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ABSTRACT

I describe a new Bayesian-based algorithm to infer the full three dimensional velocity �eld from
observed distances and spectroscopic galaxy catalogues. In addition to the velocity �eld itself,
the algorithm reconstructs true distances, some cosmological parameters and speci�c non-
linearities in the velocity �eld. The algorithm takes care of selection effects, miscalibration
issues and can be easily extended to handle direct �tting of e.g. the inverse Tully–Fisher
relation. I �rst describe the algorithm in details alongside its performances. This algorithm
is implemented in theVIRBIUS (VelocIty Reconstruction using Bayesian Inference Software)
software package. I then test it on different mock distance catalogues with a varying complexity
of observational issues. The model proved to give robust measurement of velocities for mock
catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands
galaxies. It holds the promises of giving a better handle on future large and deep distance
surveys for which individual errors on distance would impede velocity �eld inference.

Key words: methods: data analysis – methods: statistical – galaxies: statistics – large-scale
structure of Universe.

1 INTRODUCTION

Peculiar velocities are deviations of the apparent motion of tracers e.g. galaxies, from the Hubble �ow. They are an essential tool to study
dynamics of the Local Universe and in particular to probe the underlying gravity �eld, which is currently assumed to be generated by a Dark
Matter density �eld. At low redshift i.e.z � 0.1Š 0.2, they are the only practical way of reconstructing the unbiased, true matter density
�eld. The �rst mention of galaxy peculiar velocities go back to Hubble (Hubble & Humason1931). When large scale structures data have
been �rst acquired, peculiar velocities have quickly attracted a large attention (Aaronson et al.1982, 1986; Lynden-Bell et al.1988a), before
fading out due to a lack of large corpus of distance data and robust methods of analysis.

New distance surveys, from which peculiar velocities can be inferred, have emerged in the recent years like SFI++ (Masters et al.2006;
Springob et al.2007, 2009), 6dFv (Campbell et al.2014), CosmicFlows-1 (Courtois et al.2011), CosmicFlows-2 (Tully et al.2013). More
surveys are coming online such as TAIPAN/WALLABY (Beutler et al.2011; Duffy et al. 2012). These surveys revived peculiar velocities
as �rst class probes of cosmology by providing hundreds of thousands of distances. However, peculiar velocity analysis is notoriously error
prone, being sensitive to different bias and systematic effects e.g. homogeneous (Lynden-Bell et al.1988a) and inhomogeneous (Dekel,
Bertschinger & Faber1990) Malmquist bias, distance indicator calibration uncertainties (Willick1994) or edge effects. Several attempts have
been made at reconstructing the density �eld directly from distance data. For example, one can note the POTENT method (Bertschinger
& Dekel 1989; Dekel et al.1990, 1999), the Wiener �lter approach (Zaroubi et al.1995) or the Unbiased Minimum Variance algorithm
(Zaroubi2002). Additionally, the procedure to derive the power spectrum of the velocity �eld is relatively complex and prone to the same
aforementioned systematics; though, there have been some early attempts at measuring it (Jaffe & Kaiser1995; Kolatt & Dekel1997; Zaroubi
et al.1997; Macaulay et al.2011, 2012). New methods have also been recently designed to measure more accurately the �rst moments of
cosmic �ows from different aspects of distances and luminosities (e.g. Nusser & Davis2011; Nusser, Branchini & Davis2011, 2012; Feix,
Nusser & Branchini2014).

A common framework capable of handling all these items at the same time and building a consistent three dimensional (3D) peculiar
velocity �eld is still missing. I am proposing to build such a framework from a full Bayesian joint analysis of the density �eld (bandwidth
restricted Fourier modes of the density �eld), the cosmological parameters (e.g.� m, the Hubble constant, the amplitude of scalar �uctuations),
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the observational parameters (e.g. selection function, Tully–Fisher relation) and the limitations of the model (e.g. amount of small scale non-
linearities). By incorporating all these issues in a single framework, this model holds the promise of reducing (maybe cancelling) all systematic
effects on the estimation of the 3D peculiar velocity �eld. The software has been namedVIRBIUS (VelocIty Reconstruction using Bayesian
Inference Software) and will be publicly available later on the author webpage.1 Parts of the model will resemble VELMOD(Willick1994;
Willick et al. 1997). For example, Willick (1994) modelled the relation between the true distance and the observables for distance indicators the
look like Tully–Fisher relations. Also, Willick et al. (1997) modelled the relation between redshift observations and Tully–Fisher observables
(i.e. magnitudes and HI linewidth). These elements are parts ofVIRBIUS, but they are generalized and included in a wider framework. I note that
Johnson et al. (2014) have also pushed the effort of measuring accurately velocity �eld. In all the aforementioned work, however, a common
framework to handle all components self-consistently are not included. Also, the possibility of unseen measurement failure is not accounted
for. This will be another major addition (and complexity) to the model. Of course augmenting the model with limited data available comes
at a cost: e.g. the power spectrum must be parametrized in terms of a small number of cosmological parameters. Among them I will select a
few of particular interests: the overall amplitude of the powerspectrum, which is degenerate with the growth factor and the Hubble constant,
which governs the shape. All the other cosmological parameters are kept �xed in this work. I will introduce other parameters that describe
the data set itself (e.g. zero-point calibration, noise levels).

The structure of the paper is as follows. In Section 2, I describe both the adopted model and the algorithm that I have developed to explore
the parameter space given some distance galaxy catalogue. The model, in Section 2.1, includes description of cosmological expansion, distance
uncertainties, and a clean separation between the linear and the non-linear component of the velocity �eld. The model is fully Bayesian, and
priors can be adjusted easily to include more detailed description of selections effects. In Section 2.2, I describe in detail the algorithm that
is required to ef�ciently sample the posterior distribution of all the parameters that enter into the model, including the velocity �eld itself. In
Section 3, I present the results of the test of this algorithm on a variety of mock catalogues: an ideal, though slightly unrealistic, and a mock
catalogue generated assuming perfect homogeneity of tracers and Gaussian random �elds statistics for velocity �elds (Section 3.1), a more
realistic mock catalogue based on haloes of anN-body simulation either with a trivial or a more complex selection function (Section 3.2). In
Section 4, I conclude on the performance of the algorithms and the prospects for its use for existing and future distance surveys.

2 STATISTICAL METHOD

In this Section, I explain the model that I am using to describe self-consistently the velocity �eld, the cosmology, the redshifts and the
distances of the tracers of the velocity �eld. In Section 2.1, I detail the model and the approximations that I have made. In Section 2.2, I
describe the algorithm used to sample the posterior distribution in the huge parameter space.

