normal to the single symmetry plane is direction 2) allow us to determine the parameters ϕ1, θ1, θ2, hq1 and hq2:

ϕ1 = 0.0500631 θ1 = 1.08514 θ2 = 0.986992 hq1 = −0.372171 hq2 = 0.33829 (82)

so that, swapping hq1 and hq2 terms to enforce the novel condition hq1 > 0 within Eq. (30), one has
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S′
rq1 =

⎛
⎝ −1.15344 0. −0.0453512

0. 0.587828 0.

−0.0453512 0. 0.565613

⎞
⎠ S′

rq2 =
⎛
⎝ 0.372696 0. 0.651792

0. 0.49994 0.

0.651792 0. −0.872635

⎞
⎠ (83)

The traceless antisymmetric part of P is then calculated from Eq. (41) for known linear terms:

[Z] =

⎡
⎢⎢⎢⎢⎢⎣

0 0.00983333 −0.00983333 0 −0.01191 0
−0.00983333 0 0.00983333 0 0.0128 0
0.00983333 −0.00983333 0 0 −0.00089 0

0 0 0 0 0 −0.01102
0.01191 −0.0128 0.00089 0 0 0

0 0 0 0.01102 0 0

⎤
⎥⎥⎥⎥⎥⎦ (84)

Eqs. (47) and (67) (modified using the permutations of Appendix B as the normal to single symmetry plane is direction 2) 
give

aq = 0.052703 ϕ = 0.327533 θ = 0.989546 (85)

so that second-order tensors S′
aq and Aaq are

S′
aq =

⎛
⎝−0.979783 0 −0.509165

0 0.634011 0
−0.509165 0 0.345772

⎞
⎠ Aaq =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ (86)

This completes the proposed decomposition of the photo-elasticity non-symmetric tensor P into representation (50). 
Compared to usual harmonic decomposition [5,3], the novel Eqs. (82) to (86) use second-order tensors to decompose both 
traceless parts H and Z.

9. Conclusion

We have proposed a tensorial representation of fourth-order tensors having minor indicial symmetries only, such as 
(photo)elasticity tensor, or as tangent operators encountered in mechanics of materials. For 2D tensors, the proposed 
representation given in Eq. (6) is simply the tensorial rewriting of polar decomposition of Verchery and Vannucci for non-
symmetric tensors. It includes a refined description of 2D harmonic fourth-order tensors H and it is checked that their 2D 
antisymmetric traceless counterpart Z vanishes.

In the 3D case of major and minor indicial symmetries, the orthogonalized harmonic decomposition is completed by 
the decomposition of the fourth-order harmonic part H, possibly triclinic, which uses one scalar invariant and two sym-
metric and deviatoric second-order tensors. This constitutes the generalization to 3D of the Tensorial Polar Decomposition 
of 2D harmonic tensors recently obtained in [24]. Each second-order tensor is of unit norm, so that the number of nine 
independent parameters for H is obtained.

In the 3D case of major indicial antisymmetry (with minor indicial symmetries), one has presented an orthogonalized 
decomposition by means of one symmetric deviatoric second-order tensor, of one antisymmetric second-order tensor and of 
an antisymmetric traceless part Z (playing for antisymmetric tensors the same role as the harmonic part H for symmetric 
fourth-order tensors, isomorphic to a third-order harmonic tensor). This decomposition is completed by a decomposition of 
the possibly triclinic traceless part Z as a function of one scalar invariant and of two second order tensors only, a first one 
symmetric deviatoric, a second one antisymmetric. Each second-order tensor is of unit norm so that the number of seven 
independent parameters for Z is obtained.

The indicial symmetries explicitly appear. They are strongly related to the orthogonality of the generators introduced. 
They make straightforward the decomposition T = R + R + A of a tensor having minor symmetry only as the sum of a 
rari-constant tensor R (totally symmetric, 15 parameters), of an anti-rari-constant symmetric tensor R (6 parameters), and 
of an antisymmetric tensor A (15 parameters).

Finally, the proposed general decomposition is performed in the particular cases of monoclinic elasticity and of mono-
clinic photo-elasticity.

Appendix A. Monoclinic H when the normal to single symmetry plane is direction 2 or 3

One has to adapt the results of section 8.1 by permutations when the normal to the single symmetry plane is direction 
2 or 3.

Normal to single symmetry plane: direction 2. The parametrization for h1 and h2 is

h1 = 2√
3

QT
1 ·
⎡
⎣ cos(θ1 + 2π

3 ) 0 0
0 cos θ1 0
0 0 cos(θ − 2π )

⎤
⎦ · Q1 with Q1 =

⎡
⎣ cosϕ1 0 − sinϕ1

0 1 0
sinϕ1 0 cosϕ1

⎤
⎦ (87)
1 3
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h2 = 2√
3

⎡
⎣ cos(θ2 + 2π

3 ) 0 0
0 cos θ2 0
0 0 cos(θ2 − 2π

3 )

⎤
⎦ (88)

which results in a solution similar to the one of section 8.1 by replacing X1 with Y1 and X2 with Y2, and by doing a circular 
permutation of 	1, 	2, 	3: 	1 → 	2, 	2 → 	3 and 	3 → 	1.

Normal to the single symmetry plane: direction 3. The parametrization for h1 and h2 is

h1 = 2√
3

QT
1 ·
⎡
⎣ cos(θ1 − 2π

3 ) 0 0
0 cos(θ1 + 2π

3 ) 0
0 0 cos θ1

⎤
⎦ · Q1 with Q1 =

⎡
⎣ cosϕ1 − sinϕ1 0

sinϕ1 cosϕ1 0
0 0 1

⎤
⎦ (89)

h2 = 2√
3

⎡
⎣ cos(θ2 − 2π

3 ) 0 0
0 cos(θ2 + 2π

3 ) 0
0 0 cos θ2

⎤
⎦ (90)

which results in a solution similar to the one of section 8.1 by replacing X1 with Z1 and X2 with Z2, and by doing a circular 
permutation of 	1, 	2, 	3: 	1 → 	3, 	2 → 	1 and 	3 → 	2.

Appendix B. Monoclinic Z when the normal to single symmetry plane is direction 2 or 3

One has to adapt the results of section 8.2 by permutations when the normal to the single symmetry plane is direction 
2 or 3.

Normal to the single symmetry plane: direction 2. The parametrization for S′
aq and Aaq is

S′
aq = 2√

3
QT

aq ·
⎡
⎣ cos(θ + 2π

3 ) 0 0
0 cos θ 0
0 0 cos(θ − 2π

3 )

⎤
⎦ · Qaq with Qaq =

⎡
⎣ cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ

⎤
⎦ (91)

Aaq =
⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ (92)

which results in a solution similar to (67) by replacing x1 with y1 and x2 with y2.

Normal to the single symmetry plane: direction 3. The parametrization for S′
aq and Aaq is

S′
aq = 2√

3
QT

aq ·
⎡
⎣ cos(θ − 2π

3 ) 0 0
0 cos(θ + 2π

3 ) 0
0 0 cos θ

⎤
⎦ · Qaq with Qaq =

⎡
⎣ cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1

⎤
⎦ (93)

Aaq =
⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ (94)

which results in a solution similar to (67) by replacing x1 with z1 and x2 with z2.
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