
HAL Id: hal-01303843
https://hal.sorbonne-universite.fr/hal-01303843v1

Submitted on 18 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Slow feature analysis with spiking neurons and its
application to audio stimuli

Guillaume Bellec, Mathieu Galtier, Romain Brette, Pierre Yger

To cite this version:
Guillaume Bellec, Mathieu Galtier, Romain Brette, Pierre Yger. Slow feature analysis with spiking
neurons and its application to audio stimuli. Journal of Computational Neuroscience, 2016, 40 (3),
pp.317-329. �10.1007/s10827-016-0599-3�. �hal-01303843�

https://hal.sorbonne-universite.fr/hal-01303843v1
https://hal.archives-ouvertes.fr

Journal of Computational Neuroscience manuscript No.
(will be inserted by the editor)

Slow Feature Analysis with spiking neurons and its
application to audio stimuli

Guillaume Bellec, Mathieu Galtier, Romain Brette and Pierre Yger

Abstract Extracting invariant features in an un-
supervised manner is crucial to perform complex
computation such as object recognition, analyzing
music or understanding speech. While various al-
gorithms have been proposed to perform such a
task, Slow Feature Analysis (SFA) uses time as
a means of detecting those invariants, extracting
the slowly time-varying components in the input
signals. In this work, we address the question of
how such an algorithm can be implemented by
neurons, and apply it in the context of audio stim-
uli. We propose a projected gradient implemen-
tation of SFA that can be adapted to a Hebbian
like learning rule dealing with biologically plausi-
ble neuron models. Furthermore, we show that a
Spike-Timing Dependent Plasticity learning rule,
shaped as a smoothed second derivative, imple-
ments SFA for spiking neurons. The theory is sup-
ported by numerical simulations, and to illustrate
a simple use of SFA, we have applied it to audi-
tory signals. We show that a single SFA neuron
can learn to extract the tempo in sound record-
ings.

Guillaume Bellec
Institut de la Vision, Paris, France INSERM, U968, Paris,
France CNRS, UMR7210, Paris, France
E-mail: guillaume.bellec [at] ensta.org

Pierre Yger
Institut d’Etudes de la Cognition, ENS, Paris
Sorbonne Université, UPMC Univ Paris06 UMRS968
Institut de la Vision, Paris, France INSERM, U968, Paris,
France CNRS, UMR7210, Paris, France

Romain Brette
Sorbonne Université, UPMC Univ Paris06 UMRS968
Institut de la Vision, Paris, France INSERM, U968, Paris,
France CNRS, UMR7210, Paris, France

Mathieu Galtier
European Institute for Theoretical Neuroscience
CNRS UNIC UPR-3293, Paris

Keywords unsupervised learning, plasticity,
slow feature analysis

Introduction

A property of sensory cortices is the ability to ex-
tract and process invariants in the flow of infor-
mation they are receiving. The higher the cogni-
tive areas, the more complex the invariants [27,
33]. Finding invariants, or equivalently seeking
statistically relevant features in the inputs is an
unsupervised learning task performed by the sen-
sory cortices [24]. In the context of object recogni-
tion, for example, given several images of a plane
and several others of a car, learning to answer
the question “is it a car?” when facing a new im-
age is rather complex. To answer correctly, one
must have identified an invariant belonging to the
“car” category, common in all the images. By tak-
ing time into account, one could use the fact that
two images appearing one after the other in a nat-
ural scene likely originate from the same object
[9]. This shows the importance for cortical areas
to learn from temporal features, and how time can
be used as an extra dimension to extract informa-
tion.

To address more generally this question of
time in unsupervised learning, one can start from
the observation that sensory signals tend to vary
at a fast time-scale compared to the source of
these signals in the environment. For example, the
physical location of a sound source varies more
slowly than the acoustical pressure. This has led
several authors to propose statistical learning al-
gorithms that extract slowly varying features of
sensory signals [35, 12, 10, 1], which are also re-
lated to psychological theories according to which
the basis of perception is the “invariant structure”
of the sensory (or sensorimotor) signals [17].

Slow Feature Analysis (SFA) [35, 34] is a sim-
ple and yet very successful unsupervised algo-
rithm to capture invariant features from input
streams. Literature on SFA provides arguments
that the brain might process information in a sim-
ilar way as SFA. In the primary visual cortex V1,
the algorithm has been used to explain the emer-
gence of simple and complex cells, and the ob-
served diversity of their properties [2, 21, 6]. In the
somatosensory system, it has also been used to
show the emergence of place and head-direction
cells [13]. SFA extracts continuous causes of the
inputs [32] and such stochastic hypotheses also
seem to be compatible with known phenomenon
of neural adaptation [30]. In this paper, we will
show how those principles can be applied to in-
puts where time is intrinsically entangled to the
signals themselves, i.e in the auditory pathway.

If the brain is able to achieve such represen-
tations through unsupervised learning, how is it
implemented with spiking neurons? While it has
already been shown [29] that Slow Feature Anal-
ysis (SFA) can be linked to the trace learning rule
[12], and that an implementation of such a trace
rule can be theoretically compatible with known
experimental facts on synaptic plasticity such as
Spike-Timing Dependent Plasticity (STDP) [3, 23,
16], a simulation of rate-based or spiking neurons
implementing SFA is still missing. In this work,
we show mathematically in a similar way as in
[29] and with simulations of rate-based and spik-
ing neurons how an optimization criterion de-
rived from slowness can be implemented by neu-
rons, and we apply this in the context of auditory
signals.

While the derivation is similar to [29], the
conclusions are slightly different. As in their re-
sults, we show that synapses can be governed
by a biologically plausible online learning rule
capturing the slowest time-varying component
of the inputs. Yet substantial extensions of their
work are added since we found through theory
and comparative simulations that classical asym-
metric STDP [3] and trace learning [12] are not
sufficient to implement SFA, when sharp post-
synaptic potentials are considered, while a plas-
ticity kernel shaped as a smoothed second deriva-
tive is.

