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ABSTRACT

I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from
observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself,
the algorithm reconstructs true distances, some cosmological parameters and specific non-
linearities in the velocity field. The algorithm takes care of selection effects, miscalibration
issues and can be easily extended to handle direct fitting of e.g. the inverse Tully–Fisher
relation. I first describe the algorithm in details alongside its performances. This algorithm
is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software)
software package. I then test it on different mock distance catalogues with a varying complexity
of observational issues. The model proved to give robust measurement of velocities for mock
catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands
galaxies. It holds the promises of giving a better handle on future large and deep distance
surveys for which individual errors on distance would impede velocity field inference.

Key words: methods: data analysis – methods: statistical – galaxies: statistics – large-scale
structure of Universe.

1 IN T RO D U C T I O N

Peculiar velocities are deviations of the apparent motion of tracers e.g. galaxies, from the Hubble flow. They are an essential tool to study
dynamics of the Local Universe and in particular to probe the underlying gravity field, which is currently assumed to be generated by a Dark
Matter density field. At low redshift i.e. z � 0.1−0.2, they are the only practical way of reconstructing the unbiased, true matter density
field. The first mention of galaxy peculiar velocities go back to Hubble (Hubble & Humason 1931). When large scale structures data have
been first acquired, peculiar velocities have quickly attracted a large attention (Aaronson et al. 1982, 1986; Lynden-Bell et al. 1988a), before
fading out due to a lack of large corpus of distance data and robust methods of analysis.

New distance surveys, from which peculiar velocities can be inferred, have emerged in the recent years like SFI++ (Masters et al. 2006;
Springob et al. 2007, 2009), 6dFv (Campbell et al. 2014), CosmicFlows-1 (Courtois et al. 2011), CosmicFlows-2 (Tully et al. 2013). More
surveys are coming online such as TAIPAN/WALLABY (Beutler et al. 2011; Duffy et al. 2012). These surveys revived peculiar velocities
as first class probes of cosmology by providing hundreds of thousands of distances. However, peculiar velocity analysis is notoriously error
prone, being sensitive to different bias and systematic effects e.g. homogeneous (Lynden-Bell et al. 1988a) and inhomogeneous (Dekel,
Bertschinger & Faber 1990) Malmquist bias, distance indicator calibration uncertainties (Willick 1994) or edge effects. Several attempts have
been made at reconstructing the density field directly from distance data. For example, one can note the POTENT method (Bertschinger
& Dekel 1989; Dekel et al. 1990, 1999), the Wiener filter approach (Zaroubi et al. 1995) or the Unbiased Minimum Variance algorithm
(Zaroubi 2002). Additionally, the procedure to derive the power spectrum of the velocity field is relatively complex and prone to the same
aforementioned systematics; though, there have been some early attempts at measuring it (Jaffe & Kaiser 1995; Kolatt & Dekel 1997; Zaroubi
et al. 1997; Macaulay et al. 2011, 2012). New methods have also been recently designed to measure more accurately the first moments of
cosmic flows from different aspects of distances and luminosities (e.g. Nusser & Davis 2011; Nusser, Branchini & Davis 2011, 2012; Feix,
Nusser & Branchini 2014).

A common framework capable of handling all these items at the same time and building a consistent three dimensional (3D) peculiar
velocity field is still missing. I am proposing to build such a framework from a full Bayesian joint analysis of the density field (bandwidth
restricted Fourier modes of the density field), the cosmological parameters (e.g. �m, the Hubble constant, the amplitude of scalar fluctuations),
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Bayesian 3D velocity field reconstruction with VIRBIUS 173

the observational parameters (e.g. selection function, Tully–Fisher relation) and the limitations of the model (e.g. amount of small scale non-
linearities). By incorporating all these issues in a single framework, this model holds the promise of reducing (maybe cancelling) all systematic
effects on the estimation of the 3D peculiar velocity field. The software has been named VIRBIUS (VelocIty Reconstruction using Bayesian
Inference Software) and will be publicly available later on the author webpage.1 Parts of the model will resemble VELMOD(Willick 1994;
Willick et al. 1997). For example, Willick (1994) modelled the relation between the true distance and the observables for distance indicators the
look like Tully–Fisher relations. Also, Willick et al. (1997) modelled the relation between redshift observations and Tully–Fisher observables
(i.e. magnitudes and H I linewidth). These elements are parts of VIRBIUS, but they are generalized and included in a wider framework. I note that
Johnson et al. (2014) have also pushed the effort of measuring accurately velocity field. In all the aforementioned work, however, a common
framework to handle all components self-consistently are not included. Also, the possibility of unseen measurement failure is not accounted
for. This will be another major addition (and complexity) to the model. Of course augmenting the model with limited data available comes
at a cost: e.g. the power spectrum must be parametrized in terms of a small number of cosmological parameters. Among them I will select a
few of particular interests: the overall amplitude of the powerspectrum, which is degenerate with the growth factor and the Hubble constant,
which governs the shape. All the other cosmological parameters are kept fixed in this work. I will introduce other parameters that describe
the data set itself (e.g. zero-point calibration, noise levels).

The structure of the paper is as follows. In Section 2, I describe both the adopted model and the algorithm that I have developed to explore
the parameter space given some distance galaxy catalogue. The model, in Section 2.1, includes description of cosmological expansion, distance
uncertainties, and a clean separation between the linear and the non-linear component of the velocity field. The model is fully Bayesian, and
priors can be adjusted easily to include more detailed description of selections effects. In Section 2.2, I describe in detail the algorithm that
is required to efficiently sample the posterior distribution of all the parameters that enter into the model, including the velocity field itself. In
Section 3, I present the results of the test of this algorithm on a variety of mock catalogues: an ideal, though slightly unrealistic, and a mock
catalogue generated assuming perfect homogeneity of tracers and Gaussian random fields statistics for velocity fields (Section 3.1), a more
realistic mock catalogue based on haloes of an N-body simulation either with a trivial or a more complex selection function (Section 3.2). In
Section 4, I conclude on the performance of the algorithms and the prospects for its use for existing and future distance surveys.

2 STAT I S T I C A L M E T H O D

In this Section, I explain the model that I am using to describe self-consistently the velocity field, the cosmology, the redshifts and the
distances of the tracers of the velocity field. In Section 2.1, I detail the model and the approximations that I have made. In Section 2.2, I
describe the algorithm used to sample the posterior distribution in the huge parameter space.

2.1 Model

2.1.1 The flow model

I propose to solve the general problem of reconstructing in an unbiased way the 3D peculiar velocity field and cosmological parameters from
a set of redshifts and distance modulus of tracers. I put Nd the number of tracers. I propose a self-consistent approach based on a probabilistic
modelling. For the low-redshift Universe, and a given tracer i, it is possible to write a linear relationship between the redshift zi, the distance
di, the pseudo-Hubble constant H̃ at redshift zero and the peculiar velocity v(r) as

zi = H̃di + vr
i + εz,i , (1)

with vr
i = v(di ûi)ûi the line of sight component of the peculiar velocity of the ith object, ûi the unit vector pointing in the direction

of the tracer, εz, i the redshift measurement error. This is the usual Hubble relation, though we have replaced H by H̃ to take into into
account the fact that the calibration of distance indicator may not be absolute. Additionally, we do not have access to a precise probe
of the distance. The equation (1) is only valid at extremely low redshift. The aim of this work is to have a self-consistent and accurate
reconstruction of velocity field for large and deeper distance survey. Of course, different cosmological distances appear, like the luminosity
and the comoving distances. From now on, we will use di as the comoving distance of an object i and dL

i its corresponding luminosity
distance. The exact relation combining cosmological and peculiar velocity, while they are non-relativistic, induced Doppler effect is the
following:

1 + zi = (1 + z̄i

(
dL

i

)) (
1 + vr

i

c

)
, (2)

with z̄i the cosmological redshift, which depends on the luminosity distance, vr
i the line-of-sight component of the velocity field, assumed

to be small compared to the speed of light c and in the rest frame of large scale structures. The relation, for a flat universe, is explicitly the
following (e.g. Weinberg 1972)

d̄L(z̄) = c(1 + z̄)

H̃

∫ z̄

z=0
dz

1

E(z)
, (3)

1 http://www.iap.fr/users/lavaux/
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174 G. Lavaux

and

E(z) = (�M(1 + z)3 + ��

)1/2
. (4)

The comoving distance d̄(dL, z̄) is related to the luminosity distance dL according to

d̄(dL, z̄) = d̄L

1 + z̄
. (5)

The equation (3) is numerically invertible which, assuming dL is known, allows for the derivation of the cosmological redshift. In the text, we
will introduce the observational counterpart of the luminosity distance, called distance modulus μ, whose definition is

μ = 5 log10

(
d̄L

10 pc

)
. (6)

Finally, the relation (2) can be rewritten as followed:

vr
i = c

zi − z̄i

(
d̄L

i

)
1 + z̄i

(
dL

i

) . (7)

Davis & Scrimgeour (2014) recently reminded the community that using the linear approximation instead of equation (7) leads to substantial
error even at relatively low redshift (z � 0.05). So, it is fundamental to include the complete treatment in my analysis so that the reconstructed
velocity field are unbiased for future peculiar velocity surveys. I am assuming that the measured redshift is without error in the above equation.
Of course, that is not the case, and the redshift error will be treated in the next section.

