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The early stages of drop impact onto a solid surface are considered. Detailed numerical
simulations and detailed asymptotic analysis of the process reveal a self-similar struc-
ture both for the velocity field and the pressure field. The latter is shown to exhibit a
maximum not near the impact point, but rather at the contact line. The motion of the
contact line is furthermore shown to exhibit a ’tank treading’ motion. These observa-
tions are apprehended with the help of a variant of Wagner theory for liquid impact.
This framework offers a simple analogy where the fluid motion within the impacting
drop may be viewed as the flow induced by a flat rising expanding disk. The theoretical
predictions are found to be in very close agreement both qualitatively and quantitatively
with the numerical observations for about three decades in time. Interestingly the inviscid
self-similar impact pressure and velocities are shown to depend solely on the self-similar
variables (r/

√
t, z/
√
t). The structure of the boundary layer developing along the wet

substrate is investigated as well. It is found to be in first approximation analogous to
the boundary layer growing in the trail of a shockwave. Interestingly, the corresponding
boundary layer structure only depends on the impact self-similar variables. This allows
to construct a seamless uniform analytical approximation encompassing both impact and
viscous effects. The depiction of the different dynamical fields enables to quantitatively
predict observables of interest, such as the evolution of the integral viscous shearing force
and of the net normal force.

1. Introduction
The impact of a liquid drop onto a rigid surface results in a rapid sequence of events

ending, in the inertial limit, in spreading (Eggers et al. 2010) or splashing (Stow &
Hadfield 1981), interface tearing (Villermaux & Bossa 2011) and ultimate fragmentation
(Stow & Stainer 1977). A large number of studies have investigated the many facets of
drop impact, with a special attention to the description of its late stages (Rein 1993;
Yarin & Weiss 1995). The literature on the early stages of impact is however scarce
in comparison. Detailed experimental data depicting the instants following impact can
nonetheless be found in the work of Rioboo et al. (2002), that evidenced a “kinematic
phase” where the drop merely resembles a truncated sphere and spreads as the square-
root of time. This phase precedes the apparition of the liquid lamella.
Probably one of the first depiction of the very first instants of drop impact dates

back to Engel (1955). With the help of high-speed cinematography, Engel captured the
chronology of events triggered by drop impact. He noted in particular the unvarying shape
of the drop apex during the earliest moments of impact, which might be surprising due to
the incompressible character of the liquid. Engel put forward the possible roles of inertia,
viscosity or surface tension to explain this observation. Actually, the physical mechanism
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Figure 1. Close-ups of increasing magnitude on the pressure field developing inside an impacting
drop in the inertial limit. The pressure field is extracted from Navier-Stokes Gerris computations
of a drop impacting a solid surface at early times (note that the surrounding gas dynamics is
computed as well, but not represented here). Noticeably the motion is essentially pressureless
(and therefore corresponds to a free fall) except in a concentrated region in the contact zone.
The successive close-ups on pressure field structure in the contact region reveal a pressure peak
near the contact line (the physical parameters are here Re = 5000, We = 250, tU/R=4×10−4.
The total size of the numerical axisymmetric domain is 2R × 2R, and the adaptive mesh has
locally a mesh density corresponding to 32768×32768 grid points).

underpinning this behaviour is best illustrated with Figure 1a. There, the numerically
computed pressure field within an impacting drop is represented shortly after impact
(details to follow in the paper). It is readily seen that the structure of the pressure field is
extremely concentrated near the contact zone, as in Hertz’ classic elastic contact problem.
Conversely the outer region is essentially pressureless. This strong inhomegeneity in the
pressure distribution therefore explains why, in the absence of any pressure hindrance,
the upper part of the drop freely falls even after impact while remaining undeformed.
The pressure concentration in the early stages of impact was first identified by Josserand

& Zaleski (2003). From the key remark that the extent of the pressure concentration zone
scales with the contact radius, these authors conjectured a self-similar structure for the
pressure field and evolution with time as 1/

√
t – an hypothesis confirmed by numerical
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Figure 2. Top: Time sequence of the pressure field developing inside an impacting drop
(Navier-Stokes Gerris computation, fixed spatial magnification). Bottom: Corresponding trace
of the pressure exerted by the drop on the solid substrate. The physical parameters for this
simulation are Re = 5000 and We = 250. The snapshots correspond respectively to times
tU/R = 10−4, 10−3 and 10−2.