2.1 Model

2.1.1 The �ow model

I propose to solve the general problem of reconstructing in an unbiased way the 3D peculiar velocity �eld and cosmological parameters from
a set of redshifts and distance modulus of tracers. I putNd the number of tracers. I propose a self-consistent approach based on a probabilistic
modelling. For the low-redshift Universe, and a given traceri, it is possible to write a linear relationship between the redshiftzi , the distance
di, the pseudo-Hubble constant�H at redshift zero and the peculiar velocityv(r ) as

zi = �Hdi + vr
i + � z,i , (1)

with vr
i = v(di ûi )ûi the line of sight component of the peculiar velocity of theith object, ûi the unit vector pointing in the direction

of the tracer,� z, i the redshift measurement error. This is the usual Hubble relation, though we have replacedH by �H to take into into
account the fact that the calibration of distance indicator may not be absolute. Additionally, we do not have access to a precise probe
of the distance. The equation (1) is only valid at extremely low redshift. The aim of this work is to have a self-consistent and accurate
reconstruction of velocity �eld for large and deeper distance survey. Of course, different cosmological distances appear, like the luminosity
and the comoving distances. From now on, we will usedi as the comoving distance of an objecti anddL

i its corresponding luminosity
distance. The exact relation combining cosmological and peculiar velocity, while they are non-relativistic, induced Doppler effect is the
following:

1 + zi =
�
1 + z̄i

�
dL

i

��
�

1 +
vr

i

c

�
, (2)

with z̄i the cosmological redshift, which depends on the luminosity distance,vr
i the line-of-sight component of the velocity �eld, assumed

to be small compared to the speed of lightc and in the rest frame of large scale structures. The relation, for a �at universe, is explicitly the
following (e.g. Weinberg1972)

d̄L (z̄) =
c(1 + z̄)

�H

� z̄

z= 0
dz

1
E(z)

, (3)

1 http://www.iap.fr/users/lavaux/
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and

E(z) =
�
� M(1 + z)3 + � �

� 1/ 2
. (4)

The comoving distancēd(dL , z̄) is related to the luminosity distancedL according to

d̄(dL , z̄) =
d̄L

1 + z̄
. (5)

The equation (3) is numerically invertible which, assumingdL is known, allows for the derivation of the cosmological redshift. In the text, we
will introduce the observational counterpart of the luminosity distance, called distance modulusµ , whose de�nition is

µ = 5 log10

�
d̄L

10 pc

�
. (6)

Finally, the relation (2) can be rewritten as followed:

vr
i = c

zi Š z̄i
�
d̄L

i

�

1 + z̄i
�
dL

i

� . (7)

Davis & Scrimgeour (2014) recently reminded the community that using the linear approximation instead of equation (7) leads to substantial
error even at relatively low redshift (z � 0.05). So, it is fundamental to include the complete treatment in my analysis so that the reconstructed
velocity �eld are unbiased for future peculiar velocity surveys. I am assuming that the measured redshift is without error in the above equation.
Of course, that is not the case, and the redshift error will be treated in the next section.

Though this relation between thevr
i and the observed redshift is more complex than equation (1), it does not introduce any new systematic

errors. The only problem that is introduced is the proper tracking of the cosmological redshiftz̄i and the comoving distancedi when the
luminosity distancedL

i changes. In all this work, all algorithms make use of the equation (7) instead of the linear relation (1). In the above,
I am considering that the observation of luminosity distance is perfect. That is not the case in practice as a number of effects are changing
the apparent luminosity such as gravitational lensing, Integrated Sachs–Wolfe effect and gravitational redshift and peculiar velocities (Sasaki
1987; Pyne & Birkinshaw2004; Bonvin, Durrer & Gasparini2006). For the moment, we will neglect all these effects, keeping in mind that in
data they will eventually have to be inserted into the likelihood analysis of luminosity distances. The last of these effects could be important to
ensure consistent treatment of peculiar velocities as highlighted by Sasaki (1987), Hui & Greene (2006). To summarize, the distance modulus
itself is affected by peculiar velocities at �rst order because the observed �ux is itself sensitive to beaming and Doppler effects. The observed
luminosity distance is in fact (Hui & Greene2006):

dL
o = d̄L

LSS

�
1 +

1
c

(2ve Š vo).ön
�

(8)

with dL
o the luminosity distance determined in the observer rest frame i.e. from observed �ux,d̄L

LSS the actual luminosity distance of the
object in an homogeneous universe with a FLRW metric,ve (vo, respectively) the peculiar velocity of the emitter (observer, respectively) with
respect to this homogeneous background andc the speed of light in vacuum. This relation is exact at �rst order. In this work, we will neglect
the impact of this term, while focusing on the peculiar velocity present in the Doppler effect of the observed spectrum (equation 2). I note
that the introduction of this correction would not change the algorithm fundamentally but introduce additional complexity in the formulation
of the likelihood of the distance modulus (as detailed in equation 16). I also note that most peculiar velocity analysis (except supernovae)
neglect the full impact of this term (Johnson et al.2014).

2.1.2 The million parameter likelihood analysis

Historically, direct extrapolation of the velocity �eld from this relation has lead to a number of biases, like the inhomogeneous and
homogeneous Malmquist biases (Dekel et al.1990). They originate from the reuse of an imprecise distance indicator for both estimating
the line of sight peculiar velocityvr

i = v.ûi and using it as an estimate of the true distanceqhdi , with qh = �H /H . We are however not
doomed to be limited by this problem. I propose to consider the distance itself as a random variable to generate the velocity �eld. This is
not an entirely new proposal. In Willick et al. (1997), the VELMOD technique was already trying to improve the distance using a likelihood
approach. They used a peculiar velocity �eld predicted using linear theory of gravitational instabilities and galaxy redshift surveys as a
prior for the velocity �eld. The idea of generating random velocity �elds in agreement with observation is not new either, it originates
back to the constrained realization of Gaussian random �elds in cosmological context (Hoffman & Ribak1991, 1992). There was no
published work that has attempted to blend both constrained realizations, distance sampling and parameter estimation. We are not bound
to be limited to proceed sequentially for the analysis of peculiar velocity �eld. Notably, it is in principle possible to adjust both the power
spectrum and the �eld itself, as it is done for the data of the Cosmic Microwave Background (Wandelt, Larson & Lakshminarayanan
2004).
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Ideally, we would like to have a representation of the joint probability of the velocity �eld, the distances, the Hubble constant and
possibly cosmological parametersp and an additional noise parameter� NL, which will characterize the departure from linear theory of the
actual velocity �eld. So, in practice we will �t the following model:

1 + zi =
�
1 + z̄i

�
dL

i

��
�

1 +
vlinear(qhdi ûi ).ûi + � NL,i

c

�
+ � z,i , (9)

=
�
1 + z̄i

�
dL

i

��
�

1 +
Hf � linear

�
qhdi ûi

�
.ûi + � NL,i

c

	

+ � z,i , (10)

with

� � NL,i � NL,j � = � 2
NL,type(i )� i,j . (11)

di the comoving distance from the observer of the traceri (actually a function ofdL
i in this work) andH the Hubble constant at redshiftz

= 0. Each tracer is given an assignment type(i). I note thatdi is the comoving coordinates scaled withH̃ . So, it is not the true distance but
the distance in the convention of the calibration of the distance indicator. If the distance ladder is correctly built thenqh = 1, however, this
is not in general guaranteed. In equation (10), we have introduced the displacement �eld� , which is expressed in comoving coordinates. If
we assume that no vorticity is created on large scales, it can be simply described through its divergence, which I will call	 to follow earlier
conventions on velocity �elds. In the Lagrangian linear regime, the displacement �eld is related to the velocity �eld by a linear relation, which
gives the second part of equation (10). Thus, we have the following relations:

� r .� = 	 (r ), (12)

vlinear(r ) = f H � linear(r ). (13)

Physically,	 is related to the density �uctuations at present time in the Universe owing to continuity equation (e.g Peebles1980). Additionally,
I will call ˆ	 = { ˆ	 (kq)} the discrete Fourier basis which represent the full continuous �eld	 . Thus, their formal relationship is

	 (r ) =
1

L 3




q

ˆ	 (kq)eikq.r , (14)

with

kq =
2�
L

q (15)

andq � { 0, 1, . . . , N Š 1}3, N the resolution of the reconstructed �eld. These amplitudes will serve as free parameters of the �eld in the
rest of the text. The splitting of the velocity into the scaling and displacement components allows us to make a shortcut later on when
adjusting the Hubble constant to the data. The most simple model (equation 11) has a single type, but it is possible to have several.
This approach can be required if we try to model a set of tracers which could be split into subpopulation such as clustered and non-
clustered (i.e. elliptical versus spiral galaxies). It presents the other advantage of isolating potential catastrophic errors in the distance or
spectroscopic measurement of a tracer. For example, the assignment of a supernova to a galaxy is sometimes dubious as its observed
spectrum can be heavily blue shifted by the explosion processes. In other cases, the adjusted luminosity distance can be a strong outlier
in statistical empirical relation such as the Tully–Fisher relation. The introduction of several types of tracers (including outliers) is related
to the problem of the Gaussian mixture (Pearson1894; Dempster, Laird & Rubin1977). I evaluate the velocity �eld at the real distance
using the scaling factorqh = �H /H . vlinear(r ) has the same statistical properties as the velocity �eld derived from linear perturbation theory
at z = 0.