Material and methods

Notations In all the following x(t) ∈ Rn denotes
the input signal and s is the output such that
∀t, s(t) := wTν(t), w = [w1, .., wn] being the in-
coming synaptic weights. To simplify the theory

all signals are considered null outside a finite sup-
port [0, T]. The convolution between signals x and
y is written x ∗ y, the integration over time is writ-
ten x, and cross-correlation is written 〈x, y〉 :=∫ T

0 x(t)y(t)dt. We write gτ(t) for the temporal fil-

ter given by gτ(t) := 1
τ H(t)e−

t
τ , where H is the

Heaviside function and τ is a time constant. From
the mathematical framework detailed in [14] we
interpret convolution between temporal signals
as simple matrix multiplication. The transposition
notation is extended to the continuous represen-
tation of filters by noting gT

τ (t) = gτ(−t) because
the property: 〈x ∗ g, y〉 = 〈x, y ∗ gT〉will be widely
used in our paper. The derivative operator at or-
der (r) is also written as a convolution with d(r)
such that x ∗ d(r) := dr x

dtr . δt0 is a Dirac distribution
centred at time t0.

Toy example To test the convergence of SFA, we
use the toy example defined in [35]. Five inputs
xi(t) are built out of non linear combinations of
two sinusoids:

x1(t) = sin(2π f0t) + α cos(2π11 f0t)2

x2(t) = cos(2π11 f0t)
x3(t) = x1(t)2

x4(t) = x1(t)x2(t)
x5(t) = x2(t)2

(1)

In all the manuscript, we consider f0 = 1Hz.

The spiking neuron model Each input neuron i
generates a Poisson spike train of rate νi formal-
ized by a sum of Dirac pulses θi(t) = ∑k δ(t− tk).
We can define the empirical rate ri by counting
spikes over a time bin of width τrate. Formally

we use φ = H(t) t
τ2

rate
e
−t

τrate (φ = 1) as an alpha-

function filter such that

ri := θi ∗ φ

Note that ri is in Hz. For simplicity, all input
rates νi are scaled to have a time average of r and
a standard deviation rs so that νi := r + rs xi.
We assume as in [22, 29, 20] for modelling STDP
that the post-synaptic neuron generates a Poisson
spike train θout of rate νout(t) that is a linear func-
tion of the post synaptic potential (PSP) produced
by given spike trains θi. In other words, we have a
frequency offset ν0, a constant κ, synaptic weights
wi and a normalized PSP filter ξ (ξ = 1) that de-
fines the neuron dynamic as

νout(t) = ν0 + κ ∑
i

wiθi ∗ ξ (2)

The plausibility of this assumption is dis-
cussed in [22, 29], and mathematical details are
given in the Appendix. For numerical simula-
tions, we chose r = 100 Hz, rs = 80 Hz, ν0 =
100 Hz and κ = 0.0625. In Figure 6 τrate = 10 ms
and 2 ms in Figure 9. The PSP filter used in Fig-
ures 6 and 9 is a decreasing exponential of time
constant 1 ms. Simulations have been performed
with the Brian simulator [18], using a time step
δt = 0.1 ms.

Time scales assumptions We assume that if δt is
the discrete time step of the simulation, τrate the
width of the spike counting filter, τsignal the typ-
ical time scale of variation of the useful informa-
tion hidden in the input, τw the time constant of
synaptic updates, we have

δt� τrate
=τSTDP

(3,a)
� τsignal

(3,b)
� τw

0.1 ms� 10 ms � 100 ms� 1 s
(3)

In the following, τSTDP the width of the plas-
ticity kernel is equal to τrate. Inequality (3.b) is
needed so that an online implementation con-
verges towards the same solution as a batch im-
plementation and (3.a) guarantees that informa-
tion encoded into the rate does not vary faster
than the time required to compute the rate.

Calculation of ΩSFA The exact shape of ΩSFA is
calculated starting from the expression

ΩSFA := φ ∗ d(2) ∗ φT

When reversing time d(1) becomes −dT
(1), thus

d(2) = −d(1) ∗ dT
(1). And using φ := gτrate ∗ gτrate ,

we have

ΩSFA = −gτrate ∗ gτrate ∗ d(1) ∗ dT
(1) ∗ gT

τrate ∗ gT
τrate

The convolution is commutative so we can group
the terms using the smoothed derivative filter
d(1,τ) := gτ ∗ d(1) ∗ gT

τ . This leads to

ΩSFA = −d(1,τrate) ∗ dT
(1,τrate)

Proof is given in [15] that d(1,τ) =
gT

τ−gτ
2 . So when

developing the expression of d(1,τrate) we have

ΩSFA = −1
4
(gT

τrate − gτrate) ∗ (gτrate − gT
τrate)

Developing again, only terms in g ∗ g, g ∗ gT or
their transpose remain. When inserting the lit-

eral expressions gτ ∗ gT
τ = 1

2τ e−
|t|
τ and gτ ∗ gτ =

H(t) t
τ2 e−

t
τ , we have

ΩSFA(t) =
1

τrate
e−

|t|
τrate

(|t|
τrate

− 1
)

(4)

Construction of the plasticity kernels In order to
test the performance of the plasticity kernel ΩSFA
we compare it to control learning rules. To do so,
knowing that ΩSFA is defined as φ ∗ ΛSFA ∗ φT ,
with ΛSFA = d(2), we change that filter ΛSFA by
ΛClassic = d(1), ΛHebbian+ = δ0 and ΛHebbian− =
−δ0. Those three filters are implementing a clas-
sical STDP like plasticity kernel (asymetric), a
purely Hebbian plasticity kernel, and an anti-
Hebbian one, respectively. They lead to the three
control plasticity kernels

ΩClassic := d(1,τ) =
H(t)e(−

t
τ) − H(−t)e(

t
τ)

2τ

ΩHebbian+ := στ =
e−
|t|
τ

2τ

ΩHebbian− := −στ = − e−
|t|
τ

2τ

Measure of slowness For each set of parame-
ters and STDP kernel, the batch algorithm is
run 20 times on the toy example. Slowness of
trial i is measured by the correlation coefficient
CCi between output si and the optimal solution
sin(2π f0t), then the CCi are squared and aver-
aged geometrically such that we can quantify the
similarity to the optimal solution in Figure 8 as
〈CC〉 = Π20

k=1CC2/20
k . Note that if τSTDP = 0 ms,

rate is ill defined and we replaced the spike train
θi by its ideal expected value.

Application to audio processing In Figure 9-11,
we used recording sounds x0 sampled at fs. In-
puts to SFA algorithm are built by constructing
delay lines of N channels xi(t) delaying x0 by de-
lay iτdelay such that

xi(t) = x0(t− iτdelay) (5)

To be more precise, in Figure 9 fs = 11 kHz,
N = 256, τdelay = 0.81 ms. To study the influence
of parameters, the same simulation is run in Fig-
ure 10 with τdelay = 8.8 ms. In Figure 11 to capture
both pitch and tempo we use N = 512 delays with
τdelay = 1.5 ms.