results. Though sufficient to detect hints of self-similarity, numerical simulations were
nonetheless unable to reveal the inner structure of the contact zone until recently, es-
sentially because of the very large scale ratio between this zone and the drop size. The
increase of computational performance along with the development of adaptive numerical
techniques for two-phase flows (Popinet 2009) now allow to unravel the intimate structure
of the contact zone, see Figures 1b,c and 2. These snapshots reveal a quite complex struc-
ture for the pressure, which counter-intuitively exhibits sharp maxima near the contact
line, and not on the axis as in steady stagnation point flows. Interestingly this structure
is reminiscent of typical pressure field structures observed in the water entry of solid ob-
jects, and evidenced by Wagner in the context of alighting seaplanes (Wagner 1932). In
such problems a solid object impacts a flat liquid surface at a given velocity. As suggested
by Cointe (1989), drop impact may be viewed as water entry’s opposite, for here a liquid
object impacts a rigid flat surface at a given velocity (see Fig. 3). It is therefore likely that
the analytical techniques developed since the thirties to describe with great precision the
flow generated with the impact of an object, and proven to be in close agreement with
experimental data (Cointe & Armand 1987; Howison et al. 1991), could be transposed for
the drop impact problem. And indeed, building up on the analogy between water entry
and drop impact, Howison et al. (2005) proposed a theoretical investigation of inviscid
two-dimensional drop impact on a thin fluid layer and described the different regions
and scalings of importance for the flow dynamics. In particular, they reveal the radius
of contact between the two liquids as a key length scaling the problem, analogously to
the problem of water entry where the wet length of the solid is also determining and
consistently with the observations of Josserand & Zaleski (2003).
The central motivation of the present study is to revisit the problem of a single spher-

ical drop impacting a smooth flat solid surface at early times at the light of Wagner’s
theory of impact, understand the dynamic fields structure and elucidate the short-time
self-similar behaviour discerned in earlier studies. To develop a consistent theory, the
approach followed throughout the manuscript will be to confront and cross-test sys-
tematically the theoretical predictions with detailed and accurate numerical simulations
performed with a Navier-Stokes multiphase flow solver. As a side note, we attempt to
make the paper self-contained whenever possible. In §2 we formulate the hypotheses and
theoretical framework of the problem, and describe the short-time drop impact dynam-
ics in the context of Wagner’s theory. We put forward in particular a so-called “Lamb
analogy” mirroring the flow within the impacting drop with the one induced with a flat
rising expanding disk. In §3 we demonstrate that the Wagner flow can be recast as a
self-similar solution for the drop impact problem. The nature of the near-axis stagnation
flow and of the near contact line flow and pressure maxima are also discussed. Numeri-
cal results obtained with Gerris (Navier-Stokes solver, VOF, adaptive mesh) taking into
account surface tension, surrounding gas and viscous effects are compared with the the-
oretical prediction. The structure of the boundary layer is examined in §4 and is found
to be reminiscent of the viscous boundary layer leaved in the trail of a shockwave (Mirels
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Figure 3. Sketch of the impacting drop before contact (left), and shortly after impact (middle).
The shape the drop would assume in absence of wall is outlined with a dashed line, and the
contact line position is marked with red dots. This problem may be viewed as the dual of the
classic water entry of a solid object (right).

analogy). The inviscid Wagner flow and this viscous boundary layer approximation are
found to depend on the same self-similar variable. This allows us to build a uniform,
seamless approximation encompassing both impact and viscous effects. We conclude in
§5 by discussing the obtained results and the limits of the present investigation (such as
the role of air), and by reminding observables of interest, such as the net impacting force
of the total viscous shearing force exerted by an impacting drop.

