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Bayesian 3D velocity beld reconstruction with/IRBIUS

Guilhem Lavaux

ABSTRACT .
| describe a new Bayesian-based algorithm to infer the full three dimensional velocity eld fromg
observed distances and spectroscopic galaxy catalogues. In addition to the velocity eld itself
the algorithm reconstructs true distances, some cosmological parameters and speci c no%-
linearities in the velocity eld. The algorithm takes care of selection effects, miscalibration%
issues and can be easily extended to handle direct tting of e.g. the inverse Tully—Fishe®
relation. | rst describe the algorithm in details alongside its performances. This algorithm§
is implemented in the (Veloclty Reconstruction using Bayesian Inference Software) £
software package. | then testit on different mock distance catalogues with a varying complexitgD
of observational issues. The model proved to give robust measurement of velocities for moé%
catalogues of 3000 galaxies. | expect the core of the algorithm to scale to tens of thousands
galaxies. It holds the promises of giving a better handle on future large and deep distange
surveys for which individual errors on distance would impede velocity eld inference.

/W02

Key words: methods: data analysis—methods: statistical —galaxies: statistics—large—sca%
structure of Universe.
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1 INTRODUCTION

Peculiar velocities are deviations of the apparent motion of tracers e.g. galaxies, from the Hubble ow. They are an essential tool to sﬁdy
dynamics of the Local Universe and in particular to probe the underlying gravity eld, which is currently assumed to be generated by a D@'k
Matter density eld. At low redshifti.ez  0.150.2, they are the only practical way of reconstructing the unbiased, true matter densityg
eld. The rst mention of galaxy peculiar velocities go back to Hubble (Hubble & Humat®81). When large scale structures data have
been rst acquired, peculiar velocities have quickly attracted a large attention (Aaronsot@8211986 Lynden-Bell et al19883, before
fading out due to a lack of large corpus of distance data and robust methods of analysis.

New distance surveys, from which peculiar velocities can be inferred, have emerged in the recent years+tiké\&isters et al2006
Springob et al2007, 2009, 6dFv (Campbell et aR014, CosmicFlows-1 (Courtois et &011), CosmicFlows-2 (Tully et a2013. More
surveys are coming online such as TAIPAN/WALLABY (Beutler et2011 Duffy et al. 2012. These surveys revived peculiar velocities
as rst class probes of cosmology by providing hundreds of thousands of distances. However, peculiar velocity analysis is notoriously efror
prone, being sensitive to different bias and systematic effects e.g. homogeneous (Lynden-Bdlb@&8aland inhomogeneous (Dekel,
Bertschinger & Fabet990 Malmquist bias, distance indicator calibration uncertainties (WillieR4) or edge effects. Several attempts have
been made at reconstructing the density eld directly from distance data. For example, one can note the POTENT method (Bertschinger
& Dekel 1989 Dekel et al.199Q 1999, the Wiener Iter approach (Zaroubi et d995 or the Unbiased Minimum Variance algorithm
(Zaroubi2002. Additionally, the procedure to derive the power spectrum of the velocity eld is relatively complex and prone to the same
aforementioned systematics; though, there have been some early attempts at measuring it (Jaffel@¥Glsalatt & Dekel 1997 Zaroubi
et al. 1997 Macaulay et al2011, 2012. New methods have also been recently designed to measure more accurately the rst moments of
cosmic ows from different aspects of distances and luminosities (e.g. Nusser & P@Yls Nusser, Branchini & Davi2011, 2012 Feix,

Nusser & BranchinR014).

A common framework capable of handling all these items at the same time and building a consistent three dimensional (3D) peculiar
velocity eld is still missing. | am proposing to build such a framework from a full Bayesian joint analysis of the density eld (bandwidth
restricted Fourier modes of the density eld), the cosmological parameters (e, the Hubble constant, the amplitude of scalar uctuations),
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Bayesian 3D velocity eld reconstruction withreius 173

the observational parameters (e.g. selection function, Tully—Fisher relation) and the limitations of the model (e.g. amount of small scale non-
linearities). By incorporating all these issues in a single framework, this model holds the promise of reducing (maybe cancelling) all systematic
effects on the estimation of the 3D peculiar velocity eld. The software has been namec (Veloclty Reconstruction using Bayesian
Inference Software) and will be publicly available later on the author webpBgets of the model will resemble VELMOD(Willick994
Willick et al. 1997). For example, Willick 1994 modelled the relation between the true distance and the observables for distance indicators the
look like Tully—Fisher relations. Also, Willick et al1097 modelled the relation between redshift observations and Tully—Fisher observables
(i.e. magnitudes and Hinewidth). These elements are parts ¢f  , but they are generalized and included in a wider framework. | note that
Johnson et al.2014 have also pushed the effort of measuring accurately velocity eld. In all the aforementioned work, however, a common
framework to handle all components self-consistently are not included. Also, the possibility of unseen measurement failure is not accounted
for. This will be another major addition (and complexity) to the model. Of course augmenting the model with limited data available comes
at a cost: e.g. the power spectrum must be parametrized in terms of a small number of cosmological parameters. Among them | will select a
few of particular interests: the overall amplitude of the powerspectrum, which is degenerate with the growth factor and the Hubble constant,
which governs the shape. All the other cosmological parameters are kept xed in this work. | will introduce other parameters that desnge
the data set itself (e.g. zero-point calibration, noise levels). g
The structure of the paper is as follows. In Section 2, | describe both the adopted model and the algorithm that | have developed to e@lore
the parameter space given some distance galaxy catalogue. The model, in Section 2.1, includes description of cosmological expansion, distanc
uncertainties, and a clean separation between the linear and the non-linear component of the velocity eld. The model is fully Bayesian%and
priors can be adjusted easily to include more detailed description of selections effects. In Section 2.2, | describe in detail the algorithrr%that
is required to ef ciently sample the posterior distribution of all the parameters that enter into the model, including the velocity eld itself.g
Section 3, | present the results of the test of this algorithm on a variety of mock catalogues: an ideal, though slightly unrealistic, and a rfiock
catalogue generated assuming perfect homogeneity of tracers and Gaussian random elds statistics for velocity elds (Section 3.1), a;ﬁnore
realistic mock catalogue based on haloes oflgsody simulation either with a trivial or a more complex selection function (Section 3.2). In &
Section 4, | conclude on the performance of the algorithms and the prospects for its use for existing and future distance surveys.