Results

A number of models have been proposed to ex-
plain how unsupervised learning of invariants
could be achieved by spiking neurons, either with
a normative approach [31, 29, 28] or with a phe-
nomenological one [5, 37, 36]. Slow Feature Anal-
ysis (SFA) [35, 34] is a simple and yet very suc-
cessful unsupervised algorithm to capture invari-
ant features. In Figure 1A, the generic principle

A

B

Pre Post

t ∆tt +
Spike Timing Dependent Plasticity

s(t)

s (t)
1

s (t)
2

s (t)
3

x
1

x
2

x
N

S=WX

∆t

Time

.

.

.

x(t)

Time

Fig. 1 Illustration of the SFA algorithm and Spike-Timing-
Dependent plasticity. A If x are the sensory inputs, SFA
learns a linear transformation W that maximizes the slow-
ness of the output s. s(t) depends only on x(t) and not
on its past. B Illustration of the Spike-Timing-Dependent
Plasticity protocol, as observed in vitro in [3, 23]. The
synaptic weight is modified as a function of the temporal
difference ∆t between pre and post synaptic spikes.

of the SFA algorithm is illustrated. If xi(t) are the
inputs, SFA will decompose it onto a basis of sig-
nals si(t) sorted by their slowness. In this paper,
we focus on how neurons can implement such
an algorithm. In line with seminal ideas of Heb-
bian learning [19], and since its first discovery
[4], Spike-Timing dependent plasticity (STDP) ap-
pears to be a good candidate to support such a
dynamical extraction of invariant by neurons, as
a widely observed phenomenon taking place in a
large number of systems (see [8] for review). As
illustrated in Figure 1B, it relies on the fact that
fine pre-post interactions [3, 23, 16] can modify
the strength of a single synaptic weight. It has al-
ready been stated that some STDP kernel (Figure
1B) can be used to implement SFA [29]. But the
question of the most efficient plasticity kernel im-
plementing it remains. Here, we compute analyti-
cally what should be the shape of a plasticity ker-
nel implementing SFA and provide simulations of
its implementation to compare with kernels sug-
gested in [29].

Implementing SFA with gradient methods

We consider the theoretical formulation of SFA as
an optimisation problem. Originally [35] the out-
puts of SFA are defined as multi-dimensional and
decorrelated with each other. However as find-

ing slow components and decorrelating them are
two distinct tasks, here we focus only on the first
(for the decorrelation task see [26, 7]). Therefore,
we assume as in [29] that the inputs x are nor-
malised and decorrelated so that 〈x, x〉 = IdN .
Note that in all simulations inputs are sphered
during a pre-processing stage to satisfy this con-
straint and this is not implemented biologically in
this paper (see Discussion). Given those N input
signals xi(t) with zero mean and unit variance,
the aim of SFA is to find a set of weights w max-
imising the slowness of the output s(t) = wTx(t).
This problem is formalised in [35] as

min
w

ds
dt

2

subject to: s2 = 1

∀t, s(t) = wTx(t)

(6)

To illustrate the algorithm, we define a toy ex-
ample (see Methods), and as can be seen in Figure
2, SFA isolates in the output s the slow component
of the inputs. In all the following, this simple ex-
ample will be used to compare with SFA.

SFA can be re-written so that we can derive
a projected gradient algorithm to solve the prob-
lem. Because the covariance of the inputs is iden-
tity, normalising the weights is equivalent to nor-
malising the output variance. After integrating by
part the squared derivative of s, the cost function
becomes −〈 d2s

dt2 , s〉1. Because s = wTx, and using
the notation of the second order derivative oper-
ator as a convolution with d(2) (see Methods), we

have d2s
dt2 = wTx ∗ d(2). Assuming weights are con-

stant between iterations of a batch algorithm, SFA
can be reduced to finding w such that

max
w

wT〈x ∗ d(2), x〉w
subject to: ||w|| = 1

(7)

As far as the objective is quadratic in w, the gradi-
ent is easily written as 2〈x ∗ d(2), x〉w. Beside nor-
malization at each time step, the iteration of the
batch algorithm is given by

wk − wk−1 = ∆wk ∝ 〈x ∗ d(2), s〉 (8)

A key issue of the batch algorithm is that the time
flow is not realistic (see Figure 3A). In the batch
algorithm, at each iteration the exact same stim-
ulus is presented and the weights are updated
based on statistics of the whole sequence. Instead,

1 The integration by part gives: 〈ṡ, ṡ〉 = [ṡs]∞−∞ − 〈s̈, s〉
and the first term is null because the inputs are assumed
to be null at infinity.

+

w

1

w

2

w3

w

4

w

5

minimize
w

〈ṡ2〉

subject to ||w ||=1

s = wTx

=
∑

wixi

Linear neuron Goal of SFA

Inputs of a toy example

= sin(t)+αcos(11t)
= cos(11t)
=
=
=

slowly varying feature
= sin(t) = -

2

Fig. 2 Illustration of SFA. Simple toy example for the SFA algorithm, as described in [35]. Five inputs (in blue) are non-
linear combinations of a slow and a fast sinusoids (see Methods). Output of the SFA algorithm is shown in red. Whitening
of the inputs is not shown for clarity, but we have 〈x, x〉 = IdN

0 2 4
2

0

2

Online

2

0

2

0 2 4
Repeated input

16 18 20

x
2

x
2

Batch

Time [s]

t t t

A B

k

Unknown
Future

k k

Fig. 3 Conceptual differences between batch and online implementation of SFA. A In the batch implementation the same
stimulus is presented until convergence, and weights are updated between iterations depending on averaged statistics
over the whole sequence. B In the online form inputs may evolve over time and not be periodic, weights are updated at
every time step depending on the inputs and the output response of the neuron.

as shown in Figure 3B, we can implement an on-
line version of the algorithm, defined by the dif-
ferential equation of the weight vector where the
optimization follows the time flow. If the time
constant of weight updates, τw, is large enough
(as assumed in Equation 3.b), we can define an
online algorithm as a Hebbian learning rule of

the form ẇi(t) ∝ d2xi
dt2 (t)s(t). One can note that

the only difference as compared to Oja’s imple-
mentation of PCA (Principal Component Analy-
sis) ẇi(t) ∝ xi(t)s(t) [25] is the use of the sec-
ond derivative. The same result could have been
obtained by keeping one derivative on each side
(ẇi ∝ ẋi ṡ) but grouping the two make sense when
dealing with STDP in the following sections.