Though this relation between the vr
i and the observed redshift is more complex than equation (1), it does not introduce any new systematic

errors. The only problem that is introduced is the proper tracking of the cosmological redshift z̄i and the comoving distance di when the
luminosity distance dL

i changes. In all this work, all algorithms make use of the equation (7) instead of the linear relation (1). In the above,
I am considering that the observation of luminosity distance is perfect. That is not the case in practice as a number of effects are changing
the apparent luminosity such as gravitational lensing, Integrated Sachs–Wolfe effect and gravitational redshift and peculiar velocities (Sasaki
1987; Pyne & Birkinshaw 2004; Bonvin, Durrer & Gasparini 2006). For the moment, we will neglect all these effects, keeping in mind that in
data they will eventually have to be inserted into the likelihood analysis of luminosity distances. The last of these effects could be important to
ensure consistent treatment of peculiar velocities as highlighted by Sasaki (1987), Hui & Greene (2006). To summarize, the distance modulus
itself is affected by peculiar velocities at first order because the observed flux is itself sensitive to beaming and Doppler effects. The observed
luminosity distance is in fact (Hui & Greene 2006):

dL
o = d̄L

LSS

(
1 + 1

c
(2ve − vo).n̂

)
(8)

with dL
o the luminosity distance determined in the observer rest frame i.e. from observed flux, d̄L

LSS the actual luminosity distance of the
object in an homogeneous universe with a FLRW metric, ve (vo, respectively) the peculiar velocity of the emitter (observer, respectively) with
respect to this homogeneous background and c the speed of light in vacuum. This relation is exact at first order. In this work, we will neglect
the impact of this term, while focusing on the peculiar velocity present in the Doppler effect of the observed spectrum (equation 2). I note
that the introduction of this correction would not change the algorithm fundamentally but introduce additional complexity in the formulation
of the likelihood of the distance modulus (as detailed in equation 16). I also note that most peculiar velocity analysis (except supernovae)
neglect the full impact of this term (Johnson et al. 2014).

2.1.2 The million parameter likelihood analysis

Historically, direct extrapolation of the velocity field from this relation has lead to a number of biases, like the inhomogeneous and
homogeneous Malmquist biases (Dekel et al. 1990). They originate from the reuse of an imprecise distance indicator for both estimating
the line of sight peculiar velocity vr

i = v.ûi and using it as an estimate of the true distance qhdi, with qh = H̃ /H . We are however not
doomed to be limited by this problem. I propose to consider the distance itself as a random variable to generate the velocity field. This is
not an entirely new proposal. In Willick et al. (1997), the VELMOD technique was already trying to improve the distance using a likelihood
approach. They used a peculiar velocity field predicted using linear theory of gravitational instabilities and galaxy redshift surveys as a
prior for the velocity field. The idea of generating random velocity fields in agreement with observation is not new either, it originates
back to the constrained realization of Gaussian random fields in cosmological context (Hoffman & Ribak 1991, 1992). There was no
published work that has attempted to blend both constrained realizations, distance sampling and parameter estimation. We are not bound
to be limited to proceed sequentially for the analysis of peculiar velocity field. Notably, it is in principle possible to adjust both the power
spectrum and the field itself, as it is done for the data of the Cosmic Microwave Background (Wandelt, Larson & Lakshminarayanan
2004).
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Ideally, we would like to have a representation of the joint probability of the velocity field, the distances, the Hubble constant and
possibly cosmological parameters p and an additional noise parameter σ NL, which will characterize the departure from linear theory of the
actual velocity field. So, in practice we will fit the following model:

1 + zi = (1 + z̄i

(
dL

i

)) (
1 + vlinear(qhdi ûi).ûi + εNL,i

c

)
+ εz,i , (9)

= (1 + z̄i

(
dL

i

))(
1 + Hf � linear

(
qhdi ûi

)
.ûi + εNL,i

c

)
+ εz,i , (10)

with

〈εNL,iεNL,j 〉 = σ 2
NL,type(i)δi,j . (11)

di the comoving distance from the observer of the tracer i (actually a function of dL
i in this work) and H the Hubble constant at redshift z

= 0. Each tracer is given an assignment type(i). I note that di is the comoving coordinates scaled with H̃ . So, it is not the true distance but
the distance in the convention of the calibration of the distance indicator. If the distance ladder is correctly built then qh = 1, however, this
is not in general guaranteed. In equation (10), we have introduced the displacement field �, which is expressed in comoving coordinates. If
we assume that no vorticity is created on large scales, it can be simply described through its divergence, which I will call 	 to follow earlier
conventions on velocity fields. In the Lagrangian linear regime, the displacement field is related to the velocity field by a linear relation, which
gives the second part of equation (10). Thus, we have the following relations:

∇r .� = 	(r), (12)

vlinear(r) = f H�linear(r). (13)

Physically, 	 is related to the density fluctuations at present time in the Universe owing to continuity equation (e.g Peebles 1980). Additionally,
I will call 	̂ = {	̂(kq )} the discrete Fourier basis which represent the full continuous field 	. Thus, their formal relationship is

	(r) = 1

L3

∑
q

	̂(kq )eikq .r , (14)

with

kq = 2π

L
q (15)

and q ∈ {0, 1, . . . , N − 1}3, N the resolution of the reconstructed field. These amplitudes will serve as free parameters of the field in the
rest of the text. The splitting of the velocity into the scaling and displacement components allows us to make a shortcut later on when
adjusting the Hubble constant to the data. The most simple model (equation 11) has a single type, but it is possible to have several.
This approach can be required if we try to model a set of tracers which could be split into subpopulation such as clustered and non-
clustered (i.e. elliptical versus spiral galaxies). It presents the other advantage of isolating potential catastrophic errors in the distance or
spectroscopic measurement of a tracer. For example, the assignment of a supernova to a galaxy is sometimes dubious as its observed
spectrum can be heavily blue shifted by the explosion processes. In other cases, the adjusted luminosity distance can be a strong outlier
in statistical empirical relation such as the Tully–Fisher relation. The introduction of several types of tracers (including outliers) is related
to the problem of the Gaussian mixture (Pearson 1894; Dempster, Laird & Rubin 1977). I evaluate the velocity field at the real distance
using the scaling factor qh = H̃ /H . vlinear(r) has the same statistical properties as the velocity field derived from linear perturbation theory
at z = 0.

Finally, the data are given by duet for each galaxy i: the distance modulus μi and the observed redshift zi. I will assume that the noise on
the observed distance modulus and the redshift measurement are both Gaussian, with standard deviations σμ, i and σ z, i, respectively. Because
the two data are acquired independently the likelihood, i.e. the probability of observing the data {(μi, zi)}, given the model is immediately
given by

L = P
(
{μi, zi} |{dL

i

}
, {σz,i , σμ,i}, {	̂(kq )},H, H̃ , 
NL,T ,

{
p

type
t

})
∝

Nd∏
i=1

(
σ 2

z,i(1 + z̄i)
−2 + σ 2

NL,type(i)

)−1/2

×exp

⎧⎨⎩−1

2

Nd∑
i=1

[
vr

i (zi, di) − Hf �r,i(qh)
]2[(

σ 2
z,i(1 + z̄i(di)

)−2 + σ 2
NL,type(i)

] − (μi − 5 log10(dL
i /10pc))2

σ 2
μ,i

⎫⎬⎭ , (16)

with �r,i(qh) = �linear(qhdi ûi).ûi , 
NL = {σ NL, q}, T = {type(q)} and Nd the number of provided tracers (i.e. the size
of set {σμ, i}). Using Bayes identity, we may now express the posterior probability of the parameters, given the

MNRAS 457, 172–197 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/457/1/172/988703 by guest on 29 August 2022



176 G. Lavaux

data:

P (DL = {dL
i

}
, 	̂ = {	̂(kq )}, H̃ , H, AS, {σNL,t },T |

M = {μi},Z = {zi}, 
z = {σz,i}, 
μ = {σμ,i})

= L × π (DL)π (	̂)π (
NL)π (H )π ({type(i)})π (AS)∑
T ′
∫

dHd	̂dDLd
NL L × π (DL)π (T ′)π (	̂)π ({σNL,t })π (H )
, (17)

where T ′ runs over all possible type combinations in the denominator, t is the index of one of the type. The functions π are priors on the
specified parameters. I assume that the statistics of 	̂ is determined by the power spectrum P(k) of primordial density fluctuations scaled to
redshift zero. This power spectrum may itself depends on some cosmological parameters. I have chosen to incorporate the Hubble constant H
and the amplitude of the power spectrum AS as free parameters but to keep the other parameters at their best-fitting value from other probes,
as e.g. WMAP9 (Hinshaw et al. 2012) or Planck (Planck Collaboration XVI 2013). AS is defined as the pre-factor in the unnormalized power
spectrum:

P		(k) = AS

(
k

1 hMpc−1

)ns

T 2(k), (18)

with T(k) the transfer function, normalized to one for k → 0. These free parameters will allow us to run a self-consistent check of the
cosmology. We thus have

