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Key points: 

 A neural network is developed to infer the vertical distribution of the backscattering 

coefficient 

 The neural network requires as input Argo T/S profiles and ocean color remote sensing 

products 

 Validation of the method is highly satisfactory which supports its application to the global 

ocean 

 

Abstract 

The present study proposes a novel method that merges satellite ocean-color bio-optical 

products with Argo temperature-salinity profiles to infer the vertical distribution of the 

particulate backscattering coefficient (bbp). This neural network-based method (SOCA-BBP 

for Satellite Ocean-Color merged with Argo data to infer the vertical distribution of the 

Particulate Backscattering coefficient) uses three main input components: (1) satellite-based 

surface estimates of bbp and chlorophyll a concentration matched-up in space and time with 

(2) depth-resolved physical properties derived from temperature-salinity profiles measured by 

Argo profiling floats and (3) the day of the year of the considered satellite-Argo matchup. The 

neural network is trained and validated using a database including 4725 simultaneous profiles 

of temperature-salinity and bio-optical properties collected by Bio-Argo floats, with 

concomitant satellite-derived products. The Bio-Argo profiles are representative of the global 

open-ocean in terms of oceanographic conditions, making the proposed method applicable to 

most open-ocean environments. SOCA-BBP is validated using 20% of the entire database 

(global error of 21%). We present additional validation results based on two other 

independent datasets acquired (1) by four Bio-Argo floats deployed in major oceanic basins, 
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not represented in the database used to train the method; and (2) during an AMT (Atlantic 

Meridional Transect) field cruise in 2009. These validation tests based on two fully 

independent datasets indicate the robustness of the predicted vertical distribution of bbp. To 

illustrate the potential of the method, we merged monthly climatological Argo profiles with 

ocean color products to produce a depth-resolved climatology of bbp for the global ocean. 

 

Key words: Particulate backscattering coefficient, ocean color, Argo profiling float, Bio-

Argo profiling float, global ocean, neural network. 
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1 Introduction  

The ocean plays an important role in the regulation of the climate of our planet by influencing  

the amount of carbon dioxide (CO2) in the atmosphere. An important part of this regulation  

takes place through the so-called biological carbon pump, which results from the sinking and  

sequestration to the deep oceans of part of the stock of Particulate Organic Carbon (POC)  

produced by phytoplankton photosynthesis [Falkowski et al., 1998; Volk and Hoffert, 1985].  

Despite their importance to the global carbon cycle, these processes are still poorly  

constrained. This is largely caused by a lack of observations of key biogeochemical properties  

and associated processes on relevant space and time scales. Traditional ship-based sampling  

and measurement methods provide direct, detailed information on biogeochemical properties  

of the water column, but with insufficient space-time coverage.  

Recent advances in optical sensors implemented on in situ and remote-sensing platforms  

allow the study of biogeochemical variables and processes in the open ocean over a broad  

range of temporal and spatial scales. The increasing use of such optical tools has led the  

scientific community to develop optical proxies for estimating key biogeochemical  

parameters. Specifically the particulate backscattering coefficient and the particulate beam  

attenuation coefficient are widely used as proxies of POC [Bishop and Wood, 2009; Bishop,  

2009; Gardner et al., 2006]. The particulate backscattering coefficient (bbp) has received  

much attention in the recent years because it can be continuously measured in situ from  

autonomous platforms [e.g. Boss and Behrenfeld, 2010; Boss et al., 2008; Dall’Olmo and  

Mork, 2014] or retrieved from satellite remote-sensing of ocean color [Behrenfeld et al., 2005;  

Siegel et al., 2005; Westberry et al., 2008]. Aside from being a relevant proxy of POC [Balch  

et al., 2001; Cetinić et al., 2012; Loisel et al., 2001, 2002; Stramski et al., 1999, 2008], this  

bio-optical property can be used as an index of the particulate load, and its spectral  
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dependence as an index of particle size [e.g. Dall’Olmo and Mork, 2014; Loisel et al., 2006]  

and phytoplankton size structure [Kostadinov et al., 2010]. Although still debated, several  

recent studies have shown that bbp could also be considered as an indicator of phytoplankton  

carbon [Behrenfeld et al., 2005; Graff et al., 2015; Martinez-Vicente et al., 2013]. This would  

make bbp an interesting alternative to chlorophyll a concentration for monitoring  

phytoplankton biomass in situ or from space. Therefore bbp appears as a key bio-optical  

property to study the space-time dynamics of POC and possibly of phytoplankton biomass, a  

prerequisite for ultimately improving the characterization and quantitative assessment of  

biologically mediated carbon fluxes in the global open ocean.   

Satellite remote sensing of ocean color, coupled to relevant algorithms, has the potential to  

provide a quasi-synoptic view of bbp which, in turn, can be interpreted in terms of POC  

[Loisel et al., 2001, 2002; Stramski et al., 1999, 2008]. We note that satellite-derived products  

of POC may also be obtained from reflectance- or beam attenuation-based algorithms [e.g.  

Gardner et al., 2006; Stramski et al., 2008]. Several studies have used this potential to  

examine the spatial and temporal distribution of POC in the open ocean [Gardner et al., 2006;  

Loisel et al., 2002; Stramska, 2009]. However, such satellite-based estimates are restricted to  

the ocean surface layer and, in the context of global carbon cycle studies including carbon  

production and export, are insufficient. In fact, the photosynthetic activities of phytoplankton  

are not restricted to the near-surface layer but also to deeper layers in the water column.  

Moreover, POC, which is vector of carbon export, is also composed of biogenic detrital  

particles, microzooplankton, heterotrophic bacteria, viruses and aggregates that are present  

within the entire water column in various proportions. So the vertical distribution of POC is  

important for understanding both pelagic ecosystems and carbon flux. The high spatial and  

temporal variability of the vertical distribution of POC makes the extension of surface POC to  
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depth complex. To our knowledge, this has been attempted only by Duforêt-Gaurier et al.  

[2010]  who based their study on a relatively small database of POC vertical profiles.  

Because bbp is tightly linked to the stock of biologically derived carbon (POC), its vertical  

distribution must be in some way driven by nutrient availability and light regime, which are in  

turn influenced by the physical forcing of the water column. Hence, one may expect that  

combining the satellite-derived surface data of bbp with available information on the physical  

state of the water column will help extending surface bbp to depth and constraining its vertical  

distribution. Since the launch of the Argo program, temperature and salinity profiles are  

measured continuously with high spatio-temporal resolution throughout the world’s oceans  

[Roemmich et al., 2009]. Now mature, with more than 3800 active floats, the Argo array  

provides a unique high-resolution view of hydrological properties in the upper 2000 m of the  

ocean. These data represent an ideal candidate for merging with satellite ocean color products.  