In Figure 4, we compare the different imple-
mentations of the batch and the online algorithms
on the toy example defined in Figure 2. As com-
pared to the ground truth given by the standard
SFA algorithm (Figure 4A), the batch (Figure 4B)
and the online (Figure 4C) implementations all
converge toward the same solution. Moreover, in
the case of the online implementation, the dynam-
ics of the weights (Figure 4D) shows that the con-
vergence is achieved in a few seconds of simu-
lated time.

To show that recovering the slow sinusoid
in this example is due to the use of the second
derivative d(2) in Equation (7), we compared dif-
ferent learning rules on the exact same task (see

0 2 4
-2

0

2
s

SFA

0 2 4
-2

0

2
Batch

0 2 4

s

Online (start)

96 98 100

Online (end)

0 50 100

Time (s)

-1

0

1

w
ei

gh
ts

A B

C

D
-2

0

2

Fig. 4 Convergence of the algorithms on the toy example.
A Slowest component given by SFA as in [35] for the toy
example described in Figure 2. B Same but for the batch
implementation. (Phases of the oscillations are opposed,
but the two solutions are equally optimal). C Same for the
online form: it converges to the same solution in a few sec-
onds. D Evolution of the five corresponding weights as a
function of time with the online implementation. Conver-
gence is reached in a few seconds.

Methods) by replacing d(2) in the batch and online
algorithm by ΛClassic := d(1), ΛHebbian+ := δ0 and
ΛHebbian− := −δ0. Classic stands for the fact that
this is at the origin of the canonical kernel for plas-
ticity, as described in Figure 1B [3, 23, 16]. Note
that the Hebbian learning rule using ΛHebbian+, if
normalized properly, is known to recover Oja’s
neural implementation of PCA [25], defined by
ẇi ∝ xi ∗ δ0(t)s(t) = xi(t)s(t). The left column of
Figure 5 shows the pattern of the output after con-
vergence of the batch algorithm, while the right
column shows convergence of the online imple-
mentation. Only ΛSFA = d(2) is able to recover
the slow sinusoid.

Implementation by spiking neurons

To propose an implementation of SFA with bi-
ological neurons, we need to take into account
the spiking property of real neurons. Input xi is
scaled between 20 and 180 Hz to be encoded by
pre-synaptic firing rates νi. It generates the Pois-
son spike train θi and we can define a rate estima-
tor ri := θi ∗ φrate, built by counting spikes over a
short time bin (see Methods). We assumed, such
as in [22, 29, 20], that the post-synaptic neuron
generates a Poisson spike train θout of rate νout(t)
linearly related to the post synaptic potential (see
Methods). The rate estimator rout(t) is defined as
for the pre-synaptic spike trains.

In the following we show that for a kernel
shaped as a smoothed second derivative, the ex-

-2

0

2

Batch

-2

0

2

Online

-2

0

2

-2

0

2

-2

0

2

-2

0

2

0 2 4
t (s)

-2

0

2

0

-2

0

2

98 100
t (s)

s
s

s
s

A

B

C

D

Fig. 5 Comparison with other control learning rules. Four
different rules are compared (rows) on the toy example de-
scribed in Figure 2. Left column shows the output pattern
after convergence of the batch algorithm, right shows the
results obtained with the online algorithm. A SFA kernel as
a second derivative. B Plasticity kernel based on first order
derivative. C Hebbian kernel rule implementing PCA [25].
D Anti-Hebbian kernel.

pected weight modification due to STDP imple-
ments the gradient ascent of Equation (8). Let tin

i,n
(resp. tout

m) be the spike times of input neuron
i (resp. output neuron). If the filter that defines
the STDP plasticity kernel is called Ω, and as-
suming synaptic changes are occurring on a slow
timescale τw compared to the typical interspike
interval, we have, if ε is a small learning rate

∫ t

t−τw
ẇi(t)dt = ε ∑

tin ,tout∈[t−τw ,t]

Ω
(

tout − tin
i

)

= ε
∫ t

t−τw
θi ∗Ω(t′)θout(t′)dt′

Such that, on average

〈ẇi〉 = ε〈θi ∗Ω, θout〉 (9)

We assume the existence of a kernel Λ so that
Ω can be seen as a smoothed version of it, i.e.
Ω = φrate ∗ Λ ∗ φT

rate. In particular, the width of
such a plasticity kernel Ω is controlled by φrate.
If Λ = δ0, then the width of the plasticity ker-
nel is 2τrate. In all the following, to be consistent,
we define τSTDP as controlling the width of this
STDP kernel (τSTDP = τrate). From Equation (9),
we have

〈ẇi〉 = ε〈θi ∗ φrate ∗Λ ∗ φT
rate, θout〉

= ε〈θi ∗ φrate ∗Λ, θout ∗ φrate〉
= ε〈ri ∗Λ, rout〉

(10)

We see that for Λ = d(2), the average effect
of our learning rule built with an STDP-like plas-
ticity kernel has a similar effect as the Hebbian

learning rule ẇi ∝ d2xi
dt2 s that implements SFA. To

generalize the initial batch and online algorithms
without spikes 2 we use

ΩSFA = φrate ∗ d(2) ∗ φT
rate

It implies that the plasticity kernel ΩSFA has to
be shaped as a smoothed second derivative, and
the exact shape of ΩSFA depends only on φrate.
The calculation that exhibits the literal expression
of the kernel ΩSFA is detailed in the methods, and
it leads to the plasticity kernel below

ΩSFA(t) =
1

2τSTDP
e−

|t|
τSTDP

(|t|
τSTDP

− 1
)

(11)

This demonstration gives a good intuition of the
reason why this plasticity kernel ΩSFA(t) imple-
ments SFA. However, to see the full mathemati-
cal derivation, the reader should refer to the Ap-
pendix, where the stochastic aspect of the in-
put and output spiking activities are taken into
account, as in [29] using results from [22]. The
outcome is that to implement SFA, the expected
weight modification due to STDP has to be pro-
portional to 〈xi ∗ΩSFA, s〉. This is verified by com-
puting the stochastic average of Equation (10). Be-
side terms that can be neglected (see Appendix
or [29]) the expected weight change is in fact pro-
portional to 〈xi ∗ΩSFA ∗ ξT , s〉, where ξ is the post
synaptic potential filter. But if the time constant

2 The non-spiking case is recovered if τrate → 0 and θi(t)
is replaced by the expected value being the rate ν of the
inputs.