π (	̂|H,AS) =
∏

q

(2πP		(kq ; H,AS))−1/2exp

(
− |	̂(kq)|2

2P		(kq ; H,AS)

)
. (19)

The natural basis of representation of 	̂ is thus the Fourier basis. Because � is assumed to be without vorticity, it can be solved with the
same Green function as the gravity. We can introduce an auxiliary scalar field � such that � = ∇x� and � must satisfy the Poisson equation
� = 	. Thus, in Fourier space we obtain

�(r) = −
∑

q

1

k2
q

eikq .r	̂(kq) (20)

The full expression of the displacement � in terms of 	̂ is thus after taking the gradient of �:

�(r) =
∑

q

ikq

k2
q

eikq .r	̂(kq) (21)

2.1.3 Some notes on priors

The prior on the distance translates our preconception of the localization of the tracers in the volume into a mathematical expression. I chose to
consider two possibilities. The first kind of prior that I consider consists in fitting an empirical distribution fg(d) of galaxies assuming isotropy
and uniformity in the choice of the tracers. The distribution is self-consistently estimated from the ensemble of reconstructed distances, and
thus in unit of Mpc. The empirical distribution is given by

πisotropy(DL|p, dcut, n) ∝ Dpexp

(
−
(

D

dcut

)n)
, (22)

which is trivially combined in the total distance prior

πisotropy(DL|p, dcut, n) ∝
Nd∏
i=1

fg

(
dL

i ; p, dcut, n
)
. (23)

Note that the use of this prior expands the parameter space to include {p, dcut, n}, and we use the luminosity distance of the tracers.
For some mock catalogue, I will consider a second choice i.e. that tracers are homogeneously distributed in a given determined by

luminosity distance. While this choice is questionable as the tracers are more expected to be homogeneously distributed in comoving volume,
this choice simplifies greatly the tests. It also does not remove any value to the VIRBIUS model as in any practical case the first prior will be
used, which automatically absorb differences between luminosity distances and comoving distances in the parametrization. Thus, the prior
takes the form:

πhomogeneous(DL) ∝
Nd∏
i=1

(
dL

i

)2
. (24)

Finally, for the very Local Universe, the comoving and luminosity distances are equal; thus, this prior correspond to a classical problem.
In particular, this prior is related to the ‘homogeneous Malmquist bias’ correction (Lynden-Bell et al. 1988b; Strauss & Willick 1995),
which leaves the inhomogeneous part not modelled. Strauss & Willick (1995) indicates that the correction introduced by the inhomogeneous
component is subdominant in their simulation. Of course, this statement depends on the statistical distribution of the tracers themselves, as
elliptical galaxies will be located more in the centre of the density peaks. We will put the homogeneous approximation of the prior to the test
in Section 3.
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Algorithm 1 Blocked sampling algorithm
1: procedure GENERATEMARKOVCHAINELEMENT(s)
2: for j = 0 to NS do
3: si,j � P (s ,j |s̄i,j )
4: end for
5: end procedure
6:

7: procedure GENERATEMARKOVCHAIN

8: s ← 0
9: loop

10: GENERATEMARKOVCHAINELEMENT(s)
11: write state s in a file
12: end loop
13: end procedure

Each tracer i is given a type type(i). The prior probability of this typing is given by a finite set of values:

π (T |P) =
Nd∏
i=1

p
type
type(i), (25)

where P is the ensemble of possible probabilities {ptype
j } with j going over the available types, and type(i) maps the ith galaxy to the jth type.

Finally, I assume a uniform prior on the Hubble constant H, the effective Hubble constant H̃ and on the variances σ 2
NL,q . I acknowledge

that the uniform prior on H̃ is not equivalent to a uniform prior on the zero-point calibration of the distance indicator, which are often linearly
derived from magnitudes. Assuming that a uniform prior on the magnitude of the zero-point would yield a prior π(H̃ ) ∝ 1/H̃ , which is
stricter than a pure uniform prior on H̃ .

In the above model, I have not treated the problem of selection effects. There could be some concern that the selection function
of catalogues is not modelled here. Indeed, according to Willick (1994), Strauss & Willick (1995), depending on the choice of the used
distance indicator (e.g. forward Tully–Fisher versus inverse Tully–Fisher), some systematic bias could be introduced in the velocity/distance
reconstruction. I will argue in the following section that they have nearly no effect on the algorithm except in the determination of distances.

2.2 Sampling algorithms

I use the blocked Gibbs sampling method (Geman & Geman 1984; Liu, Wong & Kong 1994; Wandelt et al. 2004) to solve for the problem of
having an unbiased estimate of the velocity field, including proper error bars on all parameters of the adopted model. This sampling technique
is related to Markov Chains such as the Metropolis–Hasting algorithm (Metropolis & Ulam 1949; Metropolis et al. 1953; Hastings 1970),
but in this case we always accept the new proposed move. Blocked Gibbs sampling is converging efficiently in two cases: cosmic variance
limited problems and high signal-to-noise (S/N) ratio regimes. Unfortunately, it has potentially long convergence when model parameters are
correlated and/or the model has to face intermediate S/N ratio regimes. Gibbs sampling has the advantage of splitting a complicated posterior
into pieces that are easier to compute. I note that we have a Markov chain whose state Mi is described by the vector2

Mi =
(
Hi ; H̃i ; AS,i ; 
NL,i ; 	̂i ;DL

i ;Pi ;Ti ; dcut,i ; pi, ni

)
, (26)

=
(
si,j

)
(27)

with 	̂ the Fourier modes of the velocity field, sampled on a finite grid of modes kq , Ti the typing of tracers (noted {type(q)} above) and Pi

the probability of each type. I remind the reader that n, p and dcut are the parameters of the model for the selection function given in equation
(22). I note NS the number of variables in Mi . The second equation (equation 27) implicitly defines the ordering of the parameters in the
state Mi . I will use the following notation to indicate that I will condition on everything except the indicated variable si, j:

s̄i,j = (si,0, . . . , si,j−1, si−1,j+1, . . . , si−1,NS

)
. (28)

However, if I have analytically marginalized according to the velocity potential 	̂ then I note

˜̄si,j = s̄i,j\(	̂i) (29)

In general, the algorithm will produce a new chain state using the Algorithm 1, with s ,j indicating that we do not consider the specific value
of the parameter sj but the general posterior of this parameter.

2 The last three parameters are only involved for the more detailed selection function.
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Algorithm 2 Partially collapsed Gibbs sampling algorithm in VIRBIUS.
1: procedure GENERATEPARTIALLYCOLLAPSEDMARKOVCHAINELEMENT(s)
2: for j = 0 to N0

S do

3: si,j � Pc(s0
,j |̃s̄

0
i,j , ˜̄s1

i,j )
4: end for
5: Generate a constrained realization 	̂i

6: for j = 0 to N1
S do

7: si,j � P (s1
,j |s̄0

i,j , 	̂i , s̄
1
i,j )

8: end for
9: end procedure

Table 1. Dictionary for the notation of the parameters used in this work and explicit parameters on to which the
conditional probability explicitly depends.

Parameter Parameter name s ,j Explicit dependency

Physical Hubble constant H DL, H̃ , 
NL, AS

Distance zero-point calibration H̃ DL, H, 
NL

Non-linear/spurious error model 
NL 	̂,P, AS

Amplitude of scalar fluctuations AS DL, H, H̃ , 
NL

Velocity field scalar mode 	̂ DL, 
NL,H, H̃ , AS

Luminosity distances DL 	̂, H̃ ,H

Type probability P T
Type T DL,P, 
NL

Distance prior effective distance dcut DL

Distance prior slope parameter p DL

The above algorithm corresponds to the canonical Gibbs-Sampling algorithm. However, some parameters are strongly correlated to 	̂,
as e.g. H̃ . To improve the convergence, I will use the partially collapsed Gibbs Sampler algorithm (van Dyk & Park 2008). In the context
of this work, it is possible to analytically marginalize according to 	̂ when s ,j is H, H̃ , σ NL, q and AS. This adds complexity to each of the
conditional posterior but it is still numerically tractable because the concerned posteriors are monodimensional. Defining:

M0
i =
(
Hi ; H̃i ; AS,i ; 
NL,i

)
= (s0

i,j

)
, and (30)

M1
i = (DL

i ;Pi ;Ti ; dcut,i ; pi, ni

) = (s1
i,j

)
, (31)

the new algorithm is given in Algorithm 2 in which we used Nq
s to specify the number of elements in Mq

i . The probability Pc is obtained
by analytically marginalizing the conditional posterior P (s ,j , 	̂|̃s̄i,j ) according to 	̂. Each of the used conditional posterior can be deduced
from the main posterior (17). I will now detail them one by one. I give in Table 1 the parameters on to which each conditional probability
function depends explicitly. The last element of the sampling chain corresponds to the sampling of the parameters of the distance selection
prior, which in the program is done slightly separately and generates the three parameters of the prior in a single call.