Therefore, in this study, we propose to develop and examine the potential of a new global  

method for merging satellite ocean color and physical Argo data to infer the vertical  

distribution of bbp with a relatively high spatio-temporal resolution, i.e. the resolution of  

Argo-to-satellite matchup data.   

In the past few years, the number of concurrent in situ observations of the vertical  

distributions of temperature, salinity and bbp has dramatically increased. This results from the  

integration of optical sensors on autonomous platforms, especially Bio-Argo profiling floats  

which almost all measure bbp [Boss et al., 2008; Claustre et al., 2010a, 2010b; Mignot et al.,  

2014; Xing et al., 2014] in addition to physical vertical profiles of temperature and salinity.  

Hence the numerous vertical profiles collected by Bio-Argo floats offer a new path for  

developing a global parameterization of the vertical distribution of this key bio-optical  

property. Our study aims to use the large database of physical and bio-optical vertical profiles  
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collected by the Bio-Argo fleet within the global open ocean to establish the proposed  

method.   

Artificial neural networks (ANNs) are very powerful methods for approximating any  

differentiable and continuous functions [Hornik et al., 1989] and have been widely used for  

biogeochemical, geophysical and remote sensing applications [e.g. Bricaud et al., 2007;  

Friedrich and Oschlies, 2009; Gross et al., 2000; Jamet et al., 2012; Krasnopolsky, 2009;  

Niang et al., 2006; Palacz et al., 2013; Raitsos et al., 2008; Sauzède et al., 2015; Telszewski et  

al., 2009]. These methods have a large potential to model complex and nonlinear relationships  

that are characteristic of ecological datasets [Lek and Guégan, 1999]. Furthermore, one of the  

benefit of using ANNs is that uncertainties in input data are accounted for during the training  

process of the neural network. Indeed, ANNs are relatively insensitive to reasonable  

uncertainties in input data. Therefore, we selected this method as the most appropriate for  

reaching our goal.   

In summary, this study presents a new ANN-based method that uses merged satellite ocean  

color-based products and physical Argo data to retrieve the vertical distribution of bbp at the  

global scale. Hereafter the method is referred to as SOCA-BBP for Satellite Ocean Color  

merged with Argo data to infer the vertical distribution of the Particulate Backscattering  

coefficient. SOCA-BBP uses three main input components: (1) a surface component  

composed of satellite-based estimates of bbp and chlorophyll a concentration, (2) vertically- 

resolved physical quantities derived from Argo temperature and salinity profiles, and (3) the  

day of the year of the considered satellite-to-Argo matchup. Our analysis utilizes a large  

database of 4725 concurrent in situ vertical profiles of temperature, salinity and bbp collected  

by Bio-Argo profiling floats, matched up with satellite ocean color observations. The  
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resulting database is representative of various trophic conditions, making the method largely  

applicable to the global open ocean.    
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2 Data presentation and processing 

Below we present the Bio-Argo database used in this study, which is composed of concurrent 

vertical profiles of temperature, salinity and particulate backscattering coefficient. Then we 

present the procedure for matching up the Bio-Argo vertical profiles with satellite-based bio-

optical products. We finally describe the resulting database used to develop and validate the 

SOCA-BBP algorithm. 

2.1 Database of concurrent vertical profiles of temperature, salinity and particulate 

backscattering coefficient 

In addition to the standard conductivity-temperature-depth (CTD) sensors mounted on 

physical Argo profiling floats, Bio-Argo floats are equipped with additional bio-optical 

sensors that can be used to measure proxies of major biogeochemical variables. Specifically, 

the Bio-Argo floats are fitted with a CTD (Seabird); a sensor package (Satlantic OCR) that 

measures downwelling irradiance at three wavelengths and PAR (Photosynthetically 

Available Radiation); and a sensor package (WET Labs ECO Puck Triplet) composed of a 

chlorophyll a fluorometer, a CDOM (Colored Dissolved Organic Matter) fluorometer and a 

sensor measuring the particulate backscattering coefficient at a wavelength of 700 nm (79 

floats) or 532 nm (4 floats). In the present study, we use exclusively measurements of 

temperature, salinity and particulate backscattering coefficient to train and validate the 

method. 

The Bio-Argo floats used in this study typically collect measurements from 1000 m to the 

surface with a ~1 m resolution every 10 days, 3 days, or even three times per day depending 

on the float mission configuration. When the float surfaces, data are transmitted in real time 
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using Iridium communication. Thanks to this communication system the float mission 

parameters can also be modified in real time (e.g. time interval between two profiling cycles).  

The volume scattering function (VSF), β(θ,𝜆) (m-1 sr-1), is defined as the angular distribution 

of scattering relative to the direction of light propagation θ at the optical wavelength 𝜆. The 

backscattering sensor of Bio-Argo floats measures β(124°, 𝜆) with 𝜆 = 700 nm or 532 nm. 

The contribution of particles to the VSF, βp, is calculated by subtracting the contribution of 

pure seawater, βsw, from β(124°, 𝜆): 

),124(),124(),124(   swp .        (1) 

with βsw depending on temperature and salinity and computed using a depolarization ratio of 

0.039 [Zhang et al., 2009]. Then, the particulate backscattering coefficient at 700 or 532nm, 

bbp(𝜆), is determined from βp(124°, 𝜆) and a conversion factor, χ, [Boss and Pegau, 2001; 

Kokhanovsky, 2012; Sullivan and Twardowski, 2009] as follows:  

)),124(),124((2)(   swbpb .        (2) 

The value of χ for an angle of 124° is 1.076 [Sullivan and Twardowski, 2009].  

As the Bio-Argo database includes ten times more bbp(700) profiles than bbp(532) profiles, in 

order to harmonize the bbp profiles of the database, the profiles of bbp(532) were converted to 

bbp(700). The conversion was performed using a power law model of the particulate 

backscattering coefficient spectral dependency: 
















0

0 )()( bpbp bb .          (3) 

We use a value of 𝛾=2 for the Bio-Argo profiles collected in the North Pacific subtropical 

gyre and a value of 𝛾=3 for those collected in the South Pacific Subtropical Gyre. These 

values are based on Loisel et al., [2006] who showed that the low chlorophyll waters of the 
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subtropical gyres are typically associated with high 𝛾 values (between 2 and 3) whereas low 

or even negative 𝛾 values are found in the more productive areas of the ocean (between -1.5 

and 1). The CTD data were quality controlled following the standard Argo protocol [Wong et 

al., 2014]. A quality control procedure was applied to each profile of bbp(700) (hereafter bbp; 

see Table 1 for a list of symbols): (1) the manufacturer-supplied offsets and scaling factors 

were applied to each raw profile; (2) high-frequency spikes were removed using a median 

filter; (3) bbp values above 0.03 m-1 were discarded as considered outside of the sensor range 

of operation. The final Bio-Argo database of concurrent bbp and temperature-salinity 

measurements is composed of 8330 vertical profiles collected by 83 Bio-Argo profiling floats.  