Finally, the data are given by duet for each galaxyi: the distance modulusµ i and the observed redshiftzi . I will assume that the noise on
the observed distance modulus and the redshift measurement are both Gaussian, with standard deviations� µ , i and� z, i , respectively. Because
the two data are acquired independently the likelihood, i.e. the probability of observing the data{ (µ i , zi )} , given the model is immediately
given by

L = P
�

{µ i , zi } |
�

dL
i


, {� z,i , � µ,i }, { ˆ	 (kq)}, H , �H , 
 NL, T ,

�
ptype

t

��
�

Nd�

i = 1

�
� 2

z,i (1 + z̄i )Š2 + � 2
NL,type(i )

� Š1/ 2

× exp

�
�

�
Š

1
2

Nd


i = 1

�
vr

i (zi , di ) Š Hf � r,i (qh)
� 2

� �
� 2

z,i (1 + z̄i (di )
� Š2

+ � 2
NL,type(i )

� Š
(µ i Š 5 log10(d

L
i / 10pc))2

� 2
µ,i

�
�

�
, (16)

with � r,i (qh) = � linear(qhdi öui ).ûi , 
 NL = { � NL, q} , T = { type(q)} and Nd the number of provided tracers (i.e. the size
of set { � µ , i } ). Using Bayes identity, we may now express the posterior probability of the parameters, given the
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data:

P(DL =
�

dL
i


, ˆ	 = { ˆ	 (kq)}, �H , H , A S, {� NL,t }, T |

M = { µ i }, Z = { zi }, 
 z = { � z,i }, 
 µ = { � µ,i })

=
L × � (DL )� ( ˆ	 )� (
 NL)� (H )� ({type(i )})� (AS)

�
T �

�
dH d ˆ	 dDL d
 NL L × � (DL )� (T �)� ( ˆ	 )� ({� NL,t })� (H )

, (17)

whereT � runs over all possible type combinations in the denominator,t is the index of one of the type. The functions� are priors on the
speci�ed parameters. I assume that the statistics ofˆ	 is determined by the power spectrumP(k) of primordial density �uctuations scaled to
redshift zero. This power spectrum may itself depends on some cosmological parameters. I have chosen to incorporate the Hubble constantH
and the amplitude of the power spectrumAS as free parameters but to keep the other parameters at their best-�tting value from other probes,
as e.g.WMAP9 (Hinshaw et al.2012) or Planck(Planck Collaboration XVI2013). AS is de�ned as the pre-factor in the unnormalized power
spectrum:

P		 (k) = AS

�
k

1hMpcŠ1

� ns

T 2(k), (18)

with T(k) the transfer function, normalized to one fork 	 0. These free parameters will allow us to run a self-consistent check of the
cosmology. We thus have

� ( ˆ	 |H , A S) =
�

q

(2� P		 (kq; H , A S))Š1/ 2exp

�

Š
| ˆ	 (kq)|2

2P		 (kq; H , A S)

	

. (19)

The natural basis of representation ofˆ	 is thus the Fourier basis. Because� is assumed to be without vorticity, it can be solved with the
same Green function as the gravity. We can introduce an auxiliary scalar �eld� such that� = � x � and� must satisfy the Poisson equation
� = 	 . Thus, in Fourier space we obtain

� (r ) = Š



q

1
k2

q
ei kq.r ˆ	 (kq) (20)

The full expression of the displacement� in terms of ˆ	 is thus after taking the gradient of� :

� (r ) =



q

i kq

k2
q

ei kq.r ˆ	 (kq) (21)

2.1.3 Some notes on priors

The prior on the distance translates our preconception of the localization of the tracers in the volume into a mathematical expression. I chose to
consider two possibilities. The �rst kind of prior that I consider consists in �tting an empirical distributionfg(d) of galaxies assuming isotropy
and uniformity in the choice of the tracers. The distribution is self-consistently estimated from the ensemble of reconstructed distances, and
thus in unit of Mpc. The empirical distribution is given by

� isotropy(DL |p, dcut, n) � D pexp
�

Š
�

D
dcut

� n�
, (22)

which is trivially combined in the total distance prior

� isotropy(DL |p, dcut, n) �
Nd�

i = 1

f g
�
dL

i ; p, dcut, n
�

. (23)

Note that the use of this prior expands the parameter space to include{ p, dcut, n} , and we use the luminosity distance of the tracers.
For some mock catalogue, I will consider a second choice i.e. that tracers are homogeneously distributed in a given determined by

luminosity distance. While this choice is questionable as the tracers are more expected to be homogeneously distributed in comoving volume,
this choice simpli�es greatly the tests. It also does not remove any value to theVIRBIUS model as in any practical case the �rst prior will be
used, which automatically absorb differences between luminosity distances and comoving distances in the parametrization. Thus, the prior
takes the form:

� homogeneous(DL ) �
Nd�

i = 1

�
dL

i

� 2
. (24)

Finally, for the very Local Universe, the comoving and luminosity distances are equal; thus, this prior correspond to a classical problem.
In particular, this prior is related to the ‘homogeneous Malmquist bias’ correction (Lynden-Bell et al.1988b; Strauss & Willick 1995),
which leaves the inhomogeneous part not modelled. Strauss & Willick (1995) indicates that the correction introduced by the inhomogeneous
component is subdominant in their simulation. Of course, this statement depends on the statistical distribution of the tracers themselves, as
elliptical galaxies will be located more in the centre of the density peaks. We will put the homogeneous approximation of the prior to the test
in Section 3.
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Algorithm 1 Blocked sampling algorithm
1: procedure GENERATEMARKOVCHAINELEMENT(s)
2: for j = 0 toNS do
3: si,j � P(s ,j |s̄i,j )
4: end for
5: end procedure
6:

7: procedure GENERATEMARKOVCHAIN

8: s 
 0
9: loop

10: GENERATEMARKOVCHAINELEMENT(s)
11: write states in a �le
12: end loop
13: end procedure

Each traceri is given a type type(i). The prior probability of this typing is given by a �nite set of values:

� (T |P ) =
Nd�

i = 1

ptype
type(i ), (25)

whereP is the ensemble of possible probabilities{ptype
j } with j going over the available types, and type(i) maps theith galaxy to thejth type.

Finally, I assume a uniform prior on the Hubble constantH, the effective Hubble constant�H and on the variances� 2
NL,q . I acknowledge

that the uniform prior on�H is not equivalent to a uniform prior on the zero-point calibration of the distance indicator, which are often linearly
derived from magnitudes. Assuming that a uniform prior on the magnitude of the zero-point would yield a prior� ( �H ) � 1/ �H , which is
stricter than a pure uniform prior on�H .