2 STATISTICAL METHOD

woo'dnoolw

In this Section, | explain the model that | am using to describe self-consistently the velocity eld, the cosmology, the redshifts and gle
distances of the tracers of the velocity eld. In Section 2.1, | detail the model and the approximations that | have made. In Section 222, |
describe the algorithm used to sample the posterior distribution in the huge parameter space.

2.1 Model

2.1.1 The ow model

/CLTIT/LSY/3101ne/s

| propose to solve the general problem of reconstructing in an unbiased way the 3D peculiar velocity eld and cosmological parameters gom
a set of redshifts and distance modulus of tracers. Nothe number of tracers. | propose a self-consistent approach based on a probabilistig
modelling. For the low-redshift Universe, and a given tracéris possible to write a linear relationship between the redghithe distance
d, the pseudo-Hubble constartat redshift zero and the peculiar velocityr) as

Z=Hd +v + , Q)

with v. = v(d 4)0 the line of sight component of the peculiar velocity of fitle object,i the unit vector pointing in the direction
of the tracer, the redshift measurement error. This is the usual Hubble relation, though we have replaged to take into into
account the fact that the calibration of distance indicator may not be absolute. Additionally, we do not have access to a precise Q;‘gobe
of the distance. The equation (1) is only valid at extremely low redshift. The aim of this work is to have a self-consistent and accu@te
reconstruction of velocity eld for large and deeper distance survey. Of course, different cosmological distances appear, like the lumind3ity
and the comoving distances. From now on, we will dsas the comoving distance of an objeéa@ndd its corresponding luminosity
distance. The exact relation combining cosmological and peculiar velocity, while they are non-relativistic, induced Doppler effect is the
following:

Bny 6z uo 1sanb Aq €

1+z= 1+z d 1+V—, )
C

with z the cosmological redshift, which depends on the luminosity distande line-of-sight component of the velocity eld, assumed
to be small compared to the speed of lighgnd in the rest frame of large scale structures. The relation, for a at universe, is explicitly the
following (e.g. Weinberd 972

- 1+ 72 1
d @-= H dz @, (3)

http://www.iap.fr/users/lavaux/
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and
E(2) = a+2z + . 4)

The comoving distanca(d , Z) is related to the luminosity distance according to

- d
dd .2)= = 5)
The equation (3) is numerically invertible which, assumiigs known, allows for the derivation of the cosmological redshift. In the text, we
will introduce the observational counterpart of the luminosity distance, called distance mpdwhsse de nition is

d

= 5lo —_— . 6

H 9 10 o (6)
Finally, the relation (2) can be rewritten as followed: o
o
v = o2 Sz d " g
= o
1+z d 2
2

Davis & Scrimgeour2014) recently reminded the community that using the linear approximation instead of equation (7) leads to substantgal
error even at relatively low redshift (  0.05). So, itis fundamental to include the complete treatment in my analysis so that the reconstructeﬁl
velocity eld are unbiased for future peculiar velocity surveys. | am assuming that the measured redshift is without error in the above equa@n
Of course, that is not the case, and the redshift error will be treated in the next section.

Though this relation between tkeand the observed redshift is more complex than equation (1), it does not introduce any new systema@c
errors. The only problem that is introduced is the proper tracking of the cosmological rexishifi the comoving distana® when the o
luminosity distancel changes. In all this work, all algorithms make use of the equation (7) instead of the linear relation (1). In the above,

I am considering that the observation of luminosity distance is perfect. That is not the case in practice as a number of effects are cha@ing
the apparent luminosity such as gravitational lensing, Integrated Sachs—Wolfe effect and gravitational redshift and peculiar velocities (Sasaki
1987 Pyne & Birkinshan2004 Bonvin, Durrer & Gasparin2006. For the moment, we will neglect all these effects, keeping in mind that in 3

data they will eventually have to be inserted into the likelihood analysis of luminosity distances. The last of these effects could be important to
ensure consistent treatment of peculiar velocities as highlighted by S&98K),(Hui & Greene 2006. To summarize, the distance modulus
itself is affected by peculiar velocities at rst order because the observed ux is itself sensitive to beaming and Doppler effects. The obserxed
luminosity distance is in fact (Hui & Greerg906):

e/se

d =d 1+ %(Zv Sv).e 8)

with d the luminosity distance determined in the observer rest frame i.e. from observed uxthe actual luminosity distance of the
object in an homogeneous universe with a FLRW meiridy , respectively) the peculiar velocity of the emitter (observer, respectively) with
respect to this homogeneous backgroundatie speed of light in vacuum. This relation is exact at rst order. In this work, we will neglect =
the impact of this term, while focusing on the peculiar velocity present in the Doppler effect of the observed spectrum (equation 2). | rigte
that the introduction of this correction would not change the algorithm fundamentally but introduce additional complexity in the formulatién
of the likelihood of the distance modulus (as detailed in equation 16). | also note that most peculiar velocity analysis (except supernoﬁae)
neglect the full impact of this term (Johnson et2014).

€0.886/CLT/T/LSY/3]

220z 1snbny 62

2.1.2 The million parameter likelihood analysis

Historically, direct extrapolation of the velocity eld from this relation has lead to a number of biases, like the inhomogeneous and
homogeneous Malmquist biases (Dekel etl@90. They originate from the reuse of an imprecise distance indicator for both estimating
the line of sight peculiar velocity = v.0 and using it as an estimate of the true distaga®, with @ = H/H . We are however not
doomed to be limited by this problem. | propose to consider the distance itself as a random variable to generate the velocity eld. This is
not an entirely new proposal. In Willick et all997), the VELMOD technique was already trying to improve the distance using a likelihood
approach. They used a peculiar velocity eld predicted using linear theory of gravitational instabilities and galaxy redshift surveys as a
prior for the velocity eld. The idea of generating random velocity elds in agreement with observation is not new either, it originates
back to the constrained realization of Gaussian random elds in cosmological context (Hoffman & FaB&k1992. There was no
published work that has attempted to blend both constrained realizations, distance sampling and parameter estimation. We are not bound
to be limited to proceed sequentially for the analysis of peculiar velocity eld. Notably, it is in principle possible to adjust both the power
spectrum and the eld itself, as it is done for the data of the Cosmic Microwave Background (Wandelt, Larson & Lakshminarayanan
2004.