2.2 Bio-Argo and satellite ocean color matchup database  

For consistency with Bio-Argo bbp data measured at (or converted to) 700 nm, the satellite-

derived bbp data were estimated for a wavelength of 700 nm using the Quasi-Analytical 

Algorithm [QAA, Lee et al., 2002]. Then, each profile of the Bio-Argo database described 

above was matched up with satellite data of surface bbp(700) and chlorophyll a concentration 

(Chl) using the closest pixel from standard level 3 8-day MODIS-Aqua composites 

(Reprocessing R2014.0) with a 9-km resolution (provided by the OceanColor Web: 

http://oceancolor.gsfc.nasa.gov).  

The matchup procedure led to discarding 43% of the profiles from the initial Bio-Argo 

database (see discarding rate for the major oceanic basins in Table 2). The geographic 

distribution of the 4725 remaining Bio-Argo profiles with concomitant MODIS-Aqua-derived 

products is presented in Figure 1. The database used in this study covers most of the major 

ocean basins (i.e. Southern Ocean, Indian Ocean, Mediterranean Sea, North Pacific, South 

Pacific, North Atlantic and South Atlantic; see Figure S1 for details of basin boundaries). The 

under-representation of the southern hemisphere, due to under-sampling (see Figure 1), is 
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apparent in Figure 2. On a monthly basis, more profiles are available for spring and summer 

than for autumn and winter months for the northern and southern hemisphere (Figure 2a). 

This temporal bias of data acquisition is mostly due to a lack of satellite images at high 

latitudes during winter and autumn. The annual distribution of the vertical profiles in the 

database covers 8 years from 2008 to 2015 (Figure 2b); most of the observations were 

nevertheless collected since 2013.  

The resulting Bio-Argo and satellite matchup database appears to be representative of a broad 

variety of hydrological and biogeochemical conditions prevailing in the global open ocean 

(Figure 3). For instance, the values of mixed layer depth, Zm, acquired by the Bio-Argo floats 

vary between 15 and 900 m (measurements from the North Atlantic Subtropical Gyre in 

spring and the North Atlantic in winter, respectively). Zm is calculated from the density 

profiles using a density criterion of 0.03 kg m-3 as in de Boyer Montégut et al. [2004]. The 

database is also representative of most trophic conditions observed in the open ocean (i.e. 

from oligotrophic to eutrophic waters, see Figure 3b). The MODIS-Aqua-estimated Chl, 

ChlMODIS, covers 3 orders of magnitude (i.e. from 0.01 to 10 mg m-3). The most oligotrophic 

conditions were found in the South Atlantic Subtropical Gyre in autumn and the most 

eutrophic in the North Atlantic, especially in the Labrador Sea during the spring bloom. 

Similarly, the MODIS-Aqua-derived bbp, bbp_MODIS, covers 3 orders of magnitude (from 

0.00001 to 0.01 m-1; Figure 3c).  

Before splitting the Bio-Argo and satellite matchup database into two subsets for developing 

the neural network (i.e. the training and validation datasets), 314 profiles collected by four 

Bio-Argo floats were removed from the database to create an “independent dataset” used for 

an additional validation of the method. These four floats were chosen in four major oceanic 
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basins: the North Atlantic Subpolar Gyre, the North Atlantic Subtropical Gyre, the Southern 

Ocean and the Mediterranean Sea.  

The resulting matchup database was randomly split into two independent subsets, including 

80% (3525 profiles used for training the MLP) and 20% (886 profiles used for validating the 

MLP) of the data. Similar to the training dataset, the validation dataset is representative of the 

hydrological and biogeochemical conditions prevailing in the global open ocean (see 

histograms in Figure 3).  

Finally, a totally independent dataset from an AMT (Atlantic Meridional Transect) field 

cruise in 2009 is also used to validate independently the method (i.e. different bbp sensor, 

different time and location of bbp acquisition). This addition validation is done in order to 

demonstrate the good generalization of the method (i.e. good performance of the method in 

other conditions as used for the neural network training). During this AMT cruise, the 

continuous bbp measurements at 470 and 526 nm were made using a WET Labs ECO-BB3 

sensor. The AMT bbp(700) profiles was then computed by linearly combining bbp 

measurements at 470 and 556 nm. After matchup, this subset is composed of 16 matchup 

satellite and in situ profiles of temperature, salinity and bbp.  

To summarize, the geographical distribution of the sampling stations included in the training, 

validation, independent 4-float and totally independent-AMT subsets is shown in Figure 1. 

2.3 Normalization of the vertical profiles of the particulate backscattering coefficient 

SOCA-BBP is designed to predict the vertical distribution of bbp within the so-called 

productive layer. This corresponds essentially to the layer where most particle and 

phytoplankton stocks are confined. In mixed conditions, the thickness of the productive layer 

roughly coincides with that of the mixed layer. In stratified conditions (typically associated 
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with the presence of a deep chlorophyll maximum) the productive layer is more linked to the  

euphotic layer. Here the productive layer is described through the introduction of a  

dimensionless depth, 𝜁 [Sauzède et al., 2015], with 𝜁 defined as the geometrical depth, z,  

divided by a normalization depth, Znorm:  

normZ
z .             (4)  

 with Znorm defined as the depth at which the Chl vertical profile returns to a constant  

background value (depth of the bottom of the productive layer). As fluorescence profiles are  

always collected simultaneously with temperature, salinity and bbp profiles by the Bio-Argo  

floats, Znorm can be computed with precision for the Bio-Argo database using the fluorescence  

profiles [see Sauzède et al., 2015, for details].   

As the main objective of the SOCA-BBP method is to merge satellite and Argo data without  

using vertical bio-optical profiles acquired by Bio-Argo floats, for application purposes, we  

developed a statistical relationship to estimate Znorm from two parameters accessible or  

derivable from our input dataset: (1) the euphotic layer depth, Ze, the depth at which  

irradiance is reduced to 1% of its surface value; and (2) the mixed layer depth, Zm. Ze is  

computed with the following procedure: (1) the attenuation coefficient at 490 nm, Kd490, is  

determined using the satellite-derived chlorophyll a concentration [Morel and Maritorena,  

2001]; (2) the total attenuation coefficient, KPAR, is retrieved from Kd490 [Rochford et al.,  

2001]; (3) finally, Ze is retrieved from KPAR using the exponential decrease of light over  

depth. The most statistically significant relationship between Znorm and both the Ze and Zm  

parameters was found when stratified conditions are discriminated from mixed conditions  

based on the ratio of Ze to Zm [i.e. Ze > Zm: stratified; Ze < Zm: mixed; Morel and Berthon,  

1989; Uitz et al., 2006]. We obtain the following optimal statistical relationships for a  

stratified water column:  
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)log(04.1)log(12.0)log( emnorm ZZZ  .        (5) 

and for a mixed water column : 

)log(51.0)log(64.0)log( emnorm ZZZ  .        (6) 

The relationship between Znorm computed from the fluorescence in situ profiles measured by 

the Bio-Argo floats and modeled with the statistical relationships presented above for the two 

hydrological regime of the water column (stratified or mixed) is satisfactory with a median 

absolute percent difference, MAPD, of 14% (for more details see Figure S2). Finally, Znorm 

used to scale bbp profiles ranges from 20 m to 805 m in the Bio-Argo database (see Figure S3). 