Before detailing each of the algorithm required to sample the parameters, I note that this approach allows us for alleviating potential
systematic biases arising from selection. The formalism that I gave in the previous section can be transformed to allow for a more complete
fitting procedure that includes the distance indicator itself. The incorporation of the effects of selection in the distance relation fitting procedure
consists then in simply multiplying the likelihood by the selection function S(m, η, d) in the notations of Strauss & Willick (1995), m the
apparent magnitude, η the luminosity linewidth and d the distance. As the algorithm uses conditional posteriors to explore the parameter
space, this selection function will disappear from all expressions except the one that concerns the distance. If the selection is separable
between (m, η) and d, the use of the forward Tully–Fisher algorithm would even not be sensitive to any details of the selection in (m, η). Of
course, these assumptions are relatively strict and it may be that the parameter space is more entangled, e.g. between m and d, which would
not allow this simplification. This remark is related to the distance indicator based on Tully–Fisher, though other indicators could benefit
albeit on a different set of variables for the selection function. The entire algorithm presented in this paper is nevertheless completely general.

I now review each of the conditional posterior one by one to derive their expression.
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Bayesian 3D velocity field reconstruction with VIRBIUS 179

2.2.1 The Hubble constant H

The conditional posterior of the Hubble constant may be derived from the main posterior expression (17). After marginalization according to
	̂, it gives:3

P (H |DL,Z, 
z, H̃ , AS, 
NL,T ) ∝ |2π[Cw(H )]|−1exp

⎛⎝−1

2

Nd∑
i,j=1

vr
i v

r
j [Cw(H )]−1

i,j

⎞⎠ (32)

with vr
i as given by equation (7), the residual velocity once the apparent Hubble flow is subtracted. We have also used the covariance matrix

Cw
i,j , which, following the model of equation (10), is defined as

[Cw]i,j = 〈vr
i v

r
j

〉
(33)

= 〈ε2
i,NL

〉 + 〈ε2
i,z

〉 +
3∑

a,b=1

û(i)
a û

(j )
b

〈
vlinear,a(diq

hû(i))vlinear,b(djq
hû(j ))

〉
(34)

=
(
σ 2

NL,type(i) + σ 2
z,i(1 + z̄i)

−2
)

δi,j + Cv,r
i,j , (35)

where û(i)
a refers to the ath component of the unit vector pointing in the direction of the ith galaxy,

Cv,r
i,j = 〈vr,ivr,j 〉 =

3∑
μ,ν=1

û(i)
μ û(j )

ν

[
Cv

μ,ν

]
i,j

, (36)

qh = H̃ /H , and[
Cv

μ,ν

]
,i,j

= (f H )2
∫

d3k
(2π)3

kμkν

|k|4 eiqhk.(di û(i)−dj û(j ))P		(|k|) (37)

is the covariance matrix of the large scale part of the velocity field. The covariance matrix Cv
μ,ν is derived from the prior on 	̂ given in

equation (19). In practice, the matrix Cv is computed using the Fourier–Taylor algorithm of Appendix B. The conditional probability given
in equation (32) is mixing the need of small residual and correlated fluctuations through cosmic flows. It may be highly non-Gaussian and
not necessarily with a single maximum. It is however a one-dimensional posterior, which makes it possible to tabulate it. I have used the
algorithm of Appendix A to generate a random sample from this density distribution.

2.2.2 The effective Hubble constant H̃

I have separated the Hubble constant presently linked to autocorrelations of the velocity field from the one corresponding to the redshift–
distance relation. In Section 2.2.1, we have obtained the (complicated) posterior of the H. The conditional posterior of H̃ , again marginalized
according 	̂ takes the same form as (32), except that H̃ is left free and H is kept constant. As H̃ is involved in more non-linear relations due
to cosmological redshift effects, the conditional posterior is non-Gaussian in several aspects. The full expression of this probability density
is

P (H̃ |DL,Z, 
z,H,AS, 
NL,T ) ∝ |2π[Cw(H̃ )]|−1exp

⎛⎝−1

2

Nd∑
i,j=1

vr
i (H̃ )vr

j (H̃ )[Cw(H̃ )]−1
i,j

⎞⎠ , (38)

with Cw defined as in the previous section.

2.2.3 The tracer types

The model includes some freedom on the type of non-linearity (modelled by the extra noise σ NL, k as determined in Section 2.2.5) that affects
each tracer. The model that I have adopted is the Gaussian mixture where each type is given an unconditional probability and the adopted
extra noise depends on the type. The typing mechanism is represented by the projection function type(k). In the Gibbs sampling framework
we can assume that we know the value of {σ NL, a} and infer statistically the unconditional probability of the type type(k). The probability
the object k has a type type(k) equal to q is thus proportional to the probability of the type multiplied by the probability that the error term is
likely according to the numbers derived in Section 2.2.5. Mathematically, the likelihood (equivalently the probability) that the set of tracers
{k} has some residuals {εk} given the type projector T and the probabilities of typing P is

P ({εk}|T ,P) ∝
Nt∏

k=1

p
type
type(k)

1√
σ 2

NL,type(k) + σ 2
z,k(1 + z̄k)−2

exp

(
− ε2

k

2
(
σ 2

NL,type(k) + σ 2
z,k(1 + z̄k)−2

)) (39)

3 I am not explicitly giving the dependency of all the terms in this expression, which would be too notation heavy. I am keeping all dependencies implicit. For
example, the covariance matrix [Cw] actually depends on H, H̃ , σNL, AS and all distances.
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180 G. Lavaux

with εa = vr
a(za, d

L
a ) − Hf �r

a (qh). Using Bayes identity, we can derive the conditional probability of the type mapper T given the residuals
{εk} and the type probability P:

P (T = T r |{εk},P) = P ({εk}|T r ,P)π(T r )∑
T ′ P ({εk}|T ′,P)π(T ′)

=
Nt∏

k=1

P
(
type(k) = q|
NL, ptype

q , εk

)
. (40)

with, for a uniform prior on the type:

P

(
type(k) = q|
NL,

{
p

type
q ′
}

{q ′}
, εk

)
=

ptype
q

(
σ 2

NL,q + σ 2
z,k(1 + z̄)−2

)−1/2
exp

(
− ε2

k

2(σ 2
NL,q+σ 2

z,k (1+z̄k )−2)

)
∑

q ′ p
type
q ′
(
σ 2

NL,q ′ + σ 2
z,k(1 + z̄)−2

)−1/2
exp

(
− ε2

k

2(σ 2
NL,q′ +σ 2

z,k (1+z̄k )−2)

) . (41)

To sample the adequate type for the tracer k, a brute force approach is largely sufficient: for each tracer we compute the Nt probabilities
given by equation (41), generate a random number r ∈ [0, 1[ and choose the type b that satisfies

b = max

⎧⎨⎩c

∣∣∣∣∣∣
c∑

q=1

P

(
type(k) = q|
NL,

{
p

type
q ′
}

{q ′}
, εk

)
≤ r

⎫⎬⎭ . (42)

This type b is then assigned to the tracer a for the state i of the Markov Chain.

2.2.4 The tracer probability

For this step, we assume that the type of each tracer is known and we want to infer the probability of unconditionally typing a particle to the
type q. This can be readily derived from equation (39) using Bayes identity:

P (P|T ) =
∏N t

q=1 p
|Tq |
q∫

P ′
∏N t

q=1 p′|Tq |
q dP ′

, (43)

with P ′ the set of all possible probabilities such that

N t∑
q=1

pq = 1, (44)

0 < pq < 1 for all 1 ≤ q ≤ N t. (45)

with Tq = {k|type(k) = q}, and |Tq| the number of elements in Tq. This probability density is a Dirichlet distribution. I am using the function
gsl_ran_dirichlet of the GNU Scientific Library (GSL) to generate samples of such a distribution, conditioned on the number of
tracers |Tq| in each type q.

2.2.5 Model error σ NL, k

We consider here the amount of extra noise σ NL that is not captured by the part of the model that uses linear perturbation theory to derive the
velocity field. The conditional posterior distribution, as derived from the main likelihood (17), is

P
(
σ 2

NL,k|	̂, H̃ , H,DL,Z, 
z

)
∝

∏
i/type(i)=k

(
σ 2

z,i(1 + z̄i)
−2 + σ 2

NL,k

)−1/2
exp

(
− ε2

i

2
(
σ 2

z,i(1 + z̄i)−2 + σ 2
NL,k

)) . (46)

The posterior is written in terms of σ 2
NL,k , as I have indicated that I am taking a uniform prior on σ 2

NL,k and not σ NL, k (Section 2.1). This is
again a one-dimensional distribution and I use the algorithm of Appendix A.