MNRAS 457,172-197 (2016)
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Ideally, we would like to have a representation of the joint probability of the velocity eld, the distances, the Hubble constant and
possibly cosmological parametgrsand an additional noise parameter , which will characterize the departure from linear theory of the
actual velocity eld. So, in practice we will t the following model:

1+z= 1+z d 1+ Y (qduc).u i + ©)
_ Hf gdud .0+
= 1+7 d 1+ - + (10)

with
= : (11)

d the comoving distance from the observer of the tradexctually a function ofl in this work) andH the Hubble constant at redshift

= 0. Each tracer is given an assignment type(note thatd is the comoving coordinates scaled with So, it is not the true distance but
the distance in the convention of the calibration of the distance indicator. If the distance ladder is correctly bgiltthenhowever, this

is not in general guaranteed. In equation (10), we have introduced the displacement which is expressed in comoving coordinates. If
we assume that no vorticity is created on large scales, it can be simply described through its divergence, which | vidl fodibw earlier
conventions on velocity elds. In the Lagrangian linear regime, the displacement eld is related to the velocity eld by a linear relation, whi
gives the second part of equation (10). Thus, we have the following relations:

)
o

2

=]

o

2

2

¢h

=

S

@

= () (12) >

o

2

¢}

v (r)=fH (r). (13) 2
o

Physically, isrelated tothe density uctuations at present time in the Universe owing to continuity equation (e.g R88Blesdditionally, S
Iwillcall =~ ={ " (k )} the discrete Fourier basis which represent the full continuous el@hus, their formal relationship is %
== (ke ay  :
=T , 2

o)

with &
2 =

k =—q (15) g
L =

andg {0,1,...,N $ 1}, Nthe resolution of the reconstructed eld. These amplitudes will serve as free parameters of the eld in tr%

rest of the text. The splitting of the velocity into the scaling and displacement components allows us to make a shortcut later on v@en
adjusting the Hubble constant to the data. The most simple model (equation 11) has a single type, but it is possible to have segéral.
This approach can be required if we try to model a set of tracers which could be split into subpopulation such as clustered and tion-
clustered (i.e. elliptical versus spiral galaxies). It presents the other advantage of isolating potential catastrophic errors in the distance or
spectroscopic measurement of a tracer. For example, the assignment of a supernova to a galaxy is sometimes dubious as its o@erve
spectrum can be heavily blue shifted by the explosion processes. In other cases, the adjusted luminosity distance can be a strong @utlie
in statistical empirical relation such as the Tully—Fisher relation. The introduction of several types of tracers (including outliers) is relaged
to the problem of the Gaussian mixture (Pear&884 Dempster, Laird & Rubirl977). | evaluate the velocity eld at the real distance >
using the scaling factay = H/H .v  (r) has the same statistical properties as the velocity eld derived from linear perturbation theor’g
atz= 0.

Finally, the data are given by duet for each galaxthe distance modulys and the observed redshift | will assume that the noise on
the observed distance modulus and the redshift measurement are both Gaussian, with standard deviaths , respectively. Because
the two data are acquired independently the likelihood, i.e. the probability of observing tHgdata)}, given the model is immediately
given by

2c0ey

L=P {u.z} d .{ . L{KH}EHH T, p 1+z) +
- d)S Hf - S )
coxp &L v(z,d) @) g ( S5log (d /10p0) 16)
2 (1+z@d) +
with ()= (gdwe).a, = { }, T ={type@)} and N the number of provided tracers (i.e. the size

of set { }). Using Bayes identityy, we may now express the posterior probability of the parameters, given the
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data:
PO = d , ={ (KLHHA { }LT|
M={urz={z} ={ } ={ D
_ Lx (D) ) ) H ({type®h) (A) , 17)
dHd db d Lx (D) (T) () H H)
whereT runs over all possible type combinations in the denominatsrthe index of one of the type. The functionsare priors on the
speci ed parameters. | assume that the statistics & determined by the power spectritk) of primordial density uctuations scaled to
redshift zero. This power spectrum may itself depends on some cosmological parameters. | have chosen to incorporate the HubHle constant
and the amplitude of the power spectrémas free parameters but to keep the other parameters at their best- tting value from other probes,
as e.gWMAP (Hinshaw et al2012 or Planck(Planck Collaboration XVR013. A is de ned as the pre-factor in the unnormalized power
spectrum:

_ k
P (K=A W T (k), (28)

with T(K) the transfer function, normalized to one for 0. These free parameters will allow us to run a self-consistent check of the
cosmology. We thus have

|” (k)|

(HA)= (P (k;H,A) exp ém

19)

The natural basis of representation ofis thus the Fourier basis. Becauseis assumed to be without vorticity, it can be solved with the

same Green function as the gravity. We can introduce an auxiliary scalar slech that = and must satisfy the Poisson equation
= . Thus, in Fourier space we obtain

(=8 kie “(k) (20)

The full expression of the displacementin terms of ~ is thus after taking the gradient of
ik -
M= e k) (21)

2.1.3 Some notes on priors

T//Sb/a1on0e/seiuw;/woo dnooiwapese//:sdny woly papeojumod

The prior on the distance translates our preconception of the localization of the tracers in the volume into a mathematical expression. | ch0§e to
consider two possibilities. The rst kind of prior that | consider consists in tting an empirical distribdit{of) of galaxies assuming isotropy

and uniformity in the choice of the tracers. The distribution is self-consistently estimated from the ensemble of reconstructed distancesgcand
thus in unit of Mpc. The empirical distribution is given by
- D
(D |p,d ,n) D exp S ' , (22)

which is trivially combined in the total distance prior

O [p,d ,n) f d;p,d ,n . (23)