Scaling the bbp profiles with respect to 𝜁 enables the merging all the profiles regardless of 

their vertical shape and range of variation while simultaneously accounting for their 

variability. 
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3 SOCA-BBP algorithm development  

3.1 General principles of Multi-Layer Perceptron (MLP)  

The type of artificial neural network chosen in this study is a Multi-Layer Perceptron [MLP;  

Bishop, 1995; Rumelhart et al., 1988]. A MLP is composed of several layers: one input layer,  

one output layer and one or more intermediate levels (i.e. the so-called hidden layers). Each  

layer is composed of neurons, which are elementary transfer functions that provide outputs  

when inputs are applied. Each neuron is interconnected with the others by weights (Figure 4).  

The matrix of these weight values is iteratively adjusted during the training phase of the MLP  

and is computed by minimizing a cost function defined as the quadratic difference between  

the desired and computed outputs. The technique used for this minimization is the back- 

propagation conjugate-gradient, which is an iterative optimization method adapted to MLP  

development [Bishop, 1995; Hornik et al., 1989].  

To determine the weights of the MLP, the training dataset is randomly split into two subsets  

(50% of the data each), the so-called “learning” and “test” datasets. These two subsets are  

used during the training process of the MLP to prevent overlearning [Bishop, 1995]. The  

validation dataset used to evaluate independently the final performance of the MLP is  

composed of 20% of the entire initial database.  

3.2 Developing a MLP to retrieve the vertical distribution of bbp  

After multiple tests, the following set of three input components was selected as optimal (see  

Figure 4): (1) a temporal component, i.e. the day of year; (2) a surface component, defined by  

the satellite-derived log-transformed particulate backscattering coefficient (bbp_MODIS) and  

chlorophyll a concentration (ChlMODIS) (see Sect. 2.2); and (3) a vertical component, i.e. the  

normalization depth Znorm, the mixed layer depth Zm and four potential density values along  
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the vertical profile, of which three taken at shallow depths and one at depth. The 

dimensionless depths according to density inputs were chosen using a principal component 

analysis to minimize redundancy in the selected input data (not shown). The MLP returns 

simultaneously 10 normalized values of log(bbp) as output according to ten depths taken at 

regular intervals within the 0-1.3 𝜁 layer.  

The elementary transfer function (sigmoid nonlinear function) that provides outputs when 

inputs are applied to the MLP varies within the range [-1;1]. Therefore, to take advantage of 

the nonlinearity of this function, the inputs and outputs of the MLP (xi,j) are centered and 

reduced to match the [-1;1] domain as follows: 

)(

)(

3

2 ,

,

i

iji

ji
x

xmeanx
x




 .           (7) 

with 𝜎 the standard deviation of the considered input or output variable x. Obviously, the 

outputs need to be “denormalized” using the above equation with appropriate mean and 

standard deviation for each dimensionless depth of restitution. 

With respect to the temporal component, we applied a specific normalization procedure that 

accounts for the periodicity of the day of the year (i.e. day one of the year is very similar from 

a seasonal perspective to day 365). Thus, similar to the method developed by Sauzède et al. 

[2015], the temporal input is transformed in radians using the following equation:   

625.182




Day
Dayrad .            (8) 

where Dayrad is the day of the year in radian units and the coefficient 182.625 accounts for 

half the number of days per year (365.25). 

Once the optimal input and output variables were determined, additional tests were performed 

to establish the best architecture of the MLP: one or two hidden layers with a number of 
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neurons in each layer varying between 1 and 50 and 1 and 20, respectively. The architecture  

with minimum error of validation and minimum number of neurons was selected as optimal.  

The resulting optimal MLP is here composed of two hidden layers with 8 neurons in the first  

hidden layer and 6 neurons in the second one. In order to evaluate the MLP robustness,  

different subsets of the training dataset have been tested and no significant difference in the  

predictive skills of the MLP was observed.   

3.3 Evaluation of method performance  

The SOCA-BBP method is validated using independent datasets of bbp profiles acquired by  

Bio-Argo floats or as part of an AMT field cruise (see Sect. 2.2). For each profile used for the  

validation of the method, the 10 bbp values simultaneously retrieved by SOCA-BBP  

(bbp_SOCA), associated with the 10 dimensionless depths taken at regular intervals within the 0- 

1.3 𝜁 layer, are compared to bbp values measured by the Bio-Argo floats (bbp_Floats) or  

measured during the AMT cruise (bbp_AMT) at each corresponding depth. To evaluate the  

performance of SOCA-BBP in inferring the vertical distribution of bbp, several statistical  

parameters are considered. First, the determination coefficient (R²) and the slope of the linear  

regression between the log-transformed values of bbp_SOCA and bbp_Floats (or bbp_AMT) are  

computed. Second, we estimate the model error using the Median Absolute Percent  

Difference (MAPD, %) calculated as follows:  

 100)(
_

__





Floatsbp

FloatsbpSOCAbp

b

bb
medianMAPD .        (9)  

Note that bbp_Floats is replaced by bbp_AMT for the validation against bbp profiles from AMT  

cruise. We also evaluate the sensitivity of SOCA-BBP to uncertainties in the origin of the  

satellite data used as input to the MLP. For this purpose, a test is performed which consists in  

replacing the MODIS-Aqua-derived bio-optical products by VIIRS-derived products.  
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4 Results and Discussion 

4.1 Retrieval of the vertical distribution of the particulate backscattering coefficient 

Using the validation database (i.e. 20% of our initial database), the ability of the method is 

evaluated through a comparison of the 10 values retrieved from SOCA-BBP (bbp_SOCA) with 

corresponding values measured by the Bio-Argo floats (bbp_Floats). The scatterplot of bbp_SOCA 

versus bbp_Floats reveals that SOCA-BBP predicts bbp without systematic bias (i.e. global error 

of retrieval of 21%; see Figure 5a and Table 3). This Figure shows that most of the bbp_SOCA 

values are retrieved with substantial accuracy and that only a limited number of data points 

diverge significantly from the 1:1 line (Figure 5a). No bias according to the dimensionless 

depth of estimation seems to be identified from the Figure 5a. To be more precise, we tested 

statistically the performance of the method with respect to the vertical dimension (see Figures 