0 2
20

180

O
ut

pu
t r

at
e

[H
z]

Start

398 400

0 200 400
t (s)

-1

0

1

W
ei

gh
ts

0 2

Averaged
period

SFA

Low-pass

0 1 s

+

r out
Spiking inputs

A

B C

D t (s)t (s)

Fig. 6 Generalisation of the online implementation to rate-
based neurons. A We consider rout as the output of the
neuron to represent the slow output. B Implementation of
SFA for the toy example described in Figure 2 with five
inputs being non-homogeneous Poisson processes of rates
x1, . . . x5 re-scaled to vary from 20 to 180 Hz. Evolution of
rout during learning. C Average over multiple chunks of
2 seconds showing the mean pattern extracted by the al-
gorithm. D Evolution of the five synaptic weights during
learning, to show that convergence is achieved.

of ξ is small compared to τrate, the filtering per-
formed by ξT can be neglected and STDP using
ΩSFA implements SFA. In simulations we used
time constants of the order of 1 ms for both ξ and
Ω to match biological data and the results are not
impaired.

In Figure 6, we test the implementation of
SFA with spiking neurons. Figure 6A illustrates
the spiking property of the neuron. Variations
of the output rate estimator rout over time are
represented in Figure 6B. After convergence, the
shape of the sinusoid is approximately being re-
produced. The noise is large because the input
neurons are spiking at reasonably low rates (be-
tween 20-180 Hz, see Methods). To confirm that
the slow sinusoid is well captured, we use the
periodicity of the stimulus to average multiple
chunks of two seconds length. When averaged
over all periods after convergence, the averaged
pattern can be represented as in Figure 6C). Fig-
ure 6D shows the convergence of the weights.

Similar to the smoothing performed for the
second derivative operator d(2), the control learn-
ing rules defined by ΛHebbian+ (implementing
PCA), ΛHebbian− and ΛClassic are adapted to work
with spikes. In fact each control learning rule cor-
responds to a control STDP kernel represented in

-0.01

0

-0.005

0

0.005

0

0.006

-0.1 0.0 0.1
t (s)

-0.006

0

∆
w

∆
w

-0.1 0.0 0.1
t (s)

Ω φrate∗ ∗ φT
rate=

Ω φrate∗ ∗ φT
rate=

Ω φrate∗ ∗ φT
rate=

T
-0.1 0.0 0.1

t (s)
-0.1 0.0 0.1

t (s)

Classic

Hebbian+

Ω =Hebbian-
-Ω

Hebbian+

A B

C D

Fig. 7 Representation of the STDP kernels implementing
the control learning rules for plasticity (see Methods for
literal expressions). A SFA kernel as a second derivative. B
Plasticity kernel based on first order derivative. C Hebbian
kernel rule implementing PCA [25] when τSTDP → 0 ms
and equivalent to the trace learning [12] in general. D Anti-
Hebbian kernel.

Figure 7. In particular ΩHebbian+ is equivalent to
trace learning [12] according to our theory and
ΩClassic, measured with biological neurons in vitro
[3] is mostly used in the literature. We show in
Figure 8 that only ΩSFA implements SFA for any
choice of parameters.

The parameter α controlling the amplitude of
the quickly varying components in the toy exam-
ple is varied for different values of the STDP time
constant τSTDP. The influence of α is shown in Fig-
ure 8A, while Figure 8B shows the modulation
of the plasticity kernel as a function of τSTDP =
τrate. Figure 8C shows which STDP kernel is ca-
pable of recovering the slow sinusoid with an ex-
treme case of a width of τSTDP = 0 ms (left),
τSTDP = 10 ms (middle) and α = 1, τSTDP being
varied (right). Our implementation of SFA recov-
ers the slow solution in each case (see Methods).
For large realistic STDP kernel width, the Heb-
bian kernel only recovers the slow sinusoid for
α < 1000 and the anti-Hebbian for α > 1000. In-
stead ΩSFA finds the expected solution for any α.
When varying τSTDP, there is only one case where
ΛSFA does not recover the slow sinusoid: when
the plasticity kernel is larger than the fastest os-
cillations (τSTDP = 100 ms, right panel, last row).
But because the assumption of the time scales
(3.b, see Methods) is not respected any more, we
conclude that the slowest component is robustly
extracted by a plasticity kernel shaped by ΩSFA
only.

Application to audio recordings

Having shown the validity and the robustness of
our implementations on a simple example, we
can now use more complex inputs. Because in au-
dio time is crucial and because SFA has mostly
been applied to visual stimuli [2, 21, 6], music and
speech recordings are good candidates to try our
implementations of SFA.

To begin with, we apply SFA on a guitar sig-
nal x0 (15s of a country music), sampled at fs =
11 kHz with our model of a plastic spiking neu-
ron (see Figure 9A for a schematic representa-
tion). This one dimensional audio recording is ex-
panded to dimension 64 by delay lines (see Meth-
ods), providing multiple delayed versions of x0,
each of them delayed by 0.81 ms compared to the
previous one (see Figure 9A). From each channel
xi an inhomogeneous time-varying Poisson spike
train θi is generated with rates varying between
20 and 180 Hz (see Methods). Using the STDP ker-
nel ΩSFA we see on Figure 9B the convergence of
the weights from all those channels when loop-
ing over that country guitar recording. Figure 9C
displays the final weights assigned to each delay,
i.e. the learnt filter given by SFA. We can see that
such an optimal filter is a sinusoid at a particu-
lar frequency, which corresponds to the dominant
frequency of the recording (97Hz being the fre-
quency of G2 the note mostly played by the gui-
tarist).

By using delay lines with larger delays (8.8
ms) between each inputs (see Figure 10A), we can
see on Figure 10B the results obtained with the
standard SFA algorithm and our implementation.
We can see in frequency domain (Figure 10C) that
the solutions peak at 3 Hz. Filters, again, are si-
nusoids (Figure 10D) tuned to about 3 Hz (Fig-
ure 10E), i.e. to 180 beats per minute, the tempo
of the music piece. Interestingly, the visualisation
of the filters in time domain in Figure 10D seems
to show that the batch implementation produced
a more regular solution than the classic SFA algo-
rithm.