0z 1snbny 6¢ uo 1senb Aq £0/886/2

Note that the use of this prior expands the parameter space to i{giude , n}, and we use the luminosity distance of the tracers.
For some mock catalogue, | will consider a second choice i.e. that tracers are homogeneously distributed in a given determlne@ by

luminosity distance. While this choice is questionable as the tracers are more expected to be homogeneously distributed in comoving volume,

this choice simpli es greatly the tests. It also does not remove any value to the model as in any practical case the rst prior will be

used, which automatically absorb differences between luminosity distances and comoving distances in the parametrization. Thus, the prior

takes the form:

D) d . (24)

Finally, for the very Local Universe, the comoving and luminosity distances are equal; thus, this prior correspond to a classical problem.
In particular, this prior is related to the ‘homogeneous Malmquist bias’ correction (Lynden-Bell E3&8h Strauss & Willick 1995,

which leaves the inhomogeneous part not modelled. Strauss & Wille8d indicates that the correction introduced by the inhomogeneous
component is subdominant in their simulation. Of course, this statement depends on the statistical distribution of the tracers themselves, as
elliptical galaxies will be located more in the centre of the density peaks. We will put the homogeneous approximation of the prior to the test
in Section 3.
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Algorithm 1 Blocked sampling algorithm
procedure M C E (s)
forj = OtoN do
s P(s. |s )
end for
end procedure

procedure M C
s 0
loop
M cC E (s)
write statesin a le
end loop
end procedure

Each tracer is given a type type). The prior probability of this typing is given by a nite set of values:
TP)y="pr (25)

whereP is the ensemble of possible probabilitigs  } with j going over the available types, and typefaps theth galaxy to thgth type.
Finally, | assume a uniform prior on the Hubble constdnthe effective Hubble constaht and on the variances . | acknowledge
that the uniform prior o is not equivalent to a uniform prior on the zero-point calibration of the distance indicator, which are often linearl;
derived from magnitudes. Assuming that a uniform prior on the magnitude of the zero-point would yield a(ptjor 1/H, which is
stricter than a pure uniform prior d#.
In the above model, | have not treated the problem of selection effects. There could be some concern that the selection funitlon
of catalogues is not modelled here. Indeed, according to Will&84), Strauss & Willick 1995, depending on the choice of the used 3
distance indicator (e.g. forward Tully—Fisher versus inverse Tully—Fisher), some systematic bias could be introduced in the velocny/dlstance
reconstruction. | will argue in the following section that they have nearly no effect on the algorithm except in the determination of dlstané’es

09"dno&uapeoe//:sdny woi papeojumod

2.2 Sampling algorithms

/CLTITILSYIR19

| use the blocked Gibbs sampling method (Geman & Getr®84 Liu, Wong & Kong 1994 Wandelt et al2004) to solve for the problem of
having an unbiased estimate of the velocity eld, including proper error bars on all parameters of the adopted model. This sampling techrifque
is related to Markov Chains such as the Metropolis—Hasting algorithm (Metropolis & W849 Metropolis et al.1953 Hastings1970),
but in this case we always accept the new proposed move. Blocked Gibbs sampling is converging ef ciently in two cases: cosmic varlance
limited problems and high signal-to-noise (S/N) ratio regimes. Unfortunately, it has potentially long convergence when model parameters are
correlated and/or the model has to face intermediate S/N ratio regimes. Gibbs sampling has the advantage of splitting a complicated po%terlow
into pieces that are easier to compute. | note that we have a Markov chain whodé statdescribed by the vector

£0.8

3

N

M = H;H;A ; ; ;D;P;T;d ;p,n , (26) >
&

c

(%))

= s (27) o
N

N

with ~ the Fourier modes of the velocity eld, sampled on a nite grid of mo#tesT the typing of tracers (notetype()} above) and®
the probability of each type. | remind the reader thgi andd are the parameters of the model for the selection function given in equation
(22). I noteN the number of variables iM . The second equation (equation 27) implicitly de nes the ordering of the parameters in the
stateM . | will use the following notation to indicate that | will condition on everything except the indicated vasable

s = s ,...,s ,S ,...,S . (28)
However, if | have analytically marginalized according to the velocity potentitien I note
s =s\(") (29)

In general, the algorithm will produce a new chain state using the Algorithm 1 switindicating that we do not consider the speci ¢ value
of the parametes but the general posterior of this parameter.

MNRAS 457,172-197 (2016)



178 G. Lavaux

Algorithm 2 Partially collapsed Gibbs sampling algorithm\VilRBIUS .

procedure P C M C E (s)
forj = OtoN do
s P(s |Is ,s )
end for

Generate a constrained realization
forj = OtoN do
s Ps IS, ,5)
end for
end procedure

The above algorithm corresponds to the canonical Gibbs-Sampling algorithm. However, some parameters are strongly correlated
as e.gH . To improve the convergence, | will use the partially collapsed Gibbs Sampler algorithm (van Dyk @8k In the context
of this work, it is possible to analytically marginalize according tavhens_ isH, H, andA . This adds complexity to each of the
conditional posterior but it is still numerically tractable because the concerned posteriors are monodimensional. De ning:

M = H;H:;A ; = s ,and (30)

M

D;P;T;d ;p,n = s , (31)

the new algorithm is given in Algorithm 2 in which we ushBli to specify the number of elementshf . The probabilityP is obtained

by analytically marginalizing the conditional poster®¢s_ , ~ |s ) according to" . Each of the used conditional posterior can be deduced
from the main posterior (17). | will now detail them one by one. | give in Tdblee parameters on to which each conditional probability
function depends explicitly. The last element of the sampling chain corresponds to the sampling of the parameters of the distance selection
prior, which in the program is done slightly separately and generates the three parameters of the prior in a single call.