6 and S4 and Table 3). The Figure 6 presents the median of APD that is ~20% for each of the 

ten dimensionless output depths. The APD appears somewhat lower for the 0-0.84 𝜁 layer 

suggesting that the method performs slightly better for the upper layers. For the deep layers, 

the bbp values are very low, which may lead to large errors even when the difference between 

the predicted and reference values is minor. Nevertheless, the APD remains still low for these 

deep layers (~22% for the median). Figure S4 presents the scatterplots of bbp_SOCA versus 

bbp_Floats for 5 layers of the water column (chosen from the dimensionless depth 𝜁). This 

Figure reveals that bbp is predicted without systematic bias according to the vertical dimension 

and that the slight deterioration of statistic results (see Table 3) for the deepest layer (1-1.3 𝜁 

layer) might come from the lower range of bbp values to predict. 
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4.2 Sensitivity of SOCA-BBP to satellite input data  

We evaluate the sensitivity of the method to satellite input data by replacing in the validation  

dataset the MODIS-Aqua products by VIIRS-derived products. It is important to note that the  

purpose here is not to compare MOIS-Aqua and VIIRS products in term of accuracy but to  

evaluate the impact to use other satellite input data (e.g. VIIRS estimates rather than MODIS- 

Aqua) on the performance of the SOCA-BBP method. The VIIRS-to-Argo matchups are  

computed using standard level 3 VIIRS composites (reprocessing R2014.0) with a 4-km  

resolution and 8-day binning period (9-km resolution as for MODIS-Aqua not available).  

Among the 886 Bio-Argo profiles of the validation dataset, 649 profiles had concomitant  

VIIRS and MODIS-Aqua products available. The sensitivity of the method to both types of  

satellite input data is therefore evaluated using these 649 profiles (see statistics in Table 4).  

Obviously, as the neural network was trained using MODIS Aqua products as input data, the  

use of VIIRS data slightly reduces the skills of the method (i.e. decrease in the determination  

coefficient by 0.07). However, the scatterplot of bbp_SOCA (using VIIRS data as input) versus  

bbp_Floats shows that the data points are still fairly well scattered around the line 1:1 (Figure 7)  

and the accuracy of the method remains satisfactory when VIIRS data are used as input (Table  

4). Finally, SOCA-BBP appears robust to reasonable noise in the input satellite data. Use of  

VIIRS- instead of MODIS-Aqua-derived products yield accurate results (global retrieval error  

of 21%; Table 4) despite a MAPD in the VIIRS products compared to the MODIS-Aqua  

products of 44% and 15% for bbp and Chl, respectively.  

  

4.3 Additional validation of SOCA-BBP using independent datasets  

Time series of the vertical profile of the particulate backscattering coefficient collected from  

four Bio-Argo profiling floats deployed in several oceanic basins (Southern Ocean, North  
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Atlantic Subtropical Gyre, North Atlantic Subpolar Gyre, North Western Mediterranean Sea) 

were removed from the initial database to obtain an independent dataset for further validation 

of SOCA-BBP (see Sect. 2.2). A comparison of bbp_SOCA with the corresponding bbp_Floats in 

each basin is presented in Figure 5b. This comparison suggests that the method has similar 

accuracy when tested with this independent dataset (Table 3) as with the validation dataset 

comprising 20% of the initial database. The skill of the method is slightly reduced in the 

Mediterranean Sea compared to other areas (increase of MAPD by ~ 8%).  

To obtain fully depth-resolved vertical profiles of bbp, we applied a linear interpolation 

between each of the 10 bbp_SOCA values provided by the MLP. The resulting predicted time 

series are compared to their float counterparts for the four basins (Figure 8). We note that the 

absence of bbp_SOCA data (white bands in Figures 8b, d, f and h) reflect missing satellite-to-

Argo matchups caused by a lack of satellite image in cloudy areas/seasons (i.e. usually high 

latitude environments in winter). The vertical patterns of bbp predicted by SOCA-BBP are 

very consistent with those observed by the profiling floats in the 0-300 m layer. For the North 

Atlantic Subtropical Gyre, an area with extremely low bbp values, SOCA-BBP reproduces the 

seasonal deepening of the bbp maximum in spring and early summer and the shoaling in June-

July (Figures 8a and b). For the Southern Ocean, the bbp_SOCA values are consistent with the 

Bio-Argo float measurements with respect to an increase of bbp from December to April in the 

0-100 m layer (Figures 8c and d). In the North Atlantic Subpolar Gyre, the retrieved bbp 

values agree with float measurements for both years of the time series (i.e. 2013 and 2014, 

Figures 8e and f). SOCA-BBP seems to underestimate bbp in the Mediterranean Sea, 

especially from July to October when a deep bbp maximum develops at ~50 m (Figures 8g and 

h). This underestimation is possibly caused by the relatively coarse vertical resolution of the 

SOCA-BBP outputs. The bbp maximum may be missed by the 10 output depths from which 

the entire vertical profile is derived. Finally, a comparison of bbp values integrated within the 
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0-Zm layer estimated from SOCA-BBP and measured by the Bio-Argo floats show good 

agreement for the four examined areas (R² of 0.92 and MAPD of 20%; Figure 9a). Yet, this 

result is not surprising because the four floats used for this additional validation exercise, 

although not used for the training process, were deployed in the same areas as the floats 

represented in the training and validation datasets (see Figure 1). The comparison of depth-

integrated estimations of bbp allows to smooth errors of estimation due to the noise in the in 

situ bbp profiles. 

The performance and the good generalization of the method was also evaluated using a totally 

independent set of data (i.e. different oceanic zone of sampling and different sampling 

sensors) from a Atlantic Meridional Transect (AMT) cruise conducted in 2009.The 

geolocation of the 16 profiles of temperature, salinity and bbp with concomitant MODIS-

Aqua-derived products is shown in Figure 1 (dark blue crosses). The SOCA-BBP retrieved 

bbp values, bbp_SOCA, were compared to the reference bbp ship-based measurements integrated 

within the 0-Zm layer, bbp_AMT (Figure 9b). Similar to previous validation tests, the results 

appear highly satisfactory (i.e. median absolute percent difference of 18%). In addition, this 

validation exercise based on totally independent set of data demonstrates that SOCA-BBP 

may be applicable to conditions/regions not included in the training database (e.g. Atlantic 

Equatorial Zone, see Figure 1). 

4.4 Potential application of the SOCA-BBP method: development of global 3-D 

climatologies of bbp 

Before the emergence and use of profiling floats equipped with backscattering sensors, 

vertical profiles of bbp in the ocean were quite scarce and highly heterogeneous. SOCA-BBP 

provides a way to estimate vertical profiles of bbp using basic ocean color products merged 

with Argo data. A natural application of this method is the development of depth-resolved bbp 
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climatologies. As an example, we develop a 3-D climatology of bbp for the global ocean for  

the months of June and December. We use as input satellite-based monthly composites of bbp  

and Chl. These data are merged with monthly temperature and salinity data from the Argo  

global climatologies [Roemmich and Gilson, 2009]. As the Mediterranean sea is not  

represented in the Argo climatology, we use climatological data from the World Ocean  

Database [WOD, Levitus et al., 2013] for this basin.   