Assuming the length of the delays in the delay
lines can impact the filters obtained by SFA algo-
rithm, we ask what is the influence of the param-
eter τSTDP, the width of the plasticity kernel. In
Figure 11, we used the same guitar recording as
previously expanded with 512 delays of 1.5 ms,
to get a broad range of possible filters. The plas-
ticity kernel has a variable width τSTDP varying
between 0.1 ms to about 30 ms. Figure 11A, B, C
represents three different learnt filters with dif-
ferent orders of magnitude for τSTDP: 0.1, 1 and
10 ms. Qualitatively the larger the STDP kernel

A

C

B

Fig. 8 Robustness to noise and to parameters of the plasticity kernels. A Influence of α, balancing the amount of high
frequency information in the input (See Methods on the toy example for more details). B Influence of τSTDP, the time
constant defining the width of the STDP kernel. C After fixing one parameter (Left τSTDP = 0 ms, Middle τSTDP = 10 ms,
and Right α = 1) the other parameter (either τSTDP or α is varying on the horizontal axis). In each case the four STDP
kernels introduced in Figure 7 are compared on the vertical axis. For each point of the graphs 20 batch simulations are
launched with different random weight initialisation, and slowness is measured as a correlation with the slow sinusoid
averaged over trials (see Methods).

Delay lines

SFA
Learnt �lter

A

B

C

In
ho

m
og

en
eo

us
 P

oi
ss

on

0

-0.5

0.5

0 10000Time (s)

0

-0.2

0.2

0 40
Delay (ms)

Sound

slow
output

Learnt �lter

W
ei

gh
ts

Fig. 9 Illustration of the SFA algorithm and Spike-Timing-Dependent plasticity. A Schematic construction of the inputs.
A single guitar recording x0 of country music is delayed N = 64 times into channels xi(t) with a delay being a multiple of
τdelay = 0.74 ms (delay line). Every input line is then turned into spikes by inhomogeneous Poisson sources (see Methods)
and fed into the SFA algorithm. B Evolution of the synaptic weights as function of time. Grey lines show 20 individual
trajectories, while the red line shows the sum, proving the convergence. C Final weight as a function of the delays. A
sinusoidal-like filter has been learnt.

5 10
t (s)

-5

0

5

10 -1 10 0 10 1 10 2

f (Hz)

-100

-80

-60

-40

F
(s

)
(d

B)

Power spectrum
x0 s (SFA) s (Batch)

0 1 2
Delays (s)

-0.10

0.00

0.10

W
ei

gh
ts

Learnt �lter

10 -1 10 1

f (Hz)

-60

-40

-20

-0

G
ai

n
(d

B)

Frequency response

10 0 10 1

f (Hz)

Tempo: 181 BPM

Delay lines SFA

slow output

A

B C

D E

x
0
s

Learnt �lter

Fig. 10 Extracting the tempo of a guitar signal. A Schematic construction of the inputs, as in Figure 9. A single guitar
recording x0 of country music is delayed 256 times into channels xi(t) with delays of multiple of τdelay = 8.8 ms (delay
line), and fed into the SFA algorithm. B The audio recording x0 (blue), compared with the two outputs of SFA (filtered
versions of input). In black, the output is obtained with our gradient based implementation of SFA, and in red, this is
the original algorithm (ground-truth). C Comparison of the power spectrum for the three signals, showing an increase in
energy at the tempo frequency (3 Hz). D Weights after learning for all input channels with the two implementations of
SFA. E The power spectrum of the two learnt filters. They are tuned to 3 Hz, the tempo of the recording.

is, the lower the captured frequencies are. Figure
11D represents, in a more exhaustive manner, the
frequency responses as a function of τSTDP. Only
few frequencies have high energy in the learnt
frequency response, and the larger the kernel is,
the lower the tuning frequencies of the filter are.
For sharp STDP kernel (τrate ≈ δt) the pitch G2
is captured. With a slightly larger one the filter is
tuned at the pitch E2 (another bass note played by
the musician). For wide STDP kernel, the tempo
is captured even with small delays between the
inputs. In between those note pitches and the
tempo, the captured frequencies are more com-
plex to interpret.

Discussion

In this work, we developed a mathematical
framework showing how SFA could be imple-
mented by models of neurons. We first designed
an online learning rule to extract the slowest
components of their inputs, and then adapted
it in the context of spiking neurons. It pro-

vides a neural implementation of SFA compatible
with the experimental observation of Spike-Time-
Dependent-Plasticity [3, 16] and rate homoeosta-
sis. By implementing a gradient descent on the
cost function of SFA, we found the precise plas-
ticity kernel that fits a particular function. We
showed through simulations that the STDP kernel
has to be shaped as a reversed Mexican hat (sec-
ond derivative) to learn the optimally slow fea-
tures. When applied to auditory signals, simula-
tions showed that our gradient implementation of
SFA allows a single neuron to extract the tempo of
its inputs.

The compatibility of SFA and STDP was al-
ready demonstrated in [29]. With continuous and
deterministic inputs they characterized that with
any filter Λ having a Fourier transform of the
form− f 2 (f is the frequency) truncated to be zero
at frequencies higher than fmax, a gradient de-
scent of the form ∆wk ∝ 〈x ∗ Λ, s〉 implements
SFA when the input information does not contain
frequencies higher than fmax. Because the second
derivative is a convolution by a filter being− f 2 in
Fourier domain, our analysis is strictly equivalent

-10 dB

-20 dB

7 dB

Pitch:G2
Pitch:E2Tempo (181bpm)

DA
W

ei
gh

ts
W

ei
gh

ts
W

ei
gh

ts

τ
-1

0

1
τSTDP=10 ms

-1

0

1 STDP=1 ms

0 0.2 0.4 0.6
Delay (s)

-0.1

0

0.1 τSTDP=0.1 ms

1 00 1 0 11 0 -4

1 0 -3

1 0 -2

τ S
T
D
P

Frequency response

f (Hz)
< -20 d

-10 dB

7 dB

Pit
ch

: G
2

Pit
ch

:E2

Pit
ch

:E0

Te
mpo

:

18
1 B

PM

B

C

Fig. 11 Influence of the width of the plasticity kernel τSTDP. Simulations are run on the guitar example (see Figure 10)
with 512 delays and τdelay = 1.5 ms. Over the trials the dependency to the parameter τSTDP is explored with the batch
implementation. A, B, C Three filters learnt with τSTDP at different orders of magnitude, from top to bottom τSTDP =
10 ms, τSTDP = 1 ms, τSTDP = 0.1 ms respectively. The larger τSTDP the lower the captured periodicity. D Power spectrum
of the learnt filters, as a function of the width of the plasticity kernel, τSTDP, varied on the vertical axis. Each row is the
frequency response of the learnt filter by SFA, color-coded. Dashed lines annotate the different identified peaks of the
frequency response. In green, E2 and G2 are the two bass notes mostly played by the musician in the recording.

but does not require to limit the input frequencies
below fmax.