In the above model, I have not treated the problem of selection effects. There could be some concern that the selection function
of catalogues is not modelled here. Indeed, according to Willick (1994), Strauss & Willick (1995), depending on the choice of the used
distance indicator (e.g. forward Tully–Fisher versus inverse Tully–Fisher), some systematic bias could be introduced in the velocity/distance
reconstruction. I will argue in the following section that they have nearly no effect on the algorithm except in the determination of distances.

2.2 Sampling algorithms

I use the blocked Gibbs sampling method (Geman & Geman1984; Liu, Wong & Kong1994; Wandelt et al.2004) to solve for the problem of
having an unbiased estimate of the velocity �eld, including proper error bars on all parameters of the adopted model. This sampling technique
is related to Markov Chains such as the Metropolis–Hasting algorithm (Metropolis & Ulam1949; Metropolis et al.1953; Hastings1970),
but in this case we always accept the new proposed move. Blocked Gibbs sampling is converging ef�ciently in two cases: cosmic variance
limited problems and high signal-to-noise (S/N) ratio regimes. Unfortunately, it has potentially long convergence when model parameters are
correlated and/or the model has to face intermediate S/N ratio regimes. Gibbs sampling has the advantage of splitting a complicated posterior
into pieces that are easier to compute. I note that we have a Markov chain whose stateM i is described by the vector2

M i =
�

Hi ; �Hi ; AS,i ; 
 NL,i ; ˆ	 i ; DL
i ; Pi ; Ti ; dcut,i ; pi , ni

�
, (26)

=
�

si,j

�
(27)

with ˆ	 the Fourier modes of the velocity �eld, sampled on a �nite grid of modeskq, Ti the typing of tracers (noted{ type(q)} above) andPi

the probability of each type. I remind the reader thatn, p anddcut are the parameters of the model for the selection function given in equation
(22). I noteNS the number of variables inM i . The second equation (equation 27) implicitly de�nes the ordering of the parameters in the
stateM i . I will use the following notation to indicate that I will condition on everything except the indicated variablesi, j :

s̄i,j =
�
si, 0, . . . , si,j Š1, si Š1,j + 1, . . . , si Š1,NS

�
. (28)

However, if I have analytically marginalized according to the velocity potentialˆ	 then I note

�̄si,j = s̄i,j \ ( ˆ	 i ) (29)

In general, the algorithm will produce a new chain state using the Algorithm 1, withs ,j indicating that we do not consider the speci�c value
of the parametersj but the general posterior of this parameter.

2 The last three parameters are only involved for the more detailed selection function.
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Algorithm 2 Partially collapsed Gibbs sampling algorithm inVIRBIUS .
1: procedure GENERATEPARTIALLY COLLAPSEDMARKOVCHAINELEMENT(s)
2: for j = 0 toN 0

S do

3: si,j � Pc(s0
,j |�̄s

0
i,j , �̄s

1
i,j )

4: end for
5: Generate a constrained realizationˆ	 i

6: for j = 0 toN 1
S do

7: si,j � P(s1
,j |s̄0

i,j , ˆ	 i , s̄1
i,j )

8: end for
9: end procedure

Table 1. Dictionary for the notation of the parameters used in this work and explicit parameters on to which the
conditional probability explicitly depends.

Parameter Parameter names ,j Explicit dependency

Physical Hubble constant H D L , �H , 
 NL, AS

Distance zero-point calibration �H D L , H , 
 NL

Non-linear/spurious error model 
 NL ˆ	, P , AS

Amplitude of scalar �uctuations AS D L , H , �H , 
 NL

Velocity �eld scalar mode ˆ	 D L , 
 NL, H , �H , A S

Luminosity distances D L ˆ	, �H , H
Type probability P T
Type T DL , P , 
 NL

Distance prior effective distance dcut D L

Distance prior slope parameter p D L

The above algorithm corresponds to the canonical Gibbs-Sampling algorithm. However, some parameters are strongly correlated toˆ	 ,
as e.g.�H . To improve the convergence, I will use the partially collapsed Gibbs Sampler algorithm (van Dyk & Park2008). In the context
of this work, it is possible to analytically marginalize according toˆ	 whens ,j is H, �H , � NL, q andAS. This adds complexity to each of the
conditional posterior but it is still numerically tractable because the concerned posteriors are monodimensional. De�ning:

M 0
i =

�
Hi ; �Hi ; AS,i ; 
 NL,i

�
=

�
s0

i,j

�
, and (30)

M 1
i =

�
DL

i ; Pi ; Ti ; dcut,i ; pi , ni
�

=
�
s1

i,j

�
, (31)

the new algorithm is given in Algorithm 2 in which we usedN q
s to specify the number of elements inM q

i . The probabilityPc is obtained
by analytically marginalizing the conditional posteriorP(s ,j , ˆ	 |�̄si,j ) according toˆ	 . Each of the used conditional posterior can be deduced
from the main posterior (17). I will now detail them one by one. I give in Table1 the parameters on to which each conditional probability
function depends explicitly. The last element of the sampling chain corresponds to the sampling of the parameters of the distance selection
prior, which in the program is done slightly separately and generates the three parameters of the prior in a single call.

Before detailing each of the algorithm required to sample the parameters, I note that this approach allows us for alleviating potential
systematic biases arising from selection. The formalism that I gave in the previous section can be transformed to allow for a more complete
�tting procedure that includes the distance indicator itself. The incorporation of the effects of selection in the distance relation �tting procedure
consists then in simply multiplying the likelihood by the selection functionS(m, � , d) in the notations of Strauss & Willick (1995), m the
apparent magnitude,� the luminosity linewidth andd the distance. As the algorithm uses conditional posteriors to explore the parameter
space, this selection function will disappear from all expressions except the one that concerns the distance. If the selection is separable
between (m, � ) andd, the use of the forward Tully–Fisher algorithm would even not be sensitive to any details of the selection in (m, � ). Of
course, these assumptions are relatively strict and it may be that the parameter space is more entangled, e.g. betweenm andd, which would
not allow this simpli�cation. This remark is related to the distance indicator based on Tully–Fisher, though other indicators could bene�t
albeit on a different set of variables for the selection function. The entire algorithm presented in this paper is nevertheless completely general.

I now review each of the conditional posterior one by one to derive their expression.
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2.2.1 The Hubble constant H

The conditional posterior of the Hubble constant may be derived from the main posterior expression (17). After marginalization according to
ˆ	 , it gives:3

P(H |DL , Z , 
 z, �H , A S, 
 NL, T ) � | 2� [Cw(H )]|Š1exp

�

� Š
1
2

Nd


i,j = 1

vr
i vr

j [Cw(H )]Š1
i,j

 

! (32)

with vr
i as given by equation (7), the residual velocity once the apparent Hubble �ow is subtracted. We have also used the covariance matrix

Cw
i,j , which, following the model of equation (10), is de�ned as

[Cw]i,j =
"
vr

i vr
j

#
(33)

=
"
� 2

i,NL

#
+

"
� 2

i,z

#
+

3


a,b= 1

û(i )
a û(j )

b

"
vlinear,a(di qh öu(i ))vlinear,b(dj qh öu(j ))

#
(34)

=
�

� 2
NL,type(i) + � 2

z,i (1 + z̄i )Š2
�

� i,j + Cv,r
i,j , (35)

whereû(i )
a refers to theath component of the unit vector pointing in the direction of theith galaxy,

Cv,r
i,j = � vr,i vr,j � =

3


µ,� = 1

û(i )
µ û(j )

�

�
Cv

µ,�

�
i,j

, (36)

qh = �H /H , and

�
Cv

µ,�

�
,i,j

= (f H )2
�

d3k
(2� )3

kµ k�

|k|4
eiqhk.(di öu(i )Šdj öu(j ))P		 (|k|) (37)

is the covariance matrix of the large scale part of the velocity �eld. The covariance matrixCv
µ,� is derived from the prior on̂	 given in

equation (19). In practice, the matrixCv is computed using the Fourier–Taylor algorithm of Appendix B. The conditional probability given
in equation (32) is mixing the need of small residual and correlated �uctuations through cosmic �ows. It may be highly non-Gaussian and
not necessarily with a single maximum. It is however a one-dimensional posterior, which makes it possible to tabulate it. I have used the
algorithm of Appendix A to generate a random sample from this density distribution.