2.2.6 Power normalization AS

The normalization of the power spectrum of 	 is left free in the model. This allows to account for the possibility of a different growth
rate of perturbations or a different amplitude of scalar perturbations of our Local Universe. Again, we are faced with a mono-dimensional
conditional posterior distribution. The problem shares a lot of similarities with Section 2.2.1. We change parameter and write AS = αAS, i − 1.
The conditional posterior, marginalized according to 	̂ becomes

P (α|DL,Z, 
z, H̃ , H, σNL) ∝ |αCv,r + NNL|−1/2exp

⎛⎝−1

2

Nd∑
i,j=1

vr
i (zi, z̄i)[αCv,r + NNL]−1

i,j v
r
j (zj , z̄j )

⎞⎠ . (47)

with [NNL]i,j = (σ 2
NL,type(i) + σ 2

z,i(1 + z̄i)−2)δi,j . In the above equation, we have reused the covariance matrix Cv,r of the line-of-sight
component of the velocity fields sampled at the tracer positions. This matrix is given in equation (36).
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Bayesian 3D velocity field reconstruction with VIRBIUS 181

2.2.7 The scalar potential of the velocity field

Now, we consider the conditional probability of the Fourier modes of 	̂, the opposite of the divergence of the velocity field. After simplification,
the conditional posterior takes the following form:

P (	̂|Z,DL,H,
NL) ∝ exp

(
−

Nd∑
i=1

(
vr

i (zi, z̄i) − Hf �r,i

)2

2
(
σ 2

z,i(1 + z̄i)−2 + σ 2
NL,type(i)

)) exp

⎛⎝−
Nq∑
q=1

|	̂(kq )|2
2P		(|kq |)

⎞⎠ . (48)

Sampling from this probability consists in generating a Gaussian random field satisfying P(k), but with some integrals constrained by redshift
observations. As the errors on constraints are Gaussian, we may use the algorithm proposed by Hoffman & Ribak (1991, 1992). For this, I
remind the reader of the algorithm. The constrained random field 	̂CR is built from a random part 	̂RR and the correlated part:

	̂CR(k) = 	̂RR(k) + 〈	̂(k)ci〉Cw,−1
ij

(
ci − c̃RR

i

)
, (49)

with ci the ith constraint to apply, c̃RR
i the mock observation of the same constraint in the pure random realization 	̂RR(k), Cw

ij = 〈cicj 〉, as
given in equation (35), is the covariance matrix of the constraints. By construction, in the infinite volume limit, we have

〈	̂RR(k)	̂RR(q)〉 = (2π)3δD(k + q)P		(k), (50)

with δD the Dirac distribution. In the case of this work, the contraints cj are line-of-sight component of the velocity field. For the jth tracer,
the constraint cj is

cj =
3∑

μ=1

r̂j,μ

∫
d3k

(2π)3

ikμ

k2
eidj k.r̂j FNL(k)	̂(k) + εj,NL + εj,z, (51)

where r̂j ,μ is the μthcomponent of r̂j the sky direction of the jth tracer, εj, NL (εj, z, respectively) is corresponding to the non-linear component
not captured by 	̂ (the redshift measurement error, respectively). I added a filter FNL(k) to remove the contribution of modes that are below
the scale of non-linearity. Effectively it is a Heaviside function on the norm of k:

FNL(k) =
{

1 if|k| < kNL,

0 otherwise.
(52)

The correlation between 	̂ and cj is

〈	̂(q)cj 〉 =
3∑

μ=1

r̂j ,μ

∫
d3k

(2π)3

ikμ

k2
eidj k.r̂j 〈	̂(k)	̂(q)〉 = − i r̂j .q

q2
e−idj q.r̂j P		(|q|). (53)

The equation above is computed globally using all tracers with the algorithm in Appendix C. If we did not use this algorithm, we would have
needed O(Nd × Ng), with Ng the number of grid elements q. On the other hand, the Fourier–Taylor Wiener algorithm allows the same value
to be computed in O(Nd) + O(Ng). As indicated in Section 2.2.1, the covariance matrix is obtained by applying the Fourier–Taylor algorithm
of Appendix B from the Fast Fourier Transform (FFT) of the weighed power spectrum on a regular grid. I do not use the analytically exact
expression (as given in e.g. Gorski 1988) because it leads to neglecting finite grid effects and periodic boundary effects, which are dominant
for the reasonable physical grid sizes which I consider (with typical a side length of 500 Mpc). We compute the mock observations c̃j on
the unconstrained field 	̂RR in exactly the same way: we do the FFT on a grid and then do a Fourier–Taylor synthesis to obtain the velocity
field values. Finally, we can add a random realization of the noise to the interpolated value to construct c̃j . All values are recombined using
equation (49) to obtain the final constrained Gaussian random field.

2.2.8 Galaxy distances

The conditional posterior of the distances may be derived from the main posterior expression (17) as

P (DL|Z, 
z,M, 
μ,H, σNL) ∝ L × π (DL) ∝
Nd∏
i=1

pd
i

(
dL

i

)
, (54)

with

pd
i (dL) = 1√

2π
(
σ 2

NL + σ 2
z,i(1 + z̄i)−2

) exp

(
− 1

2(σ 2
NL + σ 2

z,i(1 + z̄i)−2)

(
vr

i (zi, z̄i(d
L)) − f H�r (d(dL)ûi)

)2
)

× exp

(
(μi − 5 log10(dL/10pc))2

2σ 2
μ,i

)
. (55)

I note that the conditional posterior distribution of the distances of each tracers is separable in Nd independent monodimensional conditional
posterior. This comes from the assumption that the noise on the redshift measurement is uncorrelated from tracer to tracer, and that all
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correlations between tracer is accounted for by the velocity field and, possibly, the bias function. Selection function and clustering bias would
typically be retained in this expression. Both can be added multiplicatively to pd

i . For example it can be S(mi, ηi, d) for the selection function
and (1 + bδ(dr̂i)) for the clustering bias as already stated for VELMOD class of models (Willick 1994; Strauss & Willick 1995). The problem
of sampling from this posterior reduces here to a sampling problem from Nd monodimensional posteriors. To achieve that, I use the classical
algorithm of computing the inverse of the cumulative distribution applied on a random realization of a uniform distribution bounded by
[0, 1]. The displacement field is computed at the appropriate position using the Fourier–Taylor synthesis algorithm of Appendix B.

2.2.9 The distance prior parameters

As the selection function of the galaxies in distance catalogues is poorly known, we have introduced in Section 2.1 a flexible selection function
that depends on three parameters {p, dcut, n}. The conditional likelihood of the distances is exactly equal to the prior (22) in this case. Using
Bayes identity and a uniform prior on the aforementioned parameters, the sampling of this parameters is achieved by another block sampling
step. The probability of one of the three parameters, e.g. p, given the others is, using Bayes identity,

P (p|dcut, n,DL) = P (p, . . .)∫
dp P (p, . . .)

= π (DL|p, dcut, n)∫
dp π (DL|p, dcut, n)

, (56)

Figure 1. Results of the test on the mock catalogue based on Gaussian random field: central slice of the ensemble averages for the line of sight of the velocity
field (top-left panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel). In the bottom-right panel, I present
a Bayesian comparison between the reconstructed velocities and the actual true velocity field of the simulation using the entire set of posterior distributions.
The details are given in Section 3.1. Only the voxels whose centres are within 150 Mpc from the observer are considered in this panel. In all panels, the
selection is isotropic, thus the absence of note on the axis.
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Bayesian 3D velocity field reconstruction with VIRBIUS 183

where P(p. . . ) is the posterior probability of equation (17), with explicit dependency on the parameters of the prior π(DL). All functions
simplifies except the explicit dependence linking the distances to the distance selection, despite the possible existence of a selection function
on galaxy properties (like the apparent/absolute magnitude or the H I linewidth for Tully–Fisher relation). Such a sampling step is achieved
using the algorithm of Appendix A. To ensure a proper decorrelation, we loop over this block a number of times (typically 10).

3 T E S T S O N M O C K C ATA L O G U E S

The method that I have described in Section 2 is relatively complex and involves two major component: the model of the peculiar velocity
field as traced by the galaxies or the clusters of the galaxies and the algorithm itself to adjust the data to the model. This involves two separate
sets of tests. First, I will focus on test of the algorithm itself and the performance of the fit on data that were produced to correspond exactly
to the model. This is the objective of the Section 3.1. Second, I will look into the capabilities and the limits of the model at reconstructing
the velocity field and distances from noisy more realistic mock data sets, typically halo catalogues from N-body simulation, which is the
objective of Section 3.2.

Figure 2. Results of the test on the mock catalogue based on Gaussian random field, density field distribution: central slice of the ensemble average (top-left
panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel). In the bottom-right panel, I present a Bayesian
comparison between the reconstructed densities and the actual true density field of the simulation using the entire set of posterior distributions. In all panels,
the selection is isotropic, thus the absence of note on the axis.
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3.1 Gaussian random field based mock catalogues

In this Section, I present the generation and the results of the test of the code against idealized mock tracer catalogues. These catalogues
are generated in such a way that the statistics and properties of the tracers follow exactly the model presented in Section 2.1. However, they
are slightly unrealistic by removing aspects not captured by the model, such as non-linearities or correlations between velocity field and
tracer positions. These aspects may lead to biases in the results. It is none the less an interesting exercise to evaluate the performance of the
algorithm.

I generate the mock catalogue of tracers, which should be galaxies, as follows.

(i) I generate a random realization of a ‘density field’, with power spectrum given by linear theory linearly extrapolated to z = 0 using the
expression of Eisenstein & Hu (1998) for the power spectrum of density fluctuations, without the wiggles. The power spectrum is truncated
at kmax = 0.1 Mpc−1.