2. Model
2.1. Theoretical framework & hypotheses

We consider throughout this study an idealized drop impact where a perfectly spherical
liquid drop collides with a flat rigid surface. Though classic, this model situation relies on
a number of physical hypotheses detailed in the following. Starting with the initial perfect
spherical shape assumption, we may identify several typical causes for deviations from
sphericity such as capillary drop oscillations during free fall (Engel 1955; Thoroddsen
et al. 2005) or flowing air shaping (Pruppacher & Beard 1970). Such effects will be
disregarded in the following even though they merely result in a local curvature radius
modification in the contact region, hence could easily be incorporated in the discussion.
The impact flow evolution will be considered incompressible. However, the question of
the role of compressible effects within the liquid should not be eluded when considering
impact phenomena. A large body of literature has been devoted to acoustic effects within
(typically fast) impacting drops. Typically, such effects are considered to play a significant
role over lengthscales of order UR/c during timescales of order UR/c2, where U stands for
the impact velocity,R for the drop radius and c for the celerity of compressive sound waves
in the liquid ((Uc )2 � Ut

R � 1). Considering a millimetric drop impacting at a velocity
of the order of 10 m.s−1 representative of e.g. a raindrop falling at terminal velocity, we
reckon that acoustic effects matter only in a micron-sized region over a few nanoseconds
(see Weiss & Yarin 1999, for a discussion and references). The following discussion will
therefore be limited to those cases where the impact velocity is much lower than the speed
of sound, as the falling raindrop, where acoustic effects can harmlessly be neglected and
an incompressible description remains accurate. The high pressure and stresses generated
upon impact can result in marked erosion or yielding (Rein 1993). Furthermore substrate
deformation has recently been shown to significantly alter drop impact in the limit of
very soft (Mangili et al. 2012) or very flexible substrates (Antkowiak et al. 2011). None
of these effects will be considered in the following, yet an estimation of the net force
exerted by the impacting drop on the underlying substrate will be provided in §3. Another
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phenomenon potentially responsible for the cushioning of the impact is the thin air layer
between the drop and the substrate just before impact. Due to lubrication effects, this
air layer pressurizes and dimples the drop, eventually yielding a tiny entrapped gas
bubble in the drop (Thoroddsen et al. 2005). This phenomenon along with other roles
of surrounding gas in impact dynamics will be disregarded in the forthcoming analysis
(except explicitly specified, the starting state for each of the simulations is a drop already
touching the ground – see appendix for details) and discussed in the last section. Finally
the core hypothesis of the present study is the inertia-dominated character of impact. In
particular, we assume that gravity, capillary and viscous effects are small with respect to
inertial ones, i.e. Froude Fr = U2/gR, Weber We = ρU2R/σ and Reynolds Re = ρUR/µ
numbers are all large with respect to unity. Here g denotes the gravity, σ the liquid-gas
surface tension, ρ the liquid density and µ its viscosity. These assumptions underpin
the choice a purely inertial description free of these effects in the following. However,
locally these phenomena might become more important or even dominant, examples
being viscosity near the boundaries or capillarity in high-curvature region. In section §4
we will address viscous effects and develop a boundary-layer correction to the inviscid
solution, and capillary effects will eventually be discussed in §5.

2.2. Governing equations and analogy with the water entry problem
2.2.1. Problem statement

We consider a perfectly spherical liquid drop of radius R and density ρ impacting nor-
mally a flat rigid ground with velocity U , see Fig. 3. Neglecting for now the development
of viscous rotational boundary layers, we assume that the fluid motion following impact
is irrotational, axisymmetric and can be described with the scalar potential φ(r, z), i.e.
the fluid velocity u(r, z) satisfies u(r, z) = ∇φ(r, z). Incompressibility requires φ to be an
harmonic potential satisfying Laplace’s equation, here written in cylindrical coordinates:

1
r

∂

∂r

(
r
∂φ

∂r

)
+ ∂2φ

∂z2 = 0. (2.1)

The liquid dynamics obeys the unsteady form of Bernoulli’s conservation equation:
∂φ

∂t
+ 1

2 |∇φ|
2 + p

ρ
= const. (2.2)

This set of equations is completed by appropriate boundary equations. At the wall z = 0,
the condition of impermeability reads

∂φ

∂z
= 0 for 0 ≤ r ≤ d(t), (2.3)

where d(t) stands for the contact line position, an unknown of the problem. The position
of the free surface is tracked with the kinematic condition:

dS
dt = 0, (2.4)

where S(r, z, t) is a function vanishing on the free surface. Expressing normal stress
continuity at this interface yields the following dynamic boundary condition:

p = 0 at the free surface. (2.5)