2.2.2 The effective Hubble constant�H

I have separated the Hubble constant presently linked to autocorrelations of the velocity �eld from the one corresponding to the redshift–
distance relation. In Section 2.2.1, we have obtained the (complicated) posterior of theH. The conditional posterior of�H , again marginalized
accordingˆ	 takes the same form as (32), except that�H is left free andH is kept constant. As�H is involved in more non-linear relations due
to cosmological redshift effects, the conditional posterior is non-Gaussian in several aspects. The full expression of this probability density
is

P( �H |DL , Z , 
 z, H , A S, 
 NL, T ) � | 2� [Cw( �H )]|Š1exp

�

� Š
1
2

Nd


i,j = 1

vr
i ( �H )vr

j ( �H )[Cw( �H )]Š1
i,j

 

! , (38)

with Cw de�ned as in the previous section.

2.2.3 The tracer types

The model includes some freedom on the type of non-linearity (modelled by the extra noise� NL, k as determined in Section 2.2.5) that affects
each tracer. The model that I have adopted is the Gaussian mixture where each type is given an unconditional probability and the adopted
extra noise depends on the type. The typing mechanism is represented by the projection function type(k). In the Gibbs sampling framework
we can assume that we know the value of{ � NL, a} and infer statistically the unconditional probability of the type type(k). The probability
the objectk has a type type(k) equal toq is thus proportional to the probability of the type multiplied by the probability that the error term is
likely according to the numbers derived in Section 2.2.5. Mathematically, the likelihood (equivalently the probability) that the set of tracers
{ k} has some residuals{ � k} given the type projectorT and the probabilities of typingP is

P({� k}|T , P ) �
Nt�

k= 1

ptype
type(k)

1
$

� 2
NL,type(k) + � 2

z,k(1 + z̄k)Š2
exp

�

Š
� 2

k

2
�
� 2

NL,type(k) + � 2
z,k(1 + z̄k)Š2

�

	

(39)

3 I am not explicitly giving the dependency of all the terms in this expression, which would be too notation heavy. I am keeping all dependencies implicit. For
example, the covariance matrix [Cw] actually depends onH, �H , � NL, AS and all distances.
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with � a = vr
a(za, dL

a ) Š Hf � r
a(qh). Using Bayes identity, we can derive the conditional probability of the type mapperT given the residuals

{ � k} and the type probabilityP :

P(T = T r |{� k}, P ) =
P({� k}|T r , P )� (T r )

�
T � P({� k}|T �, P )� (T �)

=
Nt�

k= 1

P
�
type(k) = q|
 NL, p type

q , � k
�

. (40)

with, for a uniform prior on the type:

P
�

type(k) = q|
 NL,
�

ptype
q�

�

{q�}
, � k

�
=

ptype
q

�
� 2

NL,q + � 2
z,k(1 + z̄)Š2

� Š1/ 2
exp

�
Š � 2

k
2(� 2

NL,q + � 2
z,k(1+ z̄k)Š2)

�

�
q� p type

q�

�
� 2

NL,q� + � 2
z,k(1 + z̄)Š2

� Š1/ 2
exp

�
Š � 2

k
2(� 2

NL,q� + � 2
z,k(1+ z̄k)Š2)

� . (41)

To sample the adequate type for the tracerk, a brute force approach is largely suf�cient: for each tracer we compute theNt probabilities
given by equation (41), generate a random numberr � [0, 1[ and choose the typeb that satis�es

b = max

�
�

�
c

%
%
%
%
%
%

c


q= 1

P
�

type(k) = q|
 NL,
�

ptype
q�

�

{q�}
, � k

�
� r

�
�

�
. (42)

This typeb is then assigned to the tracera for the statei of the Markov Chain.

2.2.4 The tracer probability

For this step, we assume that the type of each tracer is known and we want to infer the probability of unconditionally typing a particle to the
typeq. This can be readily derived from equation (39) using Bayes identity:

P(P |T ) =

& N t

q= 1 p
|Tq|
q

�
P �

& N t

q= 1 p�|Tq|
q dP �

, (43)

with P � the set of all possible probabilities such that

N t


q= 1

pq = 1, (44)

0 < p q < 1 for all 1 � q � N t. (45)

with Tq = { k|type(k) = q} , and|Tq| the number of elements inTq. This probability density is a Dirichlet distribution. I am using the function
gsl_ran_dirichlet of the GNU Scienti�c Library (GSL) to generate samples of such a distribution, conditioned on the number of
tracers|Tq| in each typeq.

2.2.5 Model error� NL, k

We consider here the amount of extra noise� NL that is not captured by the part of the model that uses linear perturbation theory to derive the
velocity �eld. The conditional posterior distribution, as derived from the main likelihood (17), is

P
�

� 2
NL,k | ˆ	, �H , H , DL , Z , 
 z

�
�

�

i/ type(i )= k

�
� 2

z,i (1 + z̄i )Š2 + � 2
NL,k

� Š1/ 2
exp

�

Š
� 2

i

2
�
� 2

z,i (1 + z̄i )Š2 + � 2
NL,k

�

	

. (46)

The posterior is written in terms of� 2
NL,k , as I have indicated that I am taking a uniform prior on� 2

NL,k and not� NL, k (Section 2.1). This is
again a one-dimensional distribution and I use the algorithm of Appendix A.

2.2.6 Power normalizationAS

The normalization of the power spectrum of	 is left free in the model. This allows to account for the possibility of a different growth
rate of perturbations or a different amplitude of scalar perturbations of our Local Universe. Again, we are faced with a mono-dimensional
conditional posterior distribution. The problem shares a lot of similarities with Section 2.2.1. We change parameter and writeAS = � AS, i Š 1.
The conditional posterior, marginalized according toˆ	 becomes

P(� |DL , Z , 
 z, �H , H , � NL) � | � Cv,r + NNL|Š1/ 2exp

�

� Š
1
2

Nd


i,j = 1

vr
i (zi , z̄i )[� Cv,r + NNL]Š1

i,j vr
j (zj , z̄j )

 

! . (47)

with [NNL]i,j = (� 2
NL,type(i ) + � 2

z,i (1 + z̄i )Š2)� i,j . In the above equation, we have reused the covariance matrixCv,r of the line-of-sight
component of the velocity �elds sampled at the tracer positions. This matrix is given in equation (36).
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2.2.7 The scalar potential of the velocity �eld

Now, we consider the conditional probability of the Fourier modes ofˆ	 , the opposite of the divergence of the velocity �eld. After simpli�cation,
the conditional posterior takes the following form:

P( ˆ	 |Z , DL , H , 
 NL) � exp

�

Š
Nd


i = 1

�
vr

i (zi , z̄i ) Š Hf � r,i
� 2

2
�
� 2

z,i (1 + z̄i )Š2 + � 2
NL,type(i )

�

	

exp

�

� Š
Nq


q= 1

| ˆ	 (kq)|2

2P		 (|kq|)

 

! . (48)