Before detailing each of the algorithm required to sample the parameters, | note that this approach allows us for alleviating potential
systematic biases arising from selection. The formalism that | gave in the previous section can be transformed to allow for a more complete
tting procedure that includes the distance indicator itself. The incorporation of the effects of selection in the distance relation tting@rocedu
consists then in simply multiplying the likelihood by the selection func&m, , d) in the notations of Strauss & Willickl@95, m the
apparent magnitude, the luminosity linewidth andi the distance. As the algorithm uses conditional posteriors to explore the parameter
space, this selection function will disappear from all expressions except the one that concerns the distance. If the selection is separable
betweenifn, ) andd, the use of the forward Tully—Fisher algorithm would even not be sensitive to any details of the seleatipn)inCf
course, these assumptions are relatively strict and it may be that the parameter space is more entangled, e m.dretd,eshich would
not allow this simpli cation. This remark is related to the distance indicator based on Tully—Fisher, though other indicators could bene t
albeit on a different set of variables for the selection function. The entire algorithm presented in this paper is nevertheless completely general.

I now review each of the conditional posterior one by one to derive their expression.

220z 1snbny gz uo 1senb Aq £0/886/22@T//Sy/2191e/seluw/woo dno-ojwapese)/:sdiny wolj papeojumod
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2.2.1 The Hubble constant H
The conditional posterior of the Hubble constant may be derived from the main posterior expression (17). After marginalization according to
, it gives:

P(HID ,Z, ,H,A, ,T) | 2 [C H)]| exp S vvI[C (H)] ! (32)

NI =

with v as given by equation (7), the residual velocity once the apparent Hubble ow is subtracted. We have also used the covariance matrix
C , which, following the model of equation (10), is de ned as

#
[C] = vv (33)
" & " # o ) o

= + + aa v (dg 6 )v (dg o ) (34)
S
_ 2
= + (1+2) +C , (35) 5
o}
o
wherel refers to theath component of the unit vector pointing in the direction of itegalaxy, 2
C =vv = aa cC , (36) =
S
@
g = H/H,and g
o
dk kKk e
c =(fH) ——~— ——e P (kD) (37) 3.
2) [k X
N c
is the covariance matrix of the large scale part of the velocity eld. The covariance n@trixis derived from the prior on given in ®
o

equation (19). In practice, the mati& is computed using the Fourier—Taylor algorithm of Appendix B. The conditional probability given3

in equation (32) is mixing the need of small residual and correlated uctuations through cosmic ows. It may be highly non-Gaussian g?wd
not necessarily with a single maximum. It is however a one-dimensional posterior, which makes it possible to tabulate it. | have use@the
algorithm of Appendix A to generate a random sample from this density distribution. 2

2.2.2 The effective Hubble constaiht

DIT/LSv/8101Ie

| have separated the Hubble constant presently linked to autocorrelations of the velocity eld from the one corresponding to the reds
distance relation. In Section 2.2.1, we have obtained the (complicated) posteriotHbffthe conditional posterior dfl , again marginalized
according” takes the same form as (32), except tHais left free ancH is kept constant. All is involved in more non-linear relations due

to cosmological redshift effects, the conditional posterior is non-Gaussian in several aspects. The full expression of this probability de
is

ft—

$PL886/CL

ity

PHID ,Zz, ,H,A, ,T) | 2 [C (H)]| exp S v (H)v (H)C H)] !, (38)

NI =

with C de ned as in the previous section.

2.2.3 The tracer types

220z 1snbny gz uo 1sanb Ag

The model includes some freedom on the type of non-linearity (modelled by the extra noisas determined in Section 2.2.5) that affects

each tracer. The model that | have adopted is the Gaussian mixture where each type is given an unconditional probability and the adoptec
extra noise depends on the type. The typing mechanism is represented by the projection functpnmybe( Gibbs sampling framework

we can assume that we know the valug of } and infer statistically the unconditional probability of the type typeChe probability

the objectk has a type typdj equal toq is thus proportional to the probability of the type multiplied by the probability that the error term is

likely according to the numbers derived in Section 2.2.5. Mathematically, the likelihood (equivalently the probability) that the set of tracers
{k} has some residuaf{s } given the type projectof and the probabilities of typing is

1 “
P T,P $ S = 39
TPy b % o ar T (39)
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=v (z,d )SHf (q).Using Bayes identity, we can derive the conditional probability of the type mapgven the residuals

{ } and the type probabilitf :

P HT .P) (M)

PT=T ,P)= = P typeK = P 40
T=TI %P 5 TP ype®) =al .p (40)
with, for a uniform prior on the type:
p + 1+2 exp S———M
P type=dl , p , = - . (41)
p + 1+ 2 exp S——
To sample the adequate type for the trdcex brute force approach is largely suf cient: for each tracer we computl theobabilities

given by eq%ation (41), generate a random numbefO, 1[ and choose the tygethat satis es

b= max c£ P type)=ql ., p , ro. (42)

This typeb is then assigned to the tracefor the state of the Markov Chain.

2.2.4 The tracer probability

For this step, we assume that the type of each tracer is known and we want to infer the probability of unconditionally typing a particle to
typeq. This can be readily derived from equation (39) using Bayes identity:
&
_ p
PPIT)= —&——, (43)
p dP

with P the set of all possible probabilities such that

p =1, (44)
O<p <1foralll g N. (45)
with T = {K|typek) = g}, and|T | the number of elements ii. This probability density is a Dirichlet distribution. | am using the function
gsl_ran_dirichlet of the GNU Scienti c Library (GSL) to generate samples of such a distribution, conditioned on the number o
tracerqT | in each type.

2.2.5 Model error

We consider here the amount of extra noise that is not captured by the part of the model that uses linear perturbation theory to derive th
velocity eld. The conditional posterior distribution, as derived from the main likelihood (17), is

P

The posterior is written in terms of , as | have indicated that | am taking a uniform prior on  and not (Section 2.1). This is

. H,H,D ,Z, 1+7) + S - . 46
| (1+7) e So—i s - (46)

z20z 1snbny 6z udBsanb Aq 088672, T/T/LSp/31o1e/Seiuw/wod dnoolwapeag//:sdny woly papeojumod

again a one-dimensional distribution and | use the algorithm of Appendix A.