First, we compare the bbp_SOCA surface values with the corresponding satellite estimates, with  

the bbp_SOCA surface values defined as bbp averaged within the layer comprised between the  

surface and the penetration depth, Zpd = Ze/4.6 [Morel and Berthon, 1989]. This comparison is  

conducted at a 1°-resolution (i.e. Argo climatology resolution). Overall, the geographical  

patterns of the SOCA-BBP retrieved surface bbp values for the months of June and December  

(Figures 10a and b) are consistent with those observed by the satellite (Figures 10c and d). In  

June high values of bbp are consistently recorded in the high latitude regions of the northern  

hemisphere. Reciprocally, high values of bbp are recorded in the high latitudes of the southern  

hemisphere in December. Unsurprisingly, the equatorial band, the upwelling systems  

associated with Eastern Boundary Currents and other near-coastal areas (Figure 10a) show  

high bbp values with weak seasonal variability. SOCA-BBP yields low bbp values compared to  

satellite-based estimates in the subtropical gyres (Figure 10e). A general bias between the  

SOCA-retrieved surface bbp values and the corresponding satellite values can be identified in  

Figure S5 that shows a comparison of the surface bbp values retrieved by SOCA-BBP and  

derived from MODIS-Aqua climatological products for the month of June. This observation  

might result either from a global overestimation of the predicted bbp, or from a global  

underestimation of bbp_MODIS derived from the QAA model. The SOCA-retrieved bbp versus  

VIIRS-estimated climatological bbp for the month of June is displayed in Figure S6 for a  

comparison with Figure S5. There is no general bias between the SOCA-BBP retrieved and  
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satellite-derived values using the VIIRS matchup data. This suggests that the bias observed in 

Figure S5 is probably caused by an underestimation of bbp using the QAA algorithm with 

satellite MODIS-Aqua products.  

Besides the bias between the two estimates of bbp, bbp levels yield by the model are lower than 

the satellite-derived values especially in the subtropical gyres (see Figure 10). Using in situ 

data from the BIOSOPE cruise [Biogeochemistry and Optics South Pacific Experiment; 

Claustre et al., 2008], several studies have shown an overestimation of backscattering satellite 

estimates in the most oligotrophic conditions of the South Pacific Subtropical Gyre [Brown et 

al., 2008; Huot et al., 2008]. In fact, inherent optical properties are very difficult to estimate 

from satellite-based measurements in these extremely clear waters and it is now 

acknowledged that semi-analytical algorithms of bbp retrieval from satellite data lead to a 

systematic overestimation [e.g. Brown et al., 2008; Lee and Huot, 2014]. Interestingly, the 

model improves the retrieval of the surface bbp in the subtropical gyres (Figures 10 and S5), 

even though satellite-based surface bbp estimates used as input show overestimation. This is 

principally because the learning of the neural network is based on accurate Bio-Argo in situ 

bbp profiles hence constraining the retrieved bbp surface values. In addition, as the subtropical 

gyres are characterized by low Chl, the results shown in this study are consistent with the 

formulations of Morel and Maritorena [2001] and Huot et al. [2008] that account for a 

continuous decrease in bbp with decreasing chlorophyll a concentrations for low chlorophyll a 

concentrations (< 0.1 mg m-3) instead of the constant bbp with decreasing chlorophyll a 

concentrations as reported by Behrenfeld et al. [2005]. 

Finally, the vertical distribution of the depth-resolved bbp climatologies is presented in Figure 

11. This Figure presents sections of bbp for the global ocean at 25 m, 50 m and 100 m depth 

for the months of June and December. Overall, the decrease of the SOCA-BBP retrieved bbp 
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values with depth is apparent for most of the oceanographic zones expect in most oligotrophic 

waters (see Figure 11). Indeed, for instance in the pacific south subtropical gyre, the decrease 

in bbp levels is barely visible (from ~ 0.0003 m-1 at the surface to ~ 0.0002 m-1 at 100 m depth 

in June and from ~ 0.0004 m-1 at the surface to ~ 0.0003 m-1 at 100 m depth in December) 

because bbp values decrease only at ~ 150 - 200 m depth. Rapid decrease of bbp are recorded in 

the high latitude regions of the northern hemisphere in June (from ~ 0.004 m-1 at the surface 

to ~ 0.001 m-1 at 100 m depth). Reciprocally, rapid decrease of bbp are recorded in the high 

latitude regions of the southern hemisphere in December (from ~ 0.003 m-1 at the surface to ~ 

0.001 m-1 at 100 m depth). As for bbp surface estimates, the vertical distribution of bbp shows 

weak seasonal variability in the equatorial band, the upwelling systems associated with 

Eastern Boundary Currents and other near-coastal areas. In Figure 11, bbp levels are shown for 

only 3 depths but it is important to note that SOCA-BBP method provides bbp vertical 

distribution for the whole productive zone (0-1.3 𝜁 layer). Finally, these depth-resolved bbp 

climatologies are an invaluable source of information on the vertical distribution of a key bio-

optical property at a global scale with the potential to support investigations dedicated to 

carbon cycle, including carbon production and export. 
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5 Conclusion and perspectives 

We have demonstrated that, using a Multi-Layered Perceptron method, we can merge ocean 

color-based products with temperature-salinity Argo data to infer the vertical distribution of a 

bio-optical property estimated from both satellite and robotic platform measurements. The 

proposed method, SOCA-BBP, infers the vertical distribution of the particulate backscattering 

coefficient using three main input components: (1) a surface component, i.e., satellite-derived 

products; (2) a vertical component derived from temperature and salinity profiles measured by 

Argo floats; and (3) a temporal component, i.e., the day of the year of the considered satellite-

to-Argo matchup. Because the training of the MLP-based method was conducted using a 

dataset representative of the hydrologic and biogeochemical conditions prevailing in the 

global open ocean, the method is expected to be applicable to most open-ocean environments. 

Nevertheless, we note that SOCA-BBP has not been developed for applications on a profile-

per-profile basis, where a single satellite-to-Argo matchup associated with a specific day 

would be used to retrieve an “accurate” vertical profile of bbp. Instead SOCC-BBP should be 

considered as a method dedicated to relatively large-scale applications, such as the 

development of climatological products (see, e.g., Sect. 4.4).  

The natural variability of the vertical distribution of bbp makes the prediction of this bio-

optical parameter challenging. Compared to the reference measurements acquired by the Bio-

Argo floats from the training dataset (i.e. used to establish the SOCA-BBP underlying 

relationship), the retrieved bbp_SOCA values from the training dataset (i.e. used to establish the 

underlying relationship of the MLP) are retrieved with a median absolute percent difference 

of 19% (i.e. intrinsic error of the model). Therefore, the error of SOCA-BBP in retrieving the 

vertical distribution of bbp (i.e. 21%) seems to be essentially induced by the natural variability 

of bbp. The uncertainties associated with ocean color-based bio-optical products may also 
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generate additional uncertainties in the retrieval of bbp. Our analysis of the sensitivity of 

SOCA-BBP to the satellite data used as input indicates limited changes in the prediction of 

bbp as one uses VIIRS products instead of MODIS-Aqua products (Figure 7 and Table 4). 