Figure 3. Autocorrelation of the value taken by metaparameters for the three chains considered in this work: H̃ (thick solid red), the mixture probability Pi

(i ∈ {1, 2, 3}), dashed lines, respectively, in black, green and blue, σ i (i ∈ {1, 2, 3}), the error standard deviation for each tracer type, dash–dotted lines,
respectively, in black, green and blue. The different panels correspond, respectively, to the homogeneous Gaussian random field case (topleft), the H3000
catalogue (topright), the Hcomplex catalogue (bottom middle). The horizontal axis tracks the step number along each of the chain.
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(ii) I pick 3000 randomly located tracers within a sphere of 200 Mpc, assuming that the tracers are homogeneous in luminosity distance
coordinates. The luminosity distance is then converted in comoving distance and cosmological redshift.

(iii) I compute the velocity field at a resolution of N = 512, and evaluate its value at the position of tracers using a trilinear interpolation.
(iv) I compute the line-of-sight component of the peculiar velocity and the distance modulus. The mock observables are then generated

taking a homogeneous noise of σμ = 0.2, σ z = 20 km s−1 and σ NL = 200 km s−1.

I have chosen a fiducial �CDM cosmology with �M = 0.30, �b = 0.04, σ 8(z = 0) = 0.84, H = 80 km s−1 Mpc−1, nS = 1. VIRBIUS is run
assuming the same cosmology, leaving free both the amplitude of the power spectrum, assuming that there are either two or one specie(s) of
tracers, the zero-point calibration H̃ and the parameters of the selection function. The grid used to compute the Fourier–Taylor algorithms
has N = 64 elements per dimension, which is sufficient to capture the details of k = 0.1 Mpc−1 and ensure a correct fast interpolation using
the algorithm of Appendix B.

Before considering the whole analysis, I am showing in Figs 1 and 2 the result of reconstructing the velocity field from an exactly
known cosmology, distance and small-scale non-linearities. I used a Gaussian noise with an amplitude of 200 km s−1 to model the small
scale non-linearities as indicated above. In Fig. 1 (Fig. 2, respectively), I am showing the reconstruction of the line-of-sight component of the
velocity field (density field, respectively). The figures were generated with 1055 Monte Carlo samples. In Fig. 1, the top-left panel (top right,
respectively) shows the ensemble mean radial component (the standard deviation, respectively) of the velocity field. The bottom-left panel
shows the S/N obtained by dividing the field of the top left panel by the one shown in the top right panel. Finally, the bottom-right panel is

Figure 4. Results of the test on the mock catalogue based on Gaussian random field: central slice of the ensemble averages for the line of sight of the velocity
field (top-left panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel). In the bottom-right panel, I present a
Bayesian comparison between the mean reconstructed velocities, and the actual true velocities of the mock tracers using the entire set of posterior distributions.
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obtained by showing all the individual posterior distribution for the velocities. These posterior distribution are binned on a grid, and the total
intensity is the sum of the posterior intensities for each considered grid element. The amplitude of the distribution is coded in colour with
respect to the x-axis, while the line-of-sight component of the velocity of the corresponding object as given by the simulation is shown on
the y-axis. If the algorithm works correctly, all the distributions should overlap with the thick red diagonal, though not necessarily centred
as the distributions are correlated. The correlation actually removes the effective number of independent samples compared to the number
of elements that are plotted. The unbiased aspect of the method is exhibited by the plots of the normalized residuals in Fig. 8, where I have
represented the histograms of the quantity

εr = v̄r(x) − vsim
r (x))

σ (x)
. (57)

The same histogram for a pure Gaussian distribution is represented with dashed green line. It can be immediately seen that the overall
distribution of residuals is close to Gaussian with unit variance. Additionally, there is no obviously strong shift in the mean.

The panels are similar in Fig. 2 but this time for the density field. We see that in this optimistic configuration the velocity field is very well
reconstructed, on the other hand the density field is already significantly noisy. These results are the benchmarks to which we will compare
the performance of other reconstructions.

The results for more complete tests are given in Figs 3, 4, 5, 6 and 7. The figures were generated with 6894 (3037, respectively) Monte
Carlo samples for the two types (one type, respectively) scenario. Fig. 3 shows the convergence rate of some metaparameters along the Markov
chain (top-left panel for this mock catalogues). The convergence for H̃ is typically fast, decorrelating in a few iterations. That is the result of
the partially collapsed Gibbs sampler. The other shown parameters, related to the Gaussian mixture of Section 2.2.5, take substantially more

Figure 5. Results of the test on the mock catalogue based on Gaussian random field. All panels are related to density field distribution: central slice of the
ensemble average (top-left panel), the variance expressed as a standard deviation (top-right panel), the resulting S/N (bottom-left panel).
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Bayesian 3D velocity field reconstruction with VIRBIUS 187

steps to decorrelate, of the order of a few hundreds. This is expected as they are tied to a particular realization of the velocity field, contrary
to other metaparameters which are obtained through direct marginalization over the velocity field. We can expect the convergence length to
increase when the number of tracer is low or the noise is high as the uncertainty over the velocity field will increase and thus it takes more
steps to explore the parameter space. We will see how it is the case with the other mock catalogues in the next section.

Fig. 4 gives a synthetic view of the velocity field component of the posterior distribution. The details of the panels have been given
previously for Fig. 1. Comparing Figs 1–4 shows how much the relaxation of the assumption of fixed cosmology, noise and distances degrades
the quality of the reconstructed velocities.

Fig. 5 gives a similar view as for the velocity field, but this time for the density i.e. the divergence of the velocity field. The view is the
same as the one in Fig. 2, but this time we have all the parameters being sampled. This field is expected to be much noisier as it is indeed the
case when looking at ensemble average quantities and S/N. In the centre, where S/N is the highest we are only at maximum at 3σ , while for
peculiar velocities it was possible to go at higher S/N. The resulting comparison of the individual posterior distribution in the bottom-right
panel shows this high uncertainty. Compared to Fig. 2, there has been a strong loss of information on the density field. It reaches a point
where the binned posterior in the bottom-right panel shows no constraint at all from data.

In Fig. 6, I show the individual distributions of the metaparameters of the chain, i.e. the effective Hubble constant H̃ , the model error
amplitude, the probability for each type of model error and the overall power spectrum normalization AS. For H̃ , AS and the model error, a
thick vertical red line shows the value used to generate the mock catalogue. I am also showing in shaded yellow the range of values compatible
at 90 per cent with the data according to the model. As expected all distributions are compatible with the thick vertical line at their peak
positions, i.e. always well within the 90 per cent region of the distribution. In the case of the model error amplitude (upper-right panel), we

Figure 6. Results of the test on the mock catalogue based on Gaussian random field. All panels show metaparameters posterior distributions: the zero-point
calibration H̃ (top-left panel), the extra small scale non-linearities {σNL, k} (top-right panel), the probability of tracer type P (bottom-left panel), and the power
spectrum normalization in units of 106 Mpc3 (bottom-right panel). The yellow shaded regions highlights the range of parameters for which the probability of
containing the actual value is ∼90 per cent.
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188 G. Lavaux

Figure 7. Analysis of the same mock catalogue based on Gaussian random field as presented in Fig. 6, but this time restricted to a single type of tracer. The
panels present similar quantities: the zero-point calibration H̃ (top-left panel), the extra small scale non-linearities σNL (top-right panel), the power spectrum
normalization AS in units of 106 Mpc3 (bottom-left panel). Additionally, the autocorrelation of the chains is given in the bottom-left panels. The yellow shading
also represents the range of parameters accepted at 90 per cent probability.

Figure 8. Distribution of the velocity residuals εr between the simulation and the reconstructed mean component of the peculiar velocities for the different
experiments on mock catalogues generated from Gaussian random fields. Left-hand panel refer to the same experiment as Fig. 1 and right-hand panel to Fig. 4.
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Bayesian 3D velocity field reconstruction with VIRBIUS 189

are faced with two distributions overlapping with the fiducial value. Finally, the posterior distribution shown in the bottom-left panel do not
indicate a strong imbalance between the different error model, which exactly corresponds to the significant overlap of the distributions in the
top right panel. The results of the distributions obtained assuming a single type are given in Fig. 7. All the metadistributions are of course
narrower than for the test with two types, especially for the distribution of σ NL. The width of the distribution for AS is also visibly narrower.
The peculiar velocity field, not represented here, is however mostly unaffected. In the test with two assumed types of tracers, the algorithm
separated the data in two pieces: one including more than 93 per cent of the tracers 50 per cent of the time, and the others. This separation
results in a small number of objects having high-velocity dispersion, which both skew the P1 distribution towards low value of σ NL and allow
a the P2 distribution to venture to very high values of this same σ NL. No obvious bias is visible in all the distributions. The autocorrelation of
the chain is shorter by a factor ∼2. These tests indicate that the algorithm and the software works as expected on an idealistic test case.