2.2.6 Power normalizatioA

The no

rmalization of the power spectrum ofis left free in the model. This allows to account for the possibility of a different growth

e

rate of perturbations or a different amplitude of scalar perturbations of our Local Universe. Again, we are faced with a mono-dimensional
conditional posterior distribution. The problem shares a lot of similarities with Section 2.2.1. We change parameter @#d-wrife
The conditional posterior, marginalized according tbecomes

P( |ID

with [N

,Z, ,HHH, )| C +N | exp S v(z,Z)C +N ] v(z,z) . (47)

NI =

] =«( + (1+z) ) .Inthe above equation, we have reused the covariance m@auixof the line-of-sight

component of the velocity elds sampled at the tracer positions. This matrix is given in equation (36).
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2.2.7 The scalar potential of the velocity eld

Now, we consider the conditional probability of the Fourier modes,dhe opposite of the divergence of the velocity eld. After simpli cation,
the conditional posterior takes the following form:

v (z,Z)S Hf op 5 N (48)

PCIZD H ) ep S P (kD

Sampling from this probability consists in generating a Gaussian random eld sati§fgkiydut with some integrals constrained by redshift
observations. As the errors on constraints are Gaussian, we may use the algorithm proposed by Hoffman B&1ba892. For this, |
remind the reader of the algorithm. The constrained random el is built from a random part ~ and the correlated part:

(k)= "~ (K+ “(kc C cSc (49)
with ¢ theith constraint to applc  the mock observation of the same constraint in the pure random realizaiiqk), C = cc ,as
given in equation (35), is the covariance matrix of the constraints. By construction, in the in nite volume limit, we have

® @=@) k+gP ), (50)

with  the Dirac distribution. In the case of this work, the contramtare line-of-sight component of the velocity eld. For tfta tracer,
the constraint is

dk ik -
= f —_ F (k) (k+ + 51
c ey ke ()" (k) , (51)
wheref  is thepthcomponent of the sky direction of thgh tracer, (, respectively) is corresponding to the non-linear component

not captured by (the redshift measurement error, respectively). | added aAter(k) to remove the contribution of modes that are below
the scale of non-linearity. Effectively it is a Heaviside function on the nori of

1if|k| <k

Fo)= 0 otherwise (52)
The correlation between andc is
A . dk ik A A - if .q
(@c = f > € (k) (@ =S —e P (laD. (53)
2) k q

T/T/LSY/a1onre/seiuw/woo dnooiwapese//:sdny woly papeojumod

The equation above is computed globally using all tracers with the algorithm in Appendix C. If we did not use this algorithm, we would have
neededd(N x N ), with N the number of grid elements On the other hand, the Fourier—Taylor Wiener algorithm allows the same valueé
to be computed iI®(N ) + O(N ). Asindicated in Section 2.2.1, the covariance matrix is obtained by applying the Fourier—Taylor algorith@
of Appendix B from the Fast Fourier Transform (FFT) of the weighed power spectrum on a regular grid. | do not use the analytically exact
expression (as given in e.g. Gordl88 because it leads to neglecting nite grid effects and periodic boundary effects, which are dominarg
for the reasonable physical grid sizes which | consider (with typical a side length of 500 Mpc). We compute the mock obsenations 3
the unconstrained eld  in exactly the same way: we do the FFT on a grid and then do a Fourier—Taylor synthesis to obtain the velocity
eld values. Finally, we can add a random realization of the noise to the interpolated value to constAltvalues are recombined using
equation (49) to obtain the nal constrained Gaussian random eld.

2.2.8 Galaxy distances

220z 1snbny 62

The conditional posterior of the distances may be derived from the main posterior expression (17) as

PD |z, ,M, ,H, ) Lx (D) p d , (54)
with
pd)=$ ! exp $ L V@, Z@)STH  (dd)a)
2 + (1+2z) 20+ @+z))
% exp S 5Iog (d /10pc)) ' (55)

I note that the conditional posterior distribution of the distances of each tracers is sepatébliedapendent monodimensional conditional
posterior. This comes from the assumption that the noise on the redshift measurement is uncorrelated from tracer to tracer, and that all
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correlations between tracer is accounted for by the velocity eld and, possibly, the bias function. Selection function and clustering bias would
typically be retained in this expression. Both can be added multiplicativedy .t&or example it can b&m, , d) for the selection function

and (1+ b (df)) for the clustering bias as already stated for VELMOD class of models (Wilk&¢ Strauss & Willick1995. The problem

of sampling from this posterior reduces here to a sampling problemftomonodimensional posteriors. To achieve that, | use the classical
algorithm of computing the inverse of the cumulative distribution applied on a random realization of a uniform distribution bounded by
[0, 1]. The displacement eld is computed at the appropriate position using the Fourier—Taylor synthesis algorithm of Appendix B.

2.2.9 The distance prior parameters

As the selection function of the galaxies in distance catalogues is poorly known, we have introduced in Section 2.1 a exible selection function
that depends on three parametigssd , n}. The conditional likelihood of the distances is exactly equal to the prior (22) in this case. Using
Bayes identity and a uniform prior on the aforementioned parameters, the sampling of this parameters is achieved by another block sampling
step. The probability of one of the three parameters,e given the others is, using Bayes identity,

W)
[e]
P(p,...) (D |p,d ,n) 3
P(pld ,n,D ): = , (56) o
dpP(p,...) dpo (D [p,d ,n) 2
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whereP(p. . .) is the posterior probability of equation (17), with explicit dependency on the parameters of the(prigr All functions

simpli es except the explicit dependence linking the distances to the distance selection, despite the possible existence of a selection function
on galaxy properties (like the apparent/absolute magnitude or tHméividth for Tully—Fisher relation). Such a sampling step is achieved

using the algorithm of Appendix A. To ensure a proper decorrelation, we loop over this block a number of times (typically 10).