This suggests that the MLP is relatively insensitive to reasonable noise levels in the input 

satellite data because noise is accounted for in the training of the MLP. Based on this 

sensitivity analysis, we expect that the method can be safely used with satellite products other 

than those derived from MODIS-Aqua (e.g. SeaWiFS, MERIS, VIIRS, OLCI) or with merged 

products (e.g. GlobColour, CCI-OC). 

The present study provides an invaluable source of information on the vertical distribution of 

the bbp allowing this key bio-optical property to be comprehensively described at a global 

scale. A major application of the method is obviously linked to the creation of a depth- 

resolved global proxy of POC and, possibly, phytoplankton carbon with high space-time 

resolution. This is a prerequisite for improving the characterization and quantification of key 

carbon fluxes such as net primary production or export fluxes. In particular, the data resulting 

from SOCA-BBP are valuable for the initialization or validation of biogeochemical models. 

The climatological data retrieved from SOCA-BBP also have the potential to serve as 

benchmarks against which temporal or regional trends could be evidenced. 

Several published relationships link POC to bbp either regionally or at the global scale [Balch 

et al., 2001; Cetinić et al., 2012; Loisel et al., 2001, 2002; Stramski et al., 1999, 2008]. A 

systematic and routine acquisition of bbp vertical profile has started only recently (a decade 

ago) so that the number of concurrent bbp and POC measurements for establishing robust 

regional or global bbp-to-POC relationships is still limited. Obviously, the converted POC or 

phytoplankton carbon from bbp estimated by SOCA-BBP method will integrate combined 

errors from SOCA-BBP method of bbp and from the relationships bbp-to-POC or bbp-to-Cphyto. 
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Therefore, collecting systematic measurements of POC and bbp is of critical need for refining  

the previously published relationships and, ultimately, exploit in an optimal manner the  

growing bbp dataset acquired by Bio-Argo floats and the SOCA-BBP climatological products.  

Apart from deriving POC, recent studies have highlighted the potential of bbp as a  

phytoplankton carbon proxy [Graff et al., 2015]. Actually bbp might be a more reliable proxy  

of phytoplankton carbon than Chl or POC. Hence, using the bbp-to-phytoplankton carbon  

relationships presently available in the literature in combination with SOCA-BBP, it appears  

possible to propose global estimates of the vertical distribution of phytoplankton carbon with  

high space-time resolution. A potential consequence of obtaining improved estimates of the  

phytoplankton biomass is a possible reassessment of the sources of variability in the Chl.  

Using phytoplankton carbon estimates derived from satellite-based data of bbp, some studies  

have indeed shown that temporal changes in Chl over large oceanic regions may be  

predominantly caused by physiologically-driven modifications in the cellular Chl-to-carbon  

ratio rather than by actual changes in phytoplankton biomass [Behrenfeld et al., 2005, 2009;  

Mignot et al., 2014; Siegel et al., 2013]. The combination of SOCA-BBP with other methods,  

which infer the vertical distribution of Chl from space [e.g. Uitz et al., 2006], could permit the  

variability in the phytoplankton carbon-to-Chl relationship to be examined over the vertical  

dimension. This would represent a significant step towards a better understanding of light and  

nutrient control of phytoplankton biomass and physiological status, a prerequisite for  

improving the characterization of the distribution and variability in primary production and  

carbon export.  

Along with the progressive development of a global Bio-Argo program and associated float  

deployments, additional measurements of concurrent density and bbp profiles will help to  

improve the relationship established in the MLP. This is especially expected for the regions  
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currently under-sampled in the Bio-Argo database used in this study (e.g. Indian Ocean Gyre, 

Arctic Ocean). It is indeed important to stress out the evolving aspect of this database and of 

the quality of the products that can be retrieved from it. This study has shown that neural 

network-based methods can link the vertical distribution of a given bio-optical property (i.e. 

particulate backscattering coefficient) to the corresponding near-surface value merged with 

vertically resolved physical properties. The development of analogous methods for other bio-

optical properties, measured from both Bio-Argo floats and ocean color satellites (e.g. 

chlorophyll a concentration, CDOM), appears as a natural extension of the present study. 
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Table 1. Abbreviations used in the present study and their significance.  

Abbreviations Significance 

bbp Optical particulate backscattering coefficient at 700 nm (m-1) 

Chl Chlorophyll a concentration (mg m-3) 

bbp_MODIS MODIS-Aqua-derived bbp using QAA algorithm [Lee et al., 2002, 2009] (m-

1) 

bbp_VIIRS VIIRS-derived bbp using QAA algorithm [Lee et al., 2002, 2009] (m-1) 

ChlMODIS MODIS-Aqua-derived Chl (mg m-3) 

ChlVIIRS VIIRS-derived Chl (mg m-3) 

bbp_SOCA Vertically resolved values of bbp retrieved by SOCA-BBP (m-1) 

bbp_Floats Vertically resolved values of bbp collected by Bio-Argo profiling floats (m-1) 

bbp_AMT Vertically resolved values of bbp collected during the AMT cruise (m-1) 

z Geometrical depth (m) 

Znorm Depth at which the Chl profile returns to a constant background value at 

depth (m) 

𝜁 Depth normalized with respect to Znorm, 𝜁 = z/Znorm (dimensionless) 

Zm Mixed layer depth (m) 

Ze Euphotic layer depth (m) 

Kd490 Diffuse attenuation coefficient at 490 nm (m-1) 

KPAR Diffuse attenuation coefficient for photosynthetically available radiation (m-

1) 

Day Day of the year 

Dayrad Day transformed into radians  
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Zpd Penetration depth defined as Zpd=Ze/4.6 [Morel and Berthon, 1989] (m) 

MAPD Median Absolute Percent Difference (%) 
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Table 2. Summary of the number of profiles rejected after the satellite versus Bio-Argo  

matchup procedure for the different Bio-Argo float sampling regions. The seven major  

oceanic basins boundaries used to compute this table are presented in Figure S1.  