3.2 Halo based mock catalogue

In this Section, I consider more realistic, but more complicated mock catalogue to which I apply the methodology developed in this article.
Two mock catalogues are considered, both based on the haloes of a cosmological pure dark matter N-body simulation. This simulation have
been computed using the following cosmological parameters: �M = 0.30, �b = 0.045, �� = 0.70, H = 80 km s−1 Mpc−1, σ 8 = 0.80. The
volume covered by the simulation is a cube with a side of 500 h−1 Mpc with 5123 particles. From this simulation, haloes were extracted using
the ROCKSTAR software (Behroozi, Wechsler & Wu-Y. 2013). The minimum halo size have been kept to its default value of 10, checking that
particles are effectively bound. The total number of haloes of the simulation is thus 238 520. The two catalogues are created from the same
simulation but choosing different selection properties. The first mock catalogue, nicknamed H3000, is generated by extracting randomly 3000

Figure 9. Same as Fig. 4 but for the H3000 mock catalogue.
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Figure 10. Results of the test on the the H3000 mock catalogue: metaparameters distributions: H̃ (top left panel), {σNL, k} (top right panel), P (bottom-left
panel), selection function (bottom-right panel). Some bins are still clearly dominated by the noise due to the long correlation length of the chain.

haloes from the rockstar catalogue at a distance less than 200 h−1 Mpc of the centre of the simulation box. The chosen distance modulus error
is σμ = 0.2, typical for a Tully–Fisher relation. The second mock catalogue, nicknamed Hcomplex, is built from a more complex selection
function, derived from the M/L relation used in Lavaux et al. (2008), equation (7). The principal condition for acceptance in the catalogue is
to have L/(dL)3 ≤ 2.78 × 104, with L in solar luminosities and d the comoving distance in Mpc/h-1. The selection is not supposed to be strictly
realistic, but to mimic a realistic abundance for distance catalogue. This mock catalogue has 2000 tracers, with a distance modulus error
σμ = 0.1, typical of higher quality distance indicator like Supernovae (SNe) or Tip of the Red Giant branch (TRGB).

For these mock catalogues, I restrained from fitting the amplitude of the power-spectrum AS at the same time as the other parameters. The
problem comes from the degeneracy between AS and the distribution of tracers of the velocity field. In halo catalogues, these two quantities
are not independent as tracers are typically located in the peak of the density distribution. This tends to credit the velocity field with more
power to try to homogenize the distribution of tracers. This problem arises when we are faced with data which needs a sufficiently precise
prior on the density of tracers. I have run a chain for which the selection is exactly known i.e. homogeneous in luminosity distance space, but
for which AS is left free. The mean recovered value is 2.9 ± 0.5 times higher that the value used to make initial conditions. Thus, I postpone
the resolution of this problem to future work. Here, I will limit myself to fix AS to its fiducial value and investigate the rest of the parameter
space.

The results are given in Figs 3, 9 and 10 for the H3000 halo mock catalogue, and in Figs 11 and 12 for the Hcomplex halo mock
catalogue. The length of the chain is 10 824 for H3000 and 3905 for Hcomplex. The convergence test is shown in Fig. 3 (top right for H3000,
bottom middle for Hcomplex). The convergence of the parameters of the Gaussian mixture is quite slow for H3000 due to the substantial
uncertainty on the velocity field potential. This triggers a large correlated exploration of distances and model error parameters. The chain
concerning H3000 has 10825 samples, whereas the one concerning Hcomplex has 1796 and is clearly converged. However, for Hcomplex,
this convergence is much faster, confirming the previous scenario. In that case, the tracer density is sufficiently high to largely reduce velocity
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Bayesian 3D velocity field reconstruction with VIRBIUS 191

Figure 11. Same as Fig. 4 but for the Hcomplex mock catalogue.

field uncertainties in the effective volume covered by the catalogue. That statement can actually be generalized. If the catalogues of tracer is
dense, then the velocity potential will be quite tightly constrained which does not leave much freedom for the auxiliary metaparameter like

NL, which in turn reduce possibilities for the reconstructed true distances.

The panels of the other figures are showing the same quantities as the ones in Figs 4 and 6, with the exception of the bottom-right panel
of Figs 10 and 12 which shows the selection function of galaxies in the catalogue. In these same panels, I show the actual distribution of the
galaxies for H3000 (a simple d2 law) and Hcomplex as a function of luminosity distance. I note that the selection function for H3000 has been
fitted by VIRBIuS according to prescription. However, as there is a sharp cut at 200 Mpc in the mock catalogues it is not able to reproduce
this fairly. The parameter most affected by this discrepancy is in principle H̃ . We see that, within error bars, it does introduce significant bias.
On the other hand, the galaxy population of Hcomplex is fairly represented by the selection function fitted by VIRBIUS (Fig. 12), and H̃ is
measured without any systematic effect.

The application of this Bayesian methodology on the two mock catalogues is satisfactory. All the posterior distributions are in agreement
compared to the velocities of the simulations and the metaparameters are in agreement with the input value, such as H̃ and the selection
function. The analysis also yields that the haloes can be classified into two main populations: the results on the measurement of 
NL,
assuming three populations, is quite clear in particularly for the top right panel of Fig. 12. There is a population of haloes with a model error of
∼400 km s−1and another at ∼100 km s−1. The probability assigned to each model is not clear, all models getting a share of ∼30 per cent. Which
means a probability of ∼66 per cent for the low-velocity dispersion model and ∼33 per cent for the high-velocity dispersion one. It is possible to
run a meta-analysis for which the chain is run assuming different maximum number of populations. The likelihood of the data, marginalized
according to sampled parameters, given the population model can then be computed alongside the Bayes factor between the different
models.
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Figure 12. Same as Fig. 10 for the Hcomplex mock catalogue.

Figure 13. Results of the automatic classification for the two halo mock catalogues (H3000 in the left-hand panel, Hcomplex in the right-hand panel). I am
showing a thin slice of both the mock catalogues and the simulations. The blue points correspond to the haloes of the original simulation, while the discs
correspond to the mock catalogues. The disc are coloured according to the probability that a tracer has a velocity dispersion greater than 100 km s−1.

This shows the power of this Bayesian methodology: in addition to allowing a consistent reconstruction of peculiar velocities, it is now
possible to quantitatively measure the probability that a halo (or a galaxy in real distance catalogues) belongs to a high-velocity dispersion
population or not in observations. This can be the case if the halo hosting the galaxy is a substructure for example. It could also be a supernova
deeply embedded in the galaxy potential well. In Fig. 13, I show an attempt at classifying the haloes depending on their probability of
belonging to one or the other population. In this figure, a slice of the two catalogues are shown: in the left-hand panel H3000, and in the
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right-hand panel Hcomplex. The haloes of the simulation are represented as small blue points. The haloes selected to be part of the mock
catalogues are shown as coloured discs. The colour of the discs is assigned depending on whether the probability that it has a high-velocity
dispersion i.e. greater than 100 km s−1. While in the H3000 catalogue, it is difficult to separate two populations, in the Hcomplex catalogue
two populations clearly emerge spatially. The darkly coloured discs are qualitatively more likely to be at knots of the cosmic web, compared to
the lightly coloured discs. Of course, as indicated early on in Section 2, the other main interest of the classifier consists in the natural removal
of potential outliers from the observational data sets. Typically, the outliers will be put in separate type with a huge velocity dispersions which
will remove any effect that they could have on the fitting of the velocity field.

4 C O N C L U S I O N

The advent of new large distance catalogues, like 6dFv (Campbell et al. 2014) or Cosmic Flows-2 (Tully et al. 2013) is opening a new era
in cosmic velocity field analysis. This era will continue with TAIPAN (Beutler et al. 2011) and WALLABY (Duffy et al. 2012). To face this
avalanche of new data and get the most of them, new methods of analysing redshift and distance surveys are required.

For this work, I develop, implement and test a Bayesian algorithm to reconstruct peculiar velocity field from distance catalogues. This
method is based on a Bayesian formulation of the reconstruction problem, assuming that the data follows the model given in equation (10).
Additionally, all cosmological expansion corrections are already built in. I have shown that in the case of mock catalogues following perfectly
the data model, then the algorithm manages to recover all quantities in an unbiased way. However, for more realistic mock catalogues taken
from N-body simulations, some bias is introduced due to approximation either in the model, in the used priors for distances and velocities.
This bias is the most prominent for the amplitude of the power spectrum when the noise on distances is sufficiently large to have to rely on
velocity field correlations to infer the position of tracers. Finally, this algorithm includes an automatic tracer classifier that makes it interesting
to classify object: either as observational outliers, or as object belonging to collapse structures and thus exhibiting higher velocity dispersions.

While the results obtained here are promising, they are not the end of the development of this method. One of the next step would be to
harden the fitting of the amplitude AS of the density fluctuation power spectrum by adding a bias field in the distance prior. This bias field
would need to be stochastically related to 	 ∼ −δm as it is more likely to have haloes in locations where the flow is converging. However,
the sampling of this bias field would be substantially more complex, and I am postponing this to later work. Simpler improvements would
consist in allowing several samples with different radial selection function and fitting the inverse Tully–Fisher relation at the same time as
the other parameters. Finally, the density field sampled using this algorithm could be used as a prior for either ARES (Jasche & Wandelt
2013b) or BORG (Jasche & Wandelt 2013a; Jasche, Leclercq & Wandelt 2015) algorithms of reconstruction of density field from galaxy
spectroscopic surveys.

AC K N OW L E D G E M E N T S

I would like to thank Michael J. Hudson for many useful discussions and encouragements to pursue this project when it was in its early stage.
I also would like to thank Jens Jasche for many useful discussions on Bayesian statistics. I thank Stephen Turnbull for reading an early version
of this manuscript. I thank the anonymous referee for the detailed reading, and the suggested corrections which have greatly improved the
manuscript.