Note that atmospheric pressure as here been taken as the reference pressure.
Anticipating the forthcoming analysis of the contact region, we further note that the
free fall behaviour outside the contact region can be recast into the following far-field
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Figure 4. Flow in an impacting drop in the fixed frame and in the drop frame computed
with Gerris. Left, top to bottom : Streamlines and pressure map within an impacting drop for
Re = 5000 and We = 250 in the laboratory frame at different post-impact times (t̄ = 5× 10−4,
5 × 10−3 and 10−2). The overall velocity field resembles a stagnation point flow in a near-wall
region whose extent is scaling with the wet area, and a uniform downwards flow outside. Right:
Same velocity field in a reference frame moving with the drop initial velocity, evidencing a bypass
motion near the contact line and an overacceleration of the free surface towards the wall.

condition:
φ→ −Uz far from the contact region. (2.6)

This condition allows to identify the constant in (2.2) as 1
2U

2.
Now nondimensionalising the problem using the inertial scales R, ρ and U , we introduce
the following quantities:

r = R r̄, z = R z̄, t = R

U
t̄, φ = UR φ̄, p = ρU2 p̄, (2.7)

and rewrite the equations into their dimensionless counterparts:

1
r̄

∂

∂r̄

(
r̄
∂φ̄

∂r̄

)
+ ∂2φ̄

∂z̄2 = 0 in the liquid, (2.8)

∂φ̄

∂t̄
+ 1

2 |∇̄φ̄|
2 + p̄ = 1

2 in the liquid, (2.9)

∂φ̄

∂z̄
(r̄, z̄ = 0, t̄) = 0 over the wet area r̄ < d̄(t̄), (2.10)

p̄ = 0 on the free surface, (2.11)
dS̄
dt̄

= 0 on the free surface. (2.12)

Finally the nondimensional far-field condition reads:

φ̄ = −z̄ far from the contact region. (2.13)

As posed, the problem entirely depends on the wet area extent d̄(t̄), whose dynamics
has still to be determined. In the following, we investigate the near-contact line flow to
clarify this wetting dynamics.
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Figure 5. Advancing contact line shortly after impact. In the earliest moments following impact,
the motion of the free surface near the contact zone is essentially directed downwards. The
sketches show the position of the contact line for two successive instants, and illustrate the
fact that the horizontal extension of the wet area is governed by the vertical movement of the
interface.

2.2.2. Contact line motion: numerical observations
To shed light on the contact line dynamics, detailed numerical simulations of impact-

ing drops were carried out with Gerris (see §6). Figure 4 represents typical streamlines
extracted from the simulations, shortly after impact. On the left panel it can be seen
that the motion within the impacting drop far from the contact zone is vertical, uniform
and pointing downwards, corresponding merely to the free flight behaviour −Uez. Near
the wall though, the flow is deflected and exhibits a stagnation point-like structure, in
a region whose extent scales with the wet area. To investigate further the nature of this
corrective flow, we represent on the right panel of Fig. 4 the streamlines in a reference
frame moving with the initial velocity of the drop. There it appears that the flow winds
around the contact line, revealing that (i) the liquid near the contact line falls faster
than free-flight and (ii) rather than being pushed by a sweeping motion, the contact line
progresses via a tank-treading movement, analogous to the rolling motion evidenced in
previous studies of advancing contact lines (Dussan V. & Davis 1974; Chen et al. 1997;
Reznik & Yarin 2002).
These observations therefore suggest that the kinematics of horizontal extension for the

wet radius is controlled by the vertical motion of the free surface. Figure 5 illustrates this
process, and indicates that the law of motion of the contact line d(t) can be obtained from
the knowledge of velocity field at the free surface. Such a kinematic condition expressing
the contact between a liquid surface and a solid object has actually been used in the
context of the water entry of solid objects for about 80 years, and is currently referred to
as Wagner condition. In the following we depict the analogies between these two liquid
impact problems, and use them to derive a simple fluid mechanical model for the drop
impact.