3 TESTS ON MOCK CATALOGUES

The method that | have described in Section 2 is relatively complex and involves two major component: the model of the peculiar velocity
eld as traced by the galaxies or the clusters of the galaxies and the algorithm itself to adjust the data to the model. This involves two separate
sets of tests. First, | will focus on test of the algorithm itself and the performance of the t on data that were produced to correspond exactly
to the model. This is the objective of the Section 3.1. Second, | will look into the capabilities and the limits of the model at reconstructing

the velocity eld and distances from noisy more realistic mock data sets, typically halo catalogueN-vody simulation, which is the g
objective of Section 3.2. =
2
g
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3.1 Gaussian random Peld based mock catalogues

In this Section, | present the generation and the results of the test of the code against idealized mock tracer catalogues. These catalogue
are generated in such a way that the statistics and properties of the tracers follow exactly the model presented in Section 2.1. However, they
are slightly unrealistic by removing aspects not captured by the model, such as non-linearities or correlations between velocity eld and
tracer positions. These aspects may lead to biases in the results. It is none the less an interesting exercise to evaluate the performance of th
algorithm.

| generate the mock catalogue of tracers, which should be galaxies, as follows.

(i) 1 generate a random realization of a ‘density eld’, with power spectrum given by linear theory linearly extrapolatedtasing the
expression of Eisenstein & HA998 for the power spectrum of density uctuations, without the wiggles. The power spectrum is truncated
atk = 0.1Mpc
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(ii) 1 pick 3000 randomly located tracers within a sphere of 200 Mpc, assuming that the tracers are homogeneous in luminosity distance
coordinates. The luminosity distance is then converted in comoving distance and cosmological redshift.

(iii) 1 compute the velocity eld at a resolution dfl = 512, and evaluate its value at the position of tracers using a trilinear interpolation.

(iv) 1 compute the line-of-sight component of the peculiar velocity and the distance modulus. The mock observables are then generated
taking a homogeneous noise of = 0.2, =20kms and =200kms .

| have chosen a ducial CDM cosmology with = 0.30, = 0.04, (z=0)=084H=80kms Mpc ,n = 1. is run
assuming the same cosmology, leaving free both the amplitude of the power spectrum, assuming that there are either two or one specie(s) c
tracers, the zero-point calibrati¢h and the parameters of the selection function. The grid used to compute the Fourier—Taylor algorithms
hasN = 64 elements per dimension, which is suf cient to capture the detalkls0oD.1 Mpc and ensure a correct fast interpolation using
the algorithm of Appendix B.

Before considering the whole analysis, | am showing in Higad 2 the result of reconstructing the velocity eld from an exactly
known cosmology, distance and small-scale non-linearities. | used a Gaussian noise with an amplitude of 20tbkmodel the small
scale non-linearities as indicated above. In Eifig. 2, respectively), | am showing the reconstruction of the line-of-sight component of theS
velocity eld (density eld, respectively). The gures were generated with 1055 Monte Carlo samples. I, Big top-left panel (top right, =1
respectively) shows the ensemble mean radial component (the standard deviation, respectively) of the velocity eld. The bottom-left panel
shows the S/N obtained by dividing the eld of the top left panel by the one shown in the top right panel. Finally, the bottom-right pane%s
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obtained by showing all the individual posterior distribution for the velocities. These posterior distribution are binned on a grid, and the total
intensity is the sum of the posterior intensities for each considered grid element. The amplitude of the distribution is coded in colour with
respect to the-axis, while the line-of-sight component of the velocity of the corresponding object as given by the simulation is shown on
they-axis. If the algorithm works correctly, all the distributions should overlap with the thick red diagonal, though not necessarily centred
as the distributions are correlated. The correlation actually removes the effective number of independent samples compared to the number
of elements that are plotted. The unbiased aspect of the method is exhibited by the plots of the normalized residu@/svhefegl have
represented the histograms of the quantity

_V()SV (x)

(x) '

The same histogram for a pure Gaussian distribution is represented with dashed green line. It can be immediately seen that the overall
distribution of residuals is close to Gaussian with unit variance. Additionally, there is no obviously strong shift in the mean.

The panels are similar in Fig.but this time for the density eld. We see that in this optimistic con guration the velocity eld is very well
reconstructed, on the other hand the density eld is already signi cantly noisy. These results are the benchmarks to which we will compdre
the performance of other reconstructions. g

The results for more complete tests are given in Bigg 5, 6 and7. The gures were generated with 6894 (3037, respectively) Monte
Carlo samples for the two types (one type, respectively) scenari@ stigpws the convergence rate of some metaparameters along the Markow>
chain (top-left panel for this mock catalogues). The convergends fisrtypically fast, decorrelating in a few iterations. That is the result of
the partially collapsed Gibbs sampler. The other shown parameters, related to the Gaussian mixture of Section 2.2.5, take substantiallysnore
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steps to decorrelate, of the order of a few hundreds. This is expected as they are tied to a particular realization of the velocity eld, contrary
to other metaparameters which are obtained through direct marginalization over the velocity eld. We can expect the convergence length to
increase when the number of tracer is low or the noise is high as the uncertainty over the velocity eld will increase and thus it takes more

steps to explore the parameter space. We will see how it is the case with the other mock catalogues in the next section.

Fig. 4 gives a synthetic view of the velocity eld component of the posterior distribution. The details of the panels have been given
previously for Figl. Comparing Figd—4 shows how much the relaxation of the assumption of xed cosmology, noise and distances degrades
the quality of the reconstructed velocities.

Fig. 5 gives a similar view as for the velocity eld, but this time for the density i.e. the divergence of the velocity eld. The view is the
same as the one in Fig, but this time we have all the parameters being sampled. This eld is expected to be much noisier as it is indeed the
case when looking at ensemble average quantities and S/N. In the centre, where S/N is the highest we are only at maxjwwiitedo8
peculiar velocities it was possible to go at higher S/N. The resulting comparison of the individual posterior distribution in the bottom-right
panel shows this high uncertainty. Compared to Bighere has been a strong loss of information on the density eld. It reaches a point
where the binned posterior in the bottom-right panel shows no constraint at all from data.