Area Number of profiles Number of profiles after 

matchup 

% of profiles removed 

North Atlantic 3985 1791 56% 

South Atlantic 1073 620 43% 

North Pacific 364 173 53% 

South Pacific 275 188 32% 

Southern Ocean 203 47 77% 

Mediterranean Sea 2235 1839 18% 

Indian Ocean 195 67 66% 

Global ocean 

(total) 

8330 4725 56% 
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Table 3. Statistics of the comparison of the bbp values predicted by SOCA-BBP to Bio-Argo  

reference measurements. The number of values (n) to compute the determination coefficient  

(R²) and slope of the linear regression between the retrieved and reference values. The MAPD  

(Median Absolute Percent Difference) between the retrieved and reference values is also  

indicated (see Sect. 3.3 for the calculation details).  

 n R² Slope MAPD (%) 

Validation dataset: total 8860 0.78 0.8 21 

Validation dataset: 0-0.2 𝜁 layer 1772 0.77 0.8 19 

Validation dataset: 0.2-0.5 𝜁 layer 1772 0.75 0.76 21 

Validation dataset: 0.5-0.7 𝜁 layer 1772 0.7 0.72 22 

Validation dataset: 0.7-1 𝜁 layer 1772 0.76 0.8 20 

Validation dataset: 1-1.3 𝜁 layer 1772 0.62 0.68 23 

Independent dataset: total 3140 0.78 0.8 22 

Independent dataset: Mediterranean Sea 1440 0.71 0.7 30 

Independent dataset: North Atlantic Subtropical 

Gyre 

650 0.81 0.81 12 

Independent dataset: Austral Ocean 500 0.72 0.84 23 

Independent dataset: North Atlantic Subpolar 

Gyre 

550 0.85 0.85 21 
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Table 4. Statistics of the comparison of the bbp values predicted by SOCA-BBP using  

MODIS-Aqua or VIIRS-derived derived products as input. Determination coefficient (R²) and  

slope of the linear regression between the retrieved and reference values. The MAPD (Median  

Absolute Percent Difference) between the retrieved and reference values is also indicated (see  

Sect. 3.3 for the calculation details).   

Type of satellite 

products 

n R² Slope MAPD (%) 

MODIS-Aqua  6490 0.79 0.79 21 

VIIRS  6490 0.72 0.78 21 
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Figure 1. Geographic distribution of the 4725 stations used in the present study. For each  

station, concurrent profiles of temperature, salinity and bbp collected by Bio-Argo floats were  

matched up with concomitant MODIS-Aqua-derived products. Turquoise and purple crosses  

indicate the location of the profiles of the so-called “training” and “validation” datasets,  

respectively (see text). The vertical profiles collected by the four independent Bio-Argo floats  

are shown as orange crosses. The vertical profiles collected during the AMT oceanographic  

cruise (also used for an independent validation of the method) are shown as dark blue crosses.  
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Figure 2. Temporal distribution of the 4725 stations for which both Bio-Argo and satellite 

data were simultaneously available as a function of (a) months and (b) years with black and 

grey colors indicating the hemisphere of data acquisition. 
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Figure 3. Histogram of frequency of (a) the mixed layer depth, Zm (m), (b) the satellite-

derived chlorophyll a concentration, ChlMODIS (mg m-3), and (c) the satellite-derived 

particulate backscattering coefficient, bbp_MODIS (m-1). The black histogram represents the 

distribution of the data used to train the method and the red histogram is for the independent 

dataset (20% of the initial database) used to validate the method. 
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Figure 4. Schematic overview of the SOCA-BBP MLP-based algorithm that retrieves the  

vertical distribution of bbp from merged ocean color satellite and Argo data associated with  

the day of the year of the considered satellite-to-Argo matchup.  
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Figure 5. Comparison of the bbp values retrieved by SOCA-BBP (bbp_SOCA) to the reference 

bbp measurements acquired by the Bio-Argo floats (bbp_Floats) using two different datasets: (a) 

the validation database (i.e. 20% of the entire database chosen randomly) with data ordered 

according to the dimensionless depth 𝜁; (b) the independent data acquired by four Bio-Argo 

floats not integrated in the training and validation databases with the color code indicating the 

oceanic basins in which the Bio-Argo floats were deployed. The 1:1 line is shown in each 

plot. The calculation details of statistics are provided in Sect. 3.3. 
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Figure 6. Boxplots of the Absolute Percent Difference, APD (%), between the retrieved 

bbp_SOCA and the reference bbp_Floats, according to the ten dimensionless depths, 𝜁, that are the 

output of bbp_SOCA. The box represents the upper quartile and the lower quartile with the 

middle line representing the median of the values. The points represent the outliers. 
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Figure 7.  Predictive skills of SOCA-BBP when using as satellite input VIIRS-derived 

products instead of MODIS-Aqua products. Comparison of bbp retrieved by SOCA-BBP 

(bbp_SOCA) to reference bbp measurements acquired by Bio-Argo floats (bbp_Floats) with data 

ordered according to the dimensionless depth 𝜁. The 1:1 line is represented in black. The 

calculation details of statistics are provided in Sect. 3.3. 
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Figure 8. Comparison of the reference bbp measurements acquired by Bio-Argo floats, 

bbp_Floats (a, c, e and g) with the values predicted by SOCA-BBP, bbp_SOCA (b, d, f and h). Time 

series for the Bio-Argo floats deployed in the North Atlantic Subtropical Gyre (a-b, 

WMO=6901472), in the Southern Ocean (c-d, WMO=6901493), in the North Atlantic (e-f, 

WMO=6901523) and in the Mediterranean Sea (g-h, WMO=6901496). The WMO numbers 

are official numbers of the World Meteorological Organization. The location of time series 

for each float is represented in orange in Figure 1. The grey line in each panel indicates the 

depth of the mixed layer. 
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Figure 9. Comparison of bbp integrated within the 0- Zm layer (scale given in optical  

thickness) predicted by the SOCA-BBP method (bbp_SOCA dimensionless) and calculated from  

the reference measurements collected by the Bio-Argo floats (bbp_Floats dimensionless) or  

during an AMT cruise (bbp_AMT dimesnionless). This comparison makes use of reference  

measurements from two independent datasets: (a) collected by the four Bio-Argo floats not  

represented in the training and validation databases of the MLP with the color code indicating  

the float deployment basins; and (b) acquired during an AMT oceanographic cruise in 2009.  

The identity line is shown in black in each panel. The calculation details of statistics are  

provided in Sect. 3.3.  
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Figure 10. Surface climatology of the particulate backscattering coefficient with a 1° 

resolution for the month of June and December (left and right panels, respectively). (a-b) 

Surface bbp (i.e. averaged over the 0-Zpd layer) obtained from the SOCA-BBP algorithm; (c-d) 

MODIS-Aqua-derived estimates of bbp; (e-f) Log10 ratio of the satellite-based bbp to the 

SOCA-BBP-retrieved bbp. 
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Figure 11. Depth-resolved climatology of the particulate backscattering coefficient with a 1° 

resolution for the month of June and December (left and right panels, respectively). (a-b) 

bbp_SOCA_25 at 25 m depth (averaged +/-5 m) obtained from the SOCA-BBP algorithm; (c-d) 

bbp_SOCA_50 at 50 m depth; (e-f) bbp_SOCA_100 at 100 m depth. 
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