In this work, various kernels have been tested
as controls, and among those, the classical STDP
kernel ΩClassic and the trace learning equivalent
to a plasticity kernel using ΩHebbian+. In agree-
ment and as suggested in [29], we found that the
trace learning rule is a good approximation of
SFA (see performances on Figure 8C) for simula-
tions on several toy examples. However, this con-
trol kernel does not extract the slow feature any
more when a lot of energy is contained in the high
frequencies. Control simulations with Ωclassic and
the insight of our implementation with a second
order derivative allow to raise the problem that
the classical asymmetric STDP described in [3]
is not suited for SFA. The classical asymmetric
STDP kernel was supported in [29], and the diver-
gence comes from the fact that they used PSP time
constants much larger than τrate when we did the
opposite. In the limit of large ξ, we also find3 an
asymmetric kernel but it is a smoothed third or-

der derivative which is not as trivial as the classic
STDP.

In all the paper, the expression of the SFA
problem is simplified assuming inputs have been
already pre-processed and decorrelated. Various
theories may explain how inputs onto sensory
cortices can be decorrelated [26, 7], but a plausi-
ble implementation of such a process with spiking
neurons is beyond the scope of this manuscript.
In addition, a clear restriction here is that in the
generic formulation of SFA, a decorrelation pro-
cess at the output stage is required to provide a
rich population of non-redundant SFA neurons.
However, we believe that such a decomposition
could be mediated with lateral inhibition and
competition between several output neurons [11].

3 As done in [29] we searched for the STDP kernel that
implements SFA by verifying d(2) = Ω ∗ ξT with ξ very
large. In this limit, to invert the convolution by ξ we can
perform a derivation (see [29]) so that the solution for Ω is
a third order derivative.

Appendix

Filtered auto-correlation for a Poisson spike
train The main difference between the imple-
mentation of SFA with a spiking neuron and with
a linear-rate-based neuron raises from the fact
that the expected value of the auto-correlation of
a Poisson spike train is not the auto-correlation of
the rates; an additional term appears. This is jus-
tified in [22] and used in [29]. Formally, for any
Poisson spike train θ of rate ν, time t, given two
filters f and g, we have if E(x) stands for the
stochastic average over multiple realizations of a
random variable x

E [〈θ ∗ f , θ ∗ g〉] = 〈ν ∗ f , ν ∗ g〉+ ν f g (12)

Equation (12) is obtained because we have
∀u, vE [θ(u)θ(v)] = ν(u)ν(v) + δu(v)ν(u)
because spiking at time u and v are de-
pendent only if u equals v for which the
variance of θ(u) is equal to its mean ν(u).
Switching filtering integration and ensem-
ble integration we have E [θ ∗ f (t)θ ∗ g(t)] =∫

u

∫
v g(t− u) f (t− v)E [θ(u)θ(v)] dvdu. Inserting

the previous equality leads to

E [θ ∗ f (t)θ(t)] = ν ∗ f (t)ν ∗ g(t) + ν ∗ (f g)(t)

and integration over time using the fact that
ν ∗ (f g) = ν f g gives Equation (12).

Average effect of STDP for spiking neurons From
Equation (9) we can write the net effect of STDP

〈ẇ〉 = ε〈θi ∗Ω, θout〉

To compute the stochastic average of STDP over
multiple realizations of the spike trains, we use
E [〈ẇ〉] = εE [E [〈ẇ〉|θi]]. In other words, for a
fixed set of input spike trains θi we first integrate
over all the possible output spike trains, we insert
the linear dynamics of the neuron in Equation (2)
and only terms constant in θ remain

E [〈ẇi〉|θi] = εE [〈θ ∗Ω, θout〉|θi]

= εκ ∑
j

wj〈θi ∗Ω, θj ∗ ξ〉+ εν0θi ∗Ω

Averaging now over all the possible input spike
trains, θi and θj being independent for i 6= j, we
can replace θi and θj by their expected value νi
and νj. For the remaining term i = j we use Equa-
tion (12), such that we have

E [〈ẇi〉] = εκ
n

∑
j=1

wj〈νi ∗Ω, νj ∗ ξ〉

+εκwirΩξ + εν0rΩ (13)

The third term can be neglected as in [29], in our
case Ω is null anyway. The second remaining term
is proportional to w, and this is equivalent to sim-
ply adding in the cost function a term propor-
tional to ‖w‖2 which would be made obsolete by
the weight normalization. What remains for the
effect of STDP on average is therefore propor-
tional to ∑j wj〈νi ∗Ω, νj ∗ ξ〉 which can be rewrit-
ten as 〈νi ∗Ω ∗ ξT , ∑j wjνj〉.

Finally, to rigorously show that this is equiva-
lent to the gradient implementation of SFA with
continuous neurons obtained in Equation 8, we
replace ν by r + rsx in Equation 13 and we obtain

E [〈ẇi〉] = εκr2
s 〈xi ∗Ω ∗ ξT , ∑

j
wjxj〉

+εκr2
s 〈xi ∗Ω ∗ ξT , rwsum〉

+εκr2
s 〈rΩ ξT , ∑

j
wjνj〉

The second term is null because it is equivalent to
integrating a filtered version of a derivative of x
over time and x is null at infinity, and the third
term is null because Ω is null. What remains is
therefore only

E [〈ẇi〉] = εκr2
s 〈xi ∗Ω ∗ ξT , s〉 (14)

References

1. S Becker and G E Hinton. Self-organizing
neural network that discovers surfaces in
random-dot stereograms. Nature, 355:161–
163, 1992.

2. Pietro Berkes and Laurenz Wiskott. Slow Fea-
ture Analysis yields a rich repertoire of com-
plex cell properties. J Vis, 5(6):579–602, July
2005.

3. G Q Bi and M M Poo. Synaptic modifica-
tions in cultured hippocampal neurons: de-
pendence on spike timing, synaptic strength,
and postsynaptic cell type. Journal of Neuro-
science, 18:10464–10472, 1998.

4. T V P Bliss and T Lomo. Long-lasting po-
tentiation of synaptic transmission in the den-
tate area of the anaesthetized rabbit following
stimulation of the preforant path. Journal of
physiology, 232:331–356, 1973.