2.2.3. Analogy with the water entry problem
The modern understanding of the liquid motion and forces generated by an impacting

object in water originates in the pioneering work of Wagner in the early thirties (Wagner
1932). The primary motivation of Wagner was to provide a detailed characterization of
the impulsive forces generated with impact – already known to be of sufficient amplitude
to induce bouncing (ricochet), and even possibly structural failure of alighting seaplanes
or slammed ships (Nethercote et al. 1986). The foremost issue in this problem evidently
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Figure 6. In the reference frame of the falling drop, the flow induced by impact may be seen as
the one induced by a flat rising disk (Lamb disk analogy). The winding motion is here represented
with orange arrows, and the radial expansion of the disk with the wet area is indicated with
purple arrows. The motion of the disk itself is given by the red arrow.

stems from its highly unsteady and nonlinear nature. The central idea of Wagner was to
model the flow induced by the impact of a float or a keel by the one induced by a flat
“plate”, propelling the fluid particles downwards at the float or keel velocity, and having
an extent growing with time as the waterline length. The corresponding flow (“gleiche
Tragflügelbewegung” – equivalent aerofoil motion) is typically found to wind around the
plate and therefore to promote jetting or splashing. The knowledge of this flow field
then allows to determine the motion of the free surface, and finally provides the needed
condition in the determination of the wet length d(t).
Analogously, for the drop impact problem, our numerical simulations evidence similar

flow features and winding motion. These observations advocate for the use of a water
entry-analogue description, where the flow induced by drop impact would correspond to
the one induced by a flat expanding disk in normal incidence, which extent is given the
wet area (see figure 6). Following this vision of drop impact as a dual version of the water
entry problem, we adopt from now on the corresponding formalism to describe the fluid
mechanics of impact.

2.3. Leading-order description for the drop impact problem
Interested in the early-time behaviour of the impact-induced flow, we set out by exam-
ining time-dependent solutions of system (2.8–2.12) in the vicinity of the contact zone.
To this end, we introduce ε as a measure of the wet region: d(t)/R = O(ε) (see Fig. 7).
This ε is the fundamental small parameter of our problem.
As typical in two-phase phenomena, the lengthscales for the dynamical fields and for
the geometry of the free surface differ in this problem. Starting by considering the space
variables r̄ and z̄ on which depend the dynamical fields (such as the velocity potential
φ or the pressure p), we introduce the following rescaling: r̄ = εr r̃ and z̄ = εz z̃, where
r̃ and z̃ are O(1) quantities and εr and εz are gauge functions. From the structure of
Laplace operator, we expect the dynamical fields to display identical length scales in each
direction, so that εr = εz = ε.
Insights into the relevant lengthscales for the description of the free surface geometry
can be gained by decomposing the position of the surface into that of a translating
sphere z̄S(r̄, t̄) plus a surface disturbance h̄(r̄, t̄) (see Fig. 3b). Assuming the drop falls
with constant velocity, the shape of the unperturbed translating sphere obeys r̄2 + (z̄S −
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Figure 7. Scalings in the contact zone. At the earliest times only a very small portion (of order
ε) of the drop touches the wall. The fluid sets into motion with impact is in a region of extent ε
in every direction. The air wedge confined between the wall and the drop presents an angle of
order ε as well. The colormap illustrates the pressure distribution. The physical parameters for
this simulation are Re = 5000 and We = 250. This snapshot corresponds to a nondimensional
time t̄ = 10−3. The position of the contact line is here d̄ = 1.73 10−3/2.

(1 − t̄))2 = 1. Sufficiently close to the contact area, we introduce gauge functions for
the vertical position of the moving sphere z̄S and the time t̄: z̄S = εzS

z̃S and t̄ = εtt̃.
The equation for the sphere surface can be approximated by εzS

z̃S = 1
2ε

2r̃2 − εtt̃. As
previously the determination of these scaling functions is obtained by dominant balance
arguments: εzS

= εt = ε2. Note that at short times the intersection radius between the
sphere and the impacting plane is given by r̃intersect =

√
2t̃.