Sampling from this probability consists in generating a Gaussian random �eld satisfyingP(k), but with some integrals constrained by redshift
observations. As the errors on constraints are Gaussian, we may use the algorithm proposed by Hoffman & Ribak (1991, 1992). For this, I
remind the reader of the algorithm. The constrained random �eldˆ	 CR is built from a random part̂	 RR and the correlated part:

ˆ	 CR(k) = ˆ	 RR(k) + � ˆ	 (k)ci �C
w,Š1
ij

�
ci Š �cRR

i

�
, (49)

with ci the ith constraint to apply,�cRR
i the mock observation of the same constraint in the pure random realizationˆ	 RR(k), Cw

ij = � ci cj � , as
given in equation (35), is the covariance matrix of the constraints. By construction, in the in�nite volume limit, we have

� ˆ	 RR(k) ˆ	 RR(q)� = (2� )3� D (k + q)P		 (k), (50)

with � D the Dirac distribution. In the case of this work, the contraintscj are line-of-sight component of the velocity �eld. For thejth tracer,
the constraintcj is

cj =
3


µ= 1

r̂ j ,µ

�
d3k

(2� )3

ikµ

k2
eidj k.r̂ j FNL(k) ˆ	 (k) + � j , NL + � j ,z , (51)

wherer̂j ,µ is theµ thcomponent of̂rj the sky direction of thejth tracer,� j, NL (� j, z, respectively) is corresponding to the non-linear component
not captured bŷ	 (the redshift measurement error, respectively). I added a �lterFNL(k) to remove the contribution of modes that are below
the scale of non-linearity. Effectively it is a Heaviside function on the norm ofk:

FNL(k) =

'
1 if |k| < k NL,
0 otherwise.

(52)

The correlation between̂	 andcj is

� ˆ	 (q)cj � =
3


µ= 1

r̂j ,µ

�
d3k

(2� )3

ikµ

k2
eidj k.r̂ j � ˆ	 (k) ˆ	 (q)� = Š

i r̂ j .q
q2

eŠidj q.r̂ j P		 (|q|). (53)

The equation above is computed globally using all tracers with the algorithm in Appendix C. If we did not use this algorithm, we would have
neededO(Nd × Ng), with Ng the number of grid elementsq. On the other hand, the Fourier–Taylor Wiener algorithm allows the same value
to be computed inO(Nd) + O(Ng). As indicated in Section 2.2.1, the covariance matrix is obtained by applying the Fourier–Taylor algorithm
of Appendix B from the Fast Fourier Transform (FFT) of the weighed power spectrum on a regular grid. I do not use the analytically exact
expression (as given in e.g. Gorski1988) because it leads to neglecting �nite grid effects and periodic boundary effects, which are dominant
for the reasonable physical grid sizes which I consider (with typical a side length of 500 Mpc). We compute the mock observations�cj on
the unconstrained �eld̂	 RR in exactly the same way: we do the FFT on a grid and then do a Fourier–Taylor synthesis to obtain the velocity
�eld values. Finally, we can add a random realization of the noise to the interpolated value to construct�cj . All values are recombined using
equation (49) to obtain the �nal constrained Gaussian random �eld.

2.2.8 Galaxy distances

The conditional posterior of the distances may be derived from the main posterior expression (17) as

P(DL |Z , 
 z, M , 
 µ , H , � NL) � L × � (DL ) �
Nd�

i = 1

pd
i

�
dL

i

�
, (54)

with

pd
i (dL ) =

1
$

2�
�
� 2

NL + � 2
z,i (1 + z̄i )Š2

� exp
�

Š
1

2(� 2
NL + � 2

z,i (1 + z̄i )Š2)

�
vr

i (zi , z̄i (dL )) Š f H � r (d(dL )ûi )
� 2

�

× exp

�
(µ i Š 5 log10(d

L / 10pc))2

2� 2
µ,i

	

. (55)

I note that the conditional posterior distribution of the distances of each tracers is separable inNd independent monodimensional conditional
posterior. This comes from the assumption that the noise on the redshift measurement is uncorrelated from tracer to tracer, and that all
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correlations between tracer is accounted for by the velocity �eld and, possibly, the bias function. Selection function and clustering bias would
typically be retained in this expression. Both can be added multiplicatively topd

i . For example it can beS(mi, � i , d) for the selection function
and (1+ b� (dr̂i )) for the clustering bias as already stated for VELMOD class of models (Willick1994; Strauss & Willick1995). The problem
of sampling from this posterior reduces here to a sampling problem fromNd monodimensional posteriors. To achieve that, I use the classical
algorithm of computing the inverse of the cumulative distribution applied on a random realization of a uniform distribution bounded by
[0, 1]. The displacement �eld is computed at the appropriate position using the Fourier–Taylor synthesis algorithm of Appendix B.

2.2.9 The distance prior parameters

As the selection function of the galaxies in distance catalogues is poorly known, we have introduced in Section 2.1 a �exible selection function
that depends on three parameters{ p, dcut, n} . The conditional likelihood of the distances is exactly equal to the prior (22) in this case. Using
Bayes identity and a uniform prior on the aforementioned parameters, the sampling of this parameters is achieved by another block sampling
step. The probability of one of the three parameters, e.g.p, given the others is, using Bayes identity,

P(p|dcut, n, DL ) =
P(p, . . . )

�
dp P (p, . . . )

=
� (DL |p, dcut, n)

�
dp � (DL |p, dcut, n)

, (56)

Figure 1. Results of the test on the mock catalogue based on Gaussian random �eld: central slice of the ensemble averages for the line of sight of the velocity
�eld (top-left panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel). In the bottom-right panel, I present
a Bayesian comparison between the reconstructed velocities and the actual true velocity �eld of the simulation using the entire set of posterior distributions.
The details are given in Section 3.1. Only the voxels whose centres are within 150 Mpc from the observer are considered in this panel. In all panels, the
selection is isotropic, thus the absence of note on the axis.
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whereP(p. . . ) is the posterior probability of equation (17), with explicit dependency on the parameters of the prior� (DL ). All functions
simpli�es except the explicit dependence linking the distances to the distance selection, despite the possible existence of a selection function
on galaxy properties (like the apparent/absolute magnitude or the HI linewidth for Tully–Fisher relation). Such a sampling step is achieved
using the algorithm of Appendix A. To ensure a proper decorrelation, we loop over this block a number of times (typically 10).

3 TESTS ON MOCK CATALOGUES

The method that I have described in Section 2 is relatively complex and involves two major component: the model of the peculiar velocity
�eld as traced by the galaxies or the clusters of the galaxies and the algorithm itself to adjust the data to the model. This involves two separate
sets of tests. First, I will focus on test of the algorithm itself and the performance of the �t on data that were produced to correspond exactly
to the model. This is the objective of the Section 3.1. Second, I will look into the capabilities and the limits of the model at reconstructing
the velocity �eld and distances from noisy more realistic mock data sets, typically halo catalogues fromN-body simulation, which is the
objective of Section 3.2.

Figure 2. Results of the test on the mock catalogue based on Gaussian random �eld, density �eld distribution: central slice of the ensemble average (top-left
panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel). In the bottom-right panel, I present a Bayesian
comparison between the reconstructed densities and the actual true density �eld of the simulation using the entire set of posterior distributions. In all panels,
the selection is isotropic, thus the absence of note on the axis.