In Fig. 6, | show the individual distributions of the metaparameters of the chain, i.e. the effective Hubble céhstiaatmodel error
amplitude, the probability for each type of model error and the overall power spectrum normaliatleor H, A and the model error, a S
thick vertical red line shows the value used to generate the mock catalogue. | am also showing in shaded yellow the range of values comgatible
at 90 per cent with the data according to the model. As expected all distributions are compatible with the thick vertical line at their p%ak
positions, i.e. always well within the 90 per cent region of the distribution. In the case of the model error amplitude (upper-right panel),%zve
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are faced with two distributions overlapping with the ducial value. Finally, the posterior distribution shown in the bottom-left panel do not
indicate a strong imbalance between the different error model, which exactly corresponds to the signi cant overlap of the distributions in the
top right panel. The results of the distributions obtained assuming a single type are giveninAighe metadistributions are of course
narrower than for the test with two types, especially for the distribution of The width of the distribution foA is also visibly narrower.

The peculiar velocity eld, not represented here, is however mostly unaffected. In the test with two assumed types of tracers, the algorithm
separated the data in two pieces: one including more than 93 per cent of the tracers 50 per cent of the time, and the others. This separatio
results in a small number of objects having high-velocity dispersion, which both skew the P1 distribution towards low valuanaf allow

a the P2 distribution to venture to very high values of this same No obvious bias is visible in all the distributions. The autocorrelation of

the chain is shorter by a factor2. These tests indicate that the algorithm and the software works as expected on an idealistic test case.

3.2 Halo based mock catalogue

In this Section, | consider more realistic, but more complicated mock catalogue to which | apply the methodology developed in this art'@le.
Two mock catalogues are considered, both based on the haloes of a cosmological pure daM-buatyesimulation. This simulation have
been computed using the following cosmological parameters= 0.30, = 0.045, = 0.70,H=80kms Mpc , = 0.80.The
volume covered by the simulation is a cube with a side of500Mpc with 512 particles. From this simulation, haloes were extracted using
the software (Behroozi, Wechsler & Wu-2013. The minimum halo size have been kept to its default value of 10, checking that%
particles are effectively bound. The total number of haloes of the simulation is thus 238 520. The two catalogues are created from the Same
simulation but choosing different selection properties. The rst mock catalogue, nicknamed H3000, is generated by extracting randomly §JOO
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haloes from the rockstar catalogue at a distance less tham 208pc of the centre of the simulation box. The chosen distance modulus error ©

is = 0.2, typical for a Tully—Fisher relation. The second mock catalogue, nicknamed Hcomplex, is built from a more complex selectifn

function, derived from thé// L relation used in Lavaux et aRQ08, equation (7). The principal condition for acceptance in the catalogue is @

tohavel/(d ) 2.78x 10, with L in solar luminosities and the comoving distance in Mpc/h The selection is not supposed to be strictly g

realistic, but to mimic a realistic abundance for distance catalogue. This mock catalogue has 2000 tracers, with a distance modulus @rror
= 0.1, typical of higher quality distance indicator like Supernovae (SNe) or Tip of the Red Giant branch (TRGB).

For these mock catalogues, | restrained from tting the amplitude of the power-spe&tratthe same time as the other parameters. The
problem comes from the degeneracy betw@eziand the distribution of tracers of the velocity eld. In halo catalogues, these two quantities
are not independent as tracers are typically located in the peak of the density distribution. This tends to credit the velocity eld with more
power to try to homogenize the distribution of tracers. This problem arises when we are faced with data which needs a suf ciently precise
prior on the density of tracers. | have run a chain for which the selection is exactly known i.e. homogeneous in luminosity distance space, but
for which A is left free. The mean recovered value is 2.9.5 times higher that the value used to make initial conditions. Thus, | postpone
the resolution of this problem to future work. Here, | will limit myself to & to its ducial value and investigate the rest of the parameter
space.

The results are given in Figg 9 and 10 for the H3000 halo mock catalogue, and in Figsand 12 for the Hcomplex halo mock
catalogue. The length of the chain is 10 824 for H3000 and 3905 for Hcomplex. The convergence test is shov@r(togdHigght for H3000,
bottom middle for Hcomplex). The convergence of the parameters of the Gaussian mixture is quite slow for H3000 due to the substantial
uncertainty on the velocity eld potential. This triggers a large correlated exploration of distances and model error parameters. The chain
concerning H3000 has 10825 samples, whereas the one concerning Hcomplex has 1796 and is clearly converged. However, for Hcomplex,
this convergence is much faster, con rming the previous scenario. In that case, the tracer density is suf ciently high to largely reduce velocity
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eld uncertainties in the effective volume covered by the catalogue. That statement can actually be generalized. If the catalogues of traBer is
dense, then the velocity potential will be quite tightly constrained which does not leave much freedom for the auxiliary metaparameter'&ﬁke
, which in turn reduce possibilities for the reconstructed true distances.
The panels of the other gures are showing the same quantities as the ones4raRigs, with the exception of the bottom-right panel &
of Figs10and12 which shows the selection function of galaxies in the catalogue. In these same panels, | show the actual distribution ofthe
galaxies for H3000 (a simpk: law) and Hcomplex as a function of luminosity distance. | note that the selection function for H3000 has been
tted by VIRBIUS according to prescription. However, as there is a sharp cut at 200 Mpc in the mock catalogues it is not able to reproduce
this fairly. The parameter most affected by this discrepancy is in prineipM/e see that, within error bars, it does introduce signi cant bias.
On the other hand, the galaxy population of Hcomplex is fairly represented by the selection function ttzd by (Fig. 12), andH is
measured without any systematic effect.
The application of this Bayesian methodology on the two mock catalogues is satisfactory. All the posterior distributions are in agreement
compared to the velocities of the simulations and the metaparameters are in agreement with the input valué{ saruh the selection
function. The analysis also yields that the haloes can be classi ed into two main populations: the results on the measurement of
assuming three populations, is quite clear in particularly for the top right panel dfEighere is a population of haloes with a model error of
400kms and anotherat 100 kms . The probability assigned to each model is not clear, all models getting a shad8 per cent. Which
means a probability of 66 per cent for the low-velocity dispersion model an@B per cent for the high-velocity dispersion one. Itis possible to
run a meta-analysis for which the chain is run assuming different maximum number of populations. The likelihood of the data, marginalized
according to sampled parameters, given the population model can then be computed alongside the Bayes factor between the differen
models.
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