We remark that as in the original study of Wagner, a scale separation between z̄S and z̄
exists (small deadrise angle hypothesis, see e.g. Oliver 2002). This scale separation arises
because the drop typical radius of curvature (O(1)) is very large in front of the other
lengthscales of the problem, see Fig. 7.
We now turn on to the surface perturbation h̄(r̄, t̄), that embodies the impact-induced
flow. Recalling that h̄ represents a perturbation around a falling sphere, we can express
the position of the free surface with the following implicit equation: S̄(r̄, z̄, t̄) = z̄ −(
z̄S − h̄(r̄, t̄)

)
. Introducing an appropriate gauge function εh such that h̄ = εhh̃ we obtain

by dominant balance analysis that εh = ε2. It follows that:

S̃(r̃, z̃, t̃) = z̃ − 1
2 r̃

2 + t̃+ h̃(r̃, t̃)

= 0 on the free surface.
(2.14)

The kinematic boundary condition derives from the previous equation. At the free surface,
we have:

dS̄
dt̄

= 1 + ∂h̃

∂t̃︸︷︷︸
O(1)

− εφr̃
∂φ̃

∂r̃︸ ︷︷ ︸
O(εφ)

+ εφ
∂h̃

∂r̃

∂φ̃

∂r̃︸ ︷︷ ︸
O(εφ)

+ εφ
ε

∂φ̃

∂z̃︸ ︷︷ ︸
O(εφ/ε)

= 0, (2.15)

where φ̄ = εφφ̃. It is impossible here to keep all terms at the same order; the dominant
balance between the vertical velocities ∂h̃/∂t̃ and ∂φ̃/∂z̃ implies that εφ = ε. At leading
order, the kinematic boundary condition is therefore reduced to :

1 + ∂φ̃

∂z̃
+ ∂h̃

∂t̃
= 0 on the free surface. (2.16)

It proves convenient to introduce a translation of the velocity potential such that φ̃ =
−z̃ + φ̌. This translation merely accounts to analyse the problem in the falling-drop
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r̄ = εr̃ z̄ = εz̃ t̄ = ε2t̃

p̄ = ε−1p̃ φ̄ = εφ̃ (ū, v̄) = (ũ, ṽ).
Table 1. Résumé of the most important asymptotic scales of the problem.

reference frame. The kinematic boundary condition is then simply rewritten as:

∂h̃

∂t̃
= −∂φ̌

∂z̃
on the free surface. (2.17)

Inserting these different scaled variables into Bernoulli’s equation, we obtain:

εpp̃+ 1
ε

∂φ̌

∂t̃
+ 1

2

(∂φ̌
∂r̃

)2

+
(
−1 + ∂φ̌

∂z̃

)2
 = 1

2 in the liquid, (2.18)

where p̄ = εpp̃. The scale of the pressure, εp = 1
ε , is here seen to be as large as the contact

zone is small – as expected in an impact problem. At leading order, Bernoulli’s equation
is therefore reduced to:

p̃ = −∂φ̌
∂t̃

in the liquid. (2.19)

It follows from this equation that the constant pressure Dirichlet boundary condition
on the free surface p = 0 can be recast as a condition for the potential at the free surface:
φ = const, where the constant is arbitrary. Without loss of generality, we set from now
on this constant to zero.
Finally, as classic in water wave theory, we exploit the shallowness of the gap between
the free surface and the plane to transfer the boundary condition at the free surface onto
the plane (see e.g. Van Dyke 1975, §3.8).
Summarizing, the near-field model problem takes the following expression:

1
r̃

∂

∂r̃

(
r̃
∂φ̌

∂r̃

)
+ ∂2φ̌

∂z̃2 = 0 in the liquid, (2.20)

−∂φ̌
∂t̃

= p̃ in the liquid, (2.21)

the locus d̃(t̃) of the contact line is determined with the Wagner condition:

h̃(r̃, t̃) = 1
2 r̃

2 − t̃ for r̃ = d̃(t̃), (2.22)

so that the boundary conditions at z̃ = 0 read:

φ̌ = 0 for r̃ > d̃(t), (2.23)
∂h̃

∂t̃
= −∂φ̌

∂z̃
for r̃ > d̃(t), (2.24)

∂φ̌

∂z̃
= 1 for r̃ < d̃(t̃), (2.25)
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Figure 8. Leading order outer problem for times of order ε2.

and the far-field behaviour is given by:

φ̌→ 0 as r̃, z̃ →∞ (2.26)
h̃→ 0 as r̃ →∞. (2.27)

Finally the corresponding model geometry is sketched Fig. 8. We remark that the previous
set of equations resembles to that of the classic water entry problem, and can be solved
using the methodology described in e.g. Oliver (2002). In the next section though we will
present an alternate method based on self-similar solutions.