MNRAS 457,172–197 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/457/1/172/988703 by guest on 29 A
ugust 2022



184 G. Lavaux

3.1 Gaussian random Þeld based mock catalogues

In this Section, I present the generation and the results of the test of the code against idealized mock tracer catalogues. These catalogues
are generated in such a way that the statistics and properties of the tracers follow exactly the model presented in Section 2.1. However, they
are slightly unrealistic by removing aspects not captured by the model, such as non-linearities or correlations between velocity �eld and
tracer positions. These aspects may lead to biases in the results. It is none the less an interesting exercise to evaluate the performance of the
algorithm.

I generate the mock catalogue of tracers, which should be galaxies, as follows.

(i) I generate a random realization of a ‘density �eld’, with power spectrum given by linear theory linearly extrapolated toz = 0 using the
expression of Eisenstein & Hu (1998) for the power spectrum of density �uctuations, without the wiggles. The power spectrum is truncated
at kmax = 0.1 MpcŠ1.

Figure 3. Autocorrelation of the value taken by metaparameters for the three chains considered in this work:�H (thick solid red), the mixture probabilityPi

(i � { 1, 2, 3} ), dashed lines, respectively, in black, green and blue,� i (i � { 1, 2, 3} ), the error standard deviation for each tracer type, dash–dotted lines,
respectively, in black, green and blue. The different panels correspond, respectively, to the homogeneous Gaussian random �eld case (topleft), theH3000
catalogue (topright), the Hcomplex catalogue (bottom middle). The horizontal axis tracks the step number along each of the chain.
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(ii) I pick 3000 randomly located tracers within a sphere of 200 Mpc, assuming that the tracers are homogeneous in luminosity distance
coordinates. The luminosity distance is then converted in comoving distance and cosmological redshift.

(iii) I compute the velocity �eld at a resolution ofN = 512, and evaluate its value at the position of tracers using a trilinear interpolation.
(iv) I compute the line-of-sight component of the peculiar velocity and the distance modulus. The mock observables are then generated

taking a homogeneous noise of� µ = 0.2,� z = 20 km sŠ1 and� NL = 200 km sŠ1.

I have chosen a �ducial� CDM cosmology with� M = 0.30,� b = 0.04,� 8(z = 0) = 0.84,H = 80 km sŠ1 MpcŠ1, nS = 1. VIRBIUS is run
assuming the same cosmology, leaving free both the amplitude of the power spectrum, assuming that there are either two or one specie(s) of
tracers, the zero-point calibration�H and the parameters of the selection function. The grid used to compute the Fourier–Taylor algorithms
hasN = 64 elements per dimension, which is suf�cient to capture the details ofk = 0.1 MpcŠ1 and ensure a correct fast interpolation using
the algorithm of Appendix B.

Before considering the whole analysis, I am showing in Figs1 and2 the result of reconstructing the velocity �eld from an exactly
known cosmology, distance and small-scale non-linearities. I used a Gaussian noise with an amplitude of 200 km sŠ1 to model the small
scale non-linearities as indicated above. In Fig.1 (Fig. 2, respectively), I am showing the reconstruction of the line-of-sight component of the
velocity �eld (density �eld, respectively). The �gures were generated with 1055 Monte Carlo samples. In Fig.1, the top-left panel (top right,
respectively) shows the ensemble mean radial component (the standard deviation, respectively) of the velocity �eld. The bottom-left panel
shows the S/N obtained by dividing the �eld of the top left panel by the one shown in the top right panel. Finally, the bottom-right panel is

Figure 4. Results of the test on the mock catalogue based on Gaussian random �eld: central slice of the ensemble averages for the line of sight of the velocity
�eld (top-left panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel). In the bottom-right panel, I present a
Bayesian comparison between the mean reconstructed velocities, and the actual true velocities of the mock tracers using the entire set of posterior distributions.
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obtained by showing all the individual posterior distribution for the velocities. These posterior distribution are binned on a grid, and the total
intensity is the sum of the posterior intensities for each considered grid element. The amplitude of the distribution is coded in colour with
respect to thex-axis, while the line-of-sight component of the velocity of the corresponding object as given by the simulation is shown on
they-axis. If the algorithm works correctly, all the distributions should overlap with the thick red diagonal, though not necessarily centred
as the distributions are correlated. The correlation actually removes the effective number of independent samples compared to the number
of elements that are plotted. The unbiased aspect of the method is exhibited by the plots of the normalized residuals in Fig.8, where I have
represented the histograms of the quantity

� r =
v̄r(x) Š vsim

r (x))
� (x)

. (57)

The same histogram for a pure Gaussian distribution is represented with dashed green line. It can be immediately seen that the overall
distribution of residuals is close to Gaussian with unit variance. Additionally, there is no obviously strong shift in the mean.

The panels are similar in Fig.2 but this time for the density �eld. We see that in this optimistic con�guration the velocity �eld is very well
reconstructed, on the other hand the density �eld is already signi�cantly noisy. These results are the benchmarks to which we will compare
the performance of other reconstructions.

The results for more complete tests are given in Figs3, 4, 5, 6 and7. The �gures were generated with 6894 (3037, respectively) Monte
Carlo samples for the two types (one type, respectively) scenario. Fig.3shows the convergence rate of some metaparameters along the Markov
chain (top-left panel for this mock catalogues). The convergence for�H is typically fast, decorrelating in a few iterations. That is the result of
the partially collapsed Gibbs sampler. The other shown parameters, related to the Gaussian mixture of Section 2.2.5, take substantially more

Figure 5. Results of the test on the mock catalogue based on Gaussian random �eld. All panels are related to density �eld distribution: central slice of the
ensemble average (top-left panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel).
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steps to decorrelate, of the order of a few hundreds. This is expected as they are tied to a particular realization of the velocity �eld, contrary
to other metaparameters which are obtained through direct marginalization over the velocity �eld. We can expect the convergence length to
increase when the number of tracer is low or the noise is high as the uncertainty over the velocity �eld will increase and thus it takes more
steps to explore the parameter space. We will see how it is the case with the other mock catalogues in the next section.

Fig. 4 gives a synthetic view of the velocity �eld component of the posterior distribution. The details of the panels have been given
previously for Fig.1. Comparing Figs1–4 shows how much the relaxation of the assumption of �xed cosmology, noise and distances degrades
the quality of the reconstructed velocities.

Fig. 5 gives a similar view as for the velocity �eld, but this time for the density i.e. the divergence of the velocity �eld. The view is the
same as the one in Fig.2, but this time we have all the parameters being sampled. This �eld is expected to be much noisier as it is indeed the
case when looking at ensemble average quantities and S/N. In the centre, where S/N is the highest we are only at maximum at 3� , while for
peculiar velocities it was possible to go at higher S/N. The resulting comparison of the individual posterior distribution in the bottom-right
panel shows this high uncertainty. Compared to Fig.2, there has been a strong loss of information on the density �eld. It reaches a point
where the binned posterior in the bottom-right panel shows no constraint at all from data.

In Fig. 6, I show the individual distributions of the metaparameters of the chain, i.e. the effective Hubble constant�H , the model error
amplitude, the probability for each type of model error and the overall power spectrum normalizationAS. For �H , AS and the model error, a
thick vertical red line shows the value used to generate the mock catalogue. I am also showing in shaded yellow the range of values compatible
at 90 per cent with the data according to the model. As expected all distributions are compatible with the thick vertical line at their peak
positions, i.e. always well within the 90 per cent region of the distribution. In the case of the model error amplitude (upper-right panel), we

Figure 6. Results of the test on the mock catalogue based on Gaussian random �eld. All panels show metaparameters posterior distributions: the zero-point
calibration�H (top-left panel), the extra small scale non-linearities{ � NL, k} (top-right panel), the probability of tracer typeP (bottom-left panel), and the power
spectrum normalization in units of 106 Mpc3 (bottom-right panel). The yellow shaded regions highlights the range of parameters for which the probability of
containing the actual value is� 90 per cent.
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188 G. Lavaux

Figure 7. Analysis of the same mock catalogue based on Gaussian random �eld as presented in Fig.6, but this time restricted to a single type of tracer. The
panels present similar quantities: the zero-point calibration�H (top-left panel), the extra small scale non-linearities� NL (top-right panel), the power spectrum
normalizationAS in units of 106 Mpc3 (bottom-left panel). Additionally, the autocorrelation of the chains is given in the bottom-left panels. The yellow shading
also represents the range of parameters accepted at 90 per cent probability.