I acknowledge support from CITA National Fellowship and financial support from the Government of Canada Post-Doctoral Research
Fellowship. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of
Ontario through the Ministry of Research and Innovation.

This work was granted access to the HPC resources of The Institute for scientific Computing and Simulation financed by Region
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APPENDIX A : A DA PTIVE SAMPLING FRO M A NON-TRI VI AL O NE-DI MENSI ONAL DI STRI BU TIO N

The canonical algorithm to sample from an arbitrary probability distribution is based on the cumulative probability function:

P (x ≤ X) =
∫ X

−∞
dx p(x). (A1)

If y is sampled from a uniform distribution bounded by [0, 1], then

x = P −1(y), (A2)

where P−1 is the inverse function of P, is distributed according to p. Unfortunately, in the cases of this work, none of the distributions are
analytical, and even less integrable and invertible. We must rely on a numerical scheme for this. I consider different limiting cases to try to
optimize the random number generation.
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A1 Single modal sharply peaked or weakly multimodal

The first case that I consider is in the approximation that p(x) has mostly a single sharp peak, with maybe some smaller insignificant subpeaks
around this one. This is typically the case when sampling the cosmological hyper parameters like the Hubble constant H, the distance
calibration H̃ or the spurious noise on velocities σ NL. The evaluation of the posterior in these cases is costly, involving the inversions of large
matrices with a size of the order the number of tracers in the original catalogue. It is thus required to make as few evaluations as possible.
The position and sharpness of the peak is not clearly a priori known, and we have to rely on adaptivity. The algorithm proceeds as follow.

(i) It looks for the maximum xmax of the 1D posterior distribution using the Brent minimization algorithm specified in the GSL. The
evaluate of the posterior are cached as the minimization proceeds.

(ii) From the cached values, it estimates the curvature by computing the average of (x − xmax)2 from the cached values, using a linear
interpolation of the logarithm of the posterior.

(iii) This curvature gives the typical sampling size required to capture the details of the posterior, which is now sampled regularly relative
to xmax. The evaluation is executed till the ratio between the edge value of the posterior and its peak value is less than some threshold. This
procedure is run in parallel on shared memory computers.

(iv) The final sample is then generated using a rejection sampler, assuming the evaluated discrete distribution as proposal distribution.

This algorithm is robust and manages to generate sample in cases the distribution extends over several orders of magnitudes, while retaining
accuracy of the target distribution. This part is specifically critical to ensure the stability of the final Markov Chain.

A2 Multimodal smoothly varying

The second case corresponds to the sampling of distances assuming a fixed large scale velocity field. Many distance posterior will be simple.
However, some will be truncated (for example if we are on the edge of the survey), or severely multimodal in the case of a collapsing structure.
For that reason, we cannot entirely apply the previous algorithm and we in place simplify it by removing the steps 1 and 2. In place, I just
evaluate regularly the distance posterior in a sufficiently fine-grained way to resolve the evolution of the velocity field and the typical error
bar on distance inferred from both σ NL and the distance modulus error. The rejection sampler is then used again to clean the discreteness
effects. This algorithm can only be used here because the evaluation of the posterior is very fast, contrary to the most cases considered in the
previous section.

A P P E N D I X B: FO U R I E R – TAY L O R IN T E R P O L AT I O N O N A N O N - R E G U L A R M E S H

The statistical algorithm described in this work makes use of tracers put at positions not located on a mesh. It is notably necessary to
compute �(r) at any location in the volume of reconstruction. Of course �(r) is obtained through a Fourier synthesis operation described in
equation (21) that we take now as a definition, in dimension d:

�(r) = 1

Ld

Nq∑
q=1

ikq

|kq |2 eikq .r	̂(kq ). (B1)

We make use of the idea originally developed by Anderson & Dahleh (1996) to have a fast interpolation of Fourier series. The Taylor
expansion of trigonometric functions converges very rapidly, it is thus tempting to do a Taylor expansion of �(r) against the nearest grid
point g. The general expansion is the following:

�s(r) = 1

Ld

Nq∑
q=1

iks

|kq |2 eikq .(r−g)	̂(kq )eikq .g (B2)
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Table B1. This table gives the expression of F (k, n, {ap})
for the first three orders and for d = 3.

Order n {ap} F (k, n, {ap})
n = 0 a1 = a2 = a3 = 0 1
n = 1 a1 = 1, a2 = a3 = 0 k1

a1 = 0, a2 = 1, a3 = 0 k2

a1 = a2 = 0, a3 = 1 k3

n = 2 a1 = 2, a2 = a3 = 0 k2
1

a1 = 1, a2 = 1, a3 = 0 2k1k2

a1 = 0, a2 = 1, a3 = 1 2k2k3

a1 = 1, a2 = 0, a3 = 1 2k1k3

a1 = 0, a2 = 2, a3 = 0 k2
2

a1 = 0, a2 = 0, a3 = 2 k2
3

with

F (k, n, {ap}) =
(

n

a1

)⎛⎝d−1∏
p=2

(
ap

ap−1

)⎞⎠⎛⎝ d∏
p=1

k
ap
p

⎞⎠ , (B6)

Q̂s,n({ap}, k) = inF (kq , n, {ap}) iks

|kq |2 	̂(kq ) (B7)

Qs,n({ap}, g) = 1

Ld

Nq∑
q=1

Q̂s,n({ap}, kq )eikq .g . (B8)

In the above, we have used the notation
(

n

p

) = n!/(p!(n − p)!). The set of indices {ap} are under the constraint
∑

p = 1ap = n. The

multidimensional array Qs is only the Fast Fourier synthesis of Q̂s,n on a regular mesh. Q̂s,n can be easily computed from the modes 	̂(kq ).
Finally, �s(r) is obtained by taking all Qs, n and summing after multiplication by the adequate polynomial in the distance to the nearest grid
point to r . As an example, I give the expression of the cases n = 0, 1 and 2 and d = 3 in Table B1.

I note that the number of required FFTs goes quickly up as the number of elements in {ap} for a given n. This number is exactly equal
to
(

n+d−1
n

)
. Fortunately, the series converges very quickly and for the problem studied in this work; it is sufficient to stop at n = 3. The time

complexity of this algorithm becomes O(Nq ) + O(Ng log Ng) instead of O(NqNg log Ng) if the sum in equation (21) was carried out directly.
The expected gain is huge when Nq becomes high, typically for large distance surveys of several thousands of objects.

A P P E N D I X C : FO U R I E R – TAY L O R W I E N E R FI LT E R

A similar problem as the one tacked in Appendix B is met when one computes the mean velocity field compatible with the velocity of a set
of tracers as given by equation (53). The problem is the following, given a set of weights {wj} and positions {rj }, we need to determine the
value of the modes f̂m(k):

f̂m(k) = P (|k|)−ikm

k2

Nd∑
j=1

wj r̂j,me−ik.rj (C1)

A priori, it is relatively simple and it can be achieved by direct summation for a time complexity of O(NdNq log Nq ) where Nq is the number
of modes k. It turns out that this is costly because of the big number of trigonometric functions to evaluate. Additionally, if the number of
tracers becomes significant, e.g. a few thousands, the filling of this array becomes quite costly. So I propose to use another Fourier–Taylor
expansion to reduce the cost.

The equation (C1) may be rewritten as followed:

f̂m(k) = P (|k|)−ikm

k2

∑
g

⎛⎝ Nd∑
j=1

wj r̂j,me−ik.(rj −g)δK(g − r (g)
j )

⎞⎠ e−ik.g, (C2)

where δK(x) =∏j δK(xj ) is the Kronecker-delta δK(a) = 1 if and only if a = 0, r (g)
j is the position of the grid point

nearest to rj . The symbol
∑

g means that the summation is run on all the grid points. The Kronecker-delta is well
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defined as we are only considering a countable set of grid point position. Now we can expand the argument of the inner
exponential:

f̂m(k) = P (|k|)−ikm

k2

∑
g

+∞∑
n=0

⎛⎝ Nd∑
j=1

wj r̂j,m

(−i)n

n!

(
k.(rj − r (g)

j )
)n

δK(g − r (g)
j )

⎞⎠ e−ik.g (C3)

= P (|k|)−ikm

k2

+∞∑
n=0

(−i)n

n!

∑
{ap}

F (k, n, {ap})Ĝm(k, n, {ap}) (C4)

with

Ĝm(k, n, {ap}) =
∑

g

Gm(g, n, {ap})e−ik.g (C5)

Gm(g, n, {ap}) =
Nd∑
j=1

wj r̂j,m

⎛⎝ d∏
p=1

(
rj − r

(g)
j

)ap

⎞⎠ δK(g − r (g)
j ), (C6)

with F (k, n, {ap}) as defined in equation (B6). Again, we can recognize a Fast Fourier analysis step in equation (C5). This analysis is run on
a multidimensional array which has non-zero values only at grid points which are next to a tracer. The values of the field depends on moments
of the distribution of tracers assigned to each grid elements. Finally, the time complexity is again now O(Nt) + O(Nq log Nq ). I note that
the transforms defined in this appendix have more application to compute the Fourier transform of a function sampled on a non-regular grid,
provided one is ready to remove the highest modes which are the most imprecise due to the Taylor expansion.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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