3. Self-similar solutions and numerical simulations
3.1. A self-similar problem

To reveal the self-similar nature of our problem, we classically look in the following for
scale invariance (Darrozès & François (1982)). We start by expressing the fact that any
variable q̃ in (r̃, z̃, t̃, φ̌, h̃, d̃, p̃) can be rewritten as q̃ = λq q̂, where q̂ is a rescaled variable
and λq a numerical stretching coefficient embodying the change of scale. Inserting these
variables into the governing equations, it is straightforward to see that invariance of
Laplace equation through this stretching requires λr = λz. Similarly, expressing the
invariance of Wagner condition yields λh = λt, λr =

√
λt and λd =

√
λt. The same

operation performed on the additional boundary conditions finally imposes λφ =
√
λt

and λp = 1/
√
λt. Note that λt remains here as the sole stretching parameter.

The pressure field can be written as an implicit function of time and space as fol-
lows: F(p̃, r̃, z̃, t̃) = 0. Upon using the previous scale invariance arguments, this rela-
tion may be rewritten as F(p̂/

√
λt,
√
λtr̂,
√
λtẑ, λtt̂) = 0. A simple algebraic manip-

ulation allows to remove the λt dependence for all but one variables, so that finally
G(
√
t̂ p̂, r̂/

√
t̂, ẑ/
√
t̂, λtt̂) = 0, for any λt. Remarking that for a given t̂, this function has

to cancel whatever the choice of the scale λt, it readily appears that the last variable is
superfluous. In other words, a relation linking

√
t̂ p̂ to r̂/

√
t̂ and ẑ/

√
t̂ only must exist.

The pressure field may therefore be rewritten explicitly as:

p̃ = 1√
t̃
P
(
r̃√
t̃
,
z̃√
t̃

)
. (3.1)

With a similar reasoning, and upon introducing the self-similar variables ξ = r̃/
√
t̃ and
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η = z̃/
√
t̃, we readily obtain :

φ̌(r̃, z̃, t̃) =
√
t̃ Φ(ξ, η), h̃(r̃, t̃) = t̃ H(ξ) and d̃(x̃, t̃) =

√
t̃ δ, (3.2)

where Φ and H are unknown functions of the self-similar variables and δ a constant
representing the (fixed) position of the contact line in self-similar space. This allows us
to formulate the self-similar version of the drop impact problem :

1
ξ

∂

∂ξ

(
ξ
∂Φ
∂ξ

)
+ ∂2Φ
∂η2 = 0 in the liquid, (3.3)

P(ξ, η) = 1
2

(
−Φ(ξ, η) + ξ

∂Φ
∂ξ

+ η
∂Φ
∂η

)
in the liquid, (3.4)

the boundary conditions at η = 0 take the following form:

H− 1
2ξ
∂H
∂ξ

= −∂Φ
∂η

for ξ > δ, (3.5)

∂Φ
∂η

= 1 for ξ < δ, (3.6)

Φ = 0 for ξ > δ, (3.7)

the far-field behaviour is:

Φ→ 0 as ξ, η →∞ (3.8)
H → 0 as ξ →∞, (3.9)

and the self-similar version of Wagner condition is finally given by:

H(ξ) = 1
2ξ

2 − 1 for ξ = δ. (3.10)

This problem can now be solved in several steps.

3.2. Self-similar potential
In this geometry, Laplace equation can be solved with variable separation, leading to a
family of elementary cylindrical harmonic solutions with an exponential behaviour in η
and an oscillatory one in ξ. We recompose by summation and obtain :

Φ(ξ, η) =
∫ ∞

0
C(k)J0(kξ)e−kη dk. (3.11)

The weight function C(k) is determined with boundary conditions (3.6) and (3.7), leading
to the following pair of dual integral equations:

∫ ∞
0

kC(k)J0(kξ) dk = −1 for ξ < δ, (3.12a)∫ ∞
0
C(k)J0(kξ) dk = 0 for ξ > δ. (3.12b)

Solving these dual integral equations using the technique described in Sneddon (1960),
we obtain a closed-form