Figure 8. Distribution of the velocity residuals� r between the simulation and the reconstructed mean component of the peculiar velocities for the different
experiments on mock catalogues generated from Gaussian random �elds. Left-hand panel refer to the same experiment as Fig.1 and right-hand panel to Fig.4.
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are faced with two distributions overlapping with the �ducial value. Finally, the posterior distribution shown in the bottom-left panel do not
indicate a strong imbalance between the different error model, which exactly corresponds to the signi�cant overlap of the distributions in the
top right panel. The results of the distributions obtained assuming a single type are given in Fig.7. All the metadistributions are of course
narrower than for the test with two types, especially for the distribution of� NL. The width of the distribution forAS is also visibly narrower.
The peculiar velocity �eld, not represented here, is however mostly unaffected. In the test with two assumed types of tracers, the algorithm
separated the data in two pieces: one including more than 93 per cent of the tracers 50 per cent of the time, and the others. This separation
results in a small number of objects having high-velocity dispersion, which both skew the P1 distribution towards low value of� NL and allow
a the P2 distribution to venture to very high values of this same� NL. No obvious bias is visible in all the distributions. The autocorrelation of
the chain is shorter by a factor� 2. These tests indicate that the algorithm and the software works as expected on an idealistic test case.

3.2 Halo based mock catalogue

In this Section, I consider more realistic, but more complicated mock catalogue to which I apply the methodology developed in this article.
Two mock catalogues are considered, both based on the haloes of a cosmological pure dark matterN-body simulation. This simulation have
been computed using the following cosmological parameters:� M = 0.30,� b = 0.045,� � = 0.70,H = 80 km sŠ1 MpcŠ1, � 8 = 0.80. The
volume covered by the simulation is a cube with a side of 500hŠ1 Mpc with 5123 particles. From this simulation, haloes were extracted using
theROCKSTARsoftware (Behroozi, Wechsler & Wu-Y.2013). The minimum halo size have been kept to its default value of 10, checking that
particles are effectively bound. The total number of haloes of the simulation is thus 238 520. The two catalogues are created from the same
simulation but choosing different selection properties. The �rst mock catalogue, nicknamed H3000, is generated by extracting randomly 3000

Figure 9. Same as Fig.4 but for the H3000 mock catalogue.
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Figure 10. Results of the test on the the H3000 mock catalogue: metaparameters distributions:�H (top left panel),{ � NL, k} (top right panel),P (bottom-left
panel), selection function (bottom-right panel). Some bins are still clearly dominated by the noise due to the long correlation length of the chain.

haloes from the rockstar catalogue at a distance less than 200hŠ1 Mpc of the centre of the simulation box. The chosen distance modulus error
is � µ = 0.2, typical for a Tully–Fisher relation. The second mock catalogue, nicknamed Hcomplex, is built from a more complex selection
function, derived from theM/ L relation used in Lavaux et al. (2008), equation (7). The principal condition for acceptance in the catalogue is
to haveL/ (dL)3 � 2.78× 104, with L in solar luminosities andd the comoving distance in Mpc/h-1. The selection is not supposed to be strictly
realistic, but to mimic a realistic abundance for distance catalogue. This mock catalogue has 2000 tracers, with a distance modulus error
� µ = 0.1, typical of higher quality distance indicator like Supernovae (SNe) or Tip of the Red Giant branch (TRGB).

For these mock catalogues, I restrained from �tting the amplitude of the power-spectrumAS at the same time as the other parameters. The
problem comes from the degeneracy betweenAS and the distribution of tracers of the velocity �eld. In halo catalogues, these two quantities
are not independent as tracers are typically located in the peak of the density distribution. This tends to credit the velocity �eld with more
power to try to homogenize the distribution of tracers. This problem arises when we are faced with data which needs a suf�ciently precise
prior on the density of tracers. I have run a chain for which the selection is exactly known i.e. homogeneous in luminosity distance space, but
for which AS is left free. The mean recovered value is 2.9± 0.5 times higher that the value used to make initial conditions. Thus, I postpone
the resolution of this problem to future work. Here, I will limit myself to �xAS to its �ducial value and investigate the rest of the parameter
space.

The results are given in Figs3, 9 and10 for the H3000 halo mock catalogue, and in Figs11 and12 for the Hcomplex halo mock
catalogue. The length of the chain is 10 824 for H3000 and 3905 for Hcomplex. The convergence test is shown in Fig.3 (top right for H3000,
bottom middle for Hcomplex). The convergence of the parameters of the Gaussian mixture is quite slow for H3000 due to the substantial
uncertainty on the velocity �eld potential. This triggers a large correlated exploration of distances and model error parameters. The chain
concerning H3000 has 10825 samples, whereas the one concerning Hcomplex has 1796 and is clearly converged. However, for Hcomplex,
this convergence is much faster, con�rming the previous scenario. In that case, the tracer density is suf�ciently high to largely reduce velocity
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Figure 11. Same as Fig.4 but for the Hcomplex mock catalogue.

�eld uncertainties in the effective volume covered by the catalogue. That statement can actually be generalized. If the catalogues of tracer is
dense, then the velocity potential will be quite tightly constrained which does not leave much freedom for the auxiliary metaparameter like

 NL, which in turn reduce possibilities for the reconstructed true distances.

The panels of the other �gures are showing the same quantities as the ones in Figs4 and6, with the exception of the bottom-right panel
of Figs10 and12 which shows the selection function of galaxies in the catalogue. In these same panels, I show the actual distribution of the
galaxies for H3000 (a simpled2 law) and Hcomplex as a function of luminosity distance. I note that the selection function for H3000 has been
�tted by VIRBIuS according to prescription. However, as there is a sharp cut at 200 Mpc in the mock catalogues it is not able to reproduce
this fairly. The parameter most affected by this discrepancy is in principle�H . We see that, within error bars, it does introduce signi�cant bias.
On the other hand, the galaxy population of Hcomplex is fairly represented by the selection function �tted byVIRBIUS (Fig. 12), and �H is
measured without any systematic effect.

The application of this Bayesian methodology on the two mock catalogues is satisfactory. All the posterior distributions are in agreement
compared to the velocities of the simulations and the metaparameters are in agreement with the input value, such as�H and the selection
function. The analysis also yields that the haloes can be classi�ed into two main populations: the results on the measurement of
 NL,
assuming three populations, is quite clear in particularly for the top right panel of Fig.12. There is a population of haloes with a model error of
� 400 km sŠ1and another at� 100 km sŠ1. The probability assigned to each model is not clear, all models getting a share of� 30 per cent. Which
means a probability of� 66 per cent for the low-velocity dispersion model and� 33 per cent for the high-velocity dispersion one. It is possible to
run a meta-analysis for which the chain is run assuming different maximum number of populations. The likelihood of the data, marginalized
according to sampled parameters, given the population model can then be computed alongside the Bayes factor between the different
models.

MNRAS 457,172–197 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/457/1/172/988703 by guest on 29 A
ugust 2022