5. Claudia Clopath, Lars Büsing, Eleni Vasilaki,
and Wulfram Gerstner. Connectivity reflects
coding: a model of voltage-based STDP with
homeostasis. Nature neuroscience, 13(3):344–
52, March 2010.

6. Sven Dähne, Niko Wilbert, and Laurenz
Wiskott. Slow Feature Analysis on retinal

waves leads to V1 complex cells. PLoS com-
putational biology, 10(5):e1003564, May 2014.

7. Y Dan, J J Atick, and R C Reid. Efficient cod-
ing of natural scenes in the lateral geniculate
nucleus: experimental test of a computational
theory. The Journal of neuroscience, 16:3351–62,
1996.

8. Yang Dan and Mu-ming Poo. Spike Timing-
Dependent Plasticity of Neural Circuits. Neu-
ron, 44(1):23–30, September 2004.

9. James J DiCarlo, Davide Zoccolan, and
Nicole C Rust. How Does the Brain Solve Vi-
sual Object Recognition? Neuron, 73(3):415–
434, February 2012.

10. Wolfgang Einhäuser, Jörg Hipp, Julian Eggert,
Edgar Körner, and Peter König. Learning
viewpoint invariant object representations us-
ing a temporal coherence principle. Biological
Cybernetics, 93:79–90, 2005.

11. Michael S Falconbridge, Robert L Stamps, and
David R Badcock. A simple Hebbian/anti-
Hebbian network learns the sparse, indepen-
dent components of natural images. Neural
Computation, 18(2):415–429, February 2006.

12. P Földiák. Learning invariance from trans-
formation sequences. Neural Computation,
200:194–200, 1991.

13. Mathias Franzius, Henning Sprekeler, and
Laurenz Wiskott. Slowness and sparseness
lead to place, head-direction, and spatial-
view cells. PLoS Computational Biology,
3(8):e166, 2007.

14. Mathieu Galtier and Gilles Wainrib. Multi-
scale analysis of slow-fast neuronal learning
models with noise. Journal of Mathematical
Neuroscience, 2:13, November 2012.

15. Mathieu N Galtier and Gilles Wainrib.
A biological gradient descent for predic-
tion through a combination of stdp and
homeostatic plasticity. Neural computation,
25(11):2815–2832, 2013.

16. Wulfram Gerstner, Richard Kempter, J Leo
van Hemmen, Hermann Wagner, and JL Van
Hemmen. A neuronal learning rule for
sub-millisecond temporal coding. Nature,
383(2):76–78, 1996.

17. J J Gibson. The Ecological Approach to Visual
Perception., 1986.

18. Dan Goodman and Romain Brette. Brian:
A Simulator for Spiking Neural Networks
in Python. Frontiers in Neuroinformatics, 2,
November 2008.

19. DO O Hebb. The organization of behavior: a
neuropsychological theory. Science Education,
44:335, 1949.

20. Eugene M Izhikevich and Niraj S Desai. Relat-
ing STDP to BCM. Neural Comput, 15(7):1511–
1523, July 2003.

21. Christoph Kayser, Wolfgang Einhäuser,
Olaf Dümmer, Peter König, and Konrad P
Körding. Extracting Slow Subspaces from
Natural Videos Leads to Complex Cells.
In Artificial Neural Networks - ICANN 2001,
volume 2130, pages 1075–1080, 2001.

22. Richard Kempter, Wulfram Gerstner, and
J Leo Van Hemmen. Hebbian learning and
spiking neurons. Physical Review E, 59(4):4498,
1999.

23. H. Markram, J Lübke, M Frotscher, and B Sak-
mann. Regulation of synaptic efficacy by co-
incidence of postsynaptic APs and EPSPs. Sci-
ence, 275(5297):213–5, January 1997.

24. D Marr. A theory for cerebral neocortex. Pro-
ceedings of the Royal Society of London. Series B,
176:161–234, 1970.

25. Erkki Oja. Simplified neuron model as a prin-
cipal component analyzer. Journal of mathe-
matical biology, 15(3):267–273, 1982.

26. Christian Pozzorini, Richard Naud, Skan-
der Mensi, and Wulfram Gerstner. Tem-
poral whitening by power-law adaptation
in neocortical neurons. Nature neuroscience,
16(7):942–8, July 2013.

27. R Quian Quiroga, L Reddy, G Kreiman,
C Koch, and I Fried. Invariant visual rep-
resentation by single neurons in the human
brain. Nature, 435(7045):1102–7, June 2005.

28. R P Rao and T J Sejnowski. Spike-timing-
dependent Hebbian plasticity as temporal
difference learning. Neural Computation,
13(10):2221–2237, October 2001.

29. Henning Sprekeler, Christian Michaelis, and
Laurenz Wiskott. Slowness: An objective
for Spike-Timing-Dependent Plasticity? PLoS
Computational Biology, 3(6):e112, 2007.

30. Ian H. Stevenson, Beau Cronin, Mriganka Sur,
and Konrad P. Kording. Sensory adaptation
and short term plasticity as bayesian correc-
tion for a changing brain. PLoS ONE, 5(8),
2010.

31. Taro Toyoizumi, Jean-Pascal Pfister, Kazuyuki
Aihara, and Wulfram Gerstner. Optimal-
ity Model of Unsupervised Spike-Timing-
Dependent Plasticity: Synaptic Memory and
Weight Distribution. Neural Computation,
19(3):639–671, March 2007.

32. Richard Turner and Maneesh Sahani. A
maximum-likelihood interpretation for
Slow Feature Analysis. Neural computation,
19(4):1022–38, April 2007.

33. G Wallis and E T Rolls. Invariant face and ob-
ject recognition in the visual system. Progress
in neurobiology, 51:167–194, 1997.

34. Laurenz Wiskott and Pietro Berkes. Is slow-
ness a learning principle of the visual cor-
tex? Zoology (Jena, Germany), 106(4):373–82,
jan 2003.

35. Laurenz Wiskott and Terrence J Sejnowski.
Slow Feature Analysis: unsupervised learn-
ing of invariances. Neural Comput, 14(4):715–
770, April 2002.

36. Pierre Yger, Sami El Boustani, Yves Frégnac,
Alain Destexhe, and S El Boustani. Stable
learning in stochastic network states. Journal
of neuroscience, 32(1):194–214, January 2012.

37. Pierre Yger and Kenneth D. Harris. The Con-
vallis rule for unsupervised learning in cor-
tical networks. PLoS Computational Biology,
9(10):1–32, October 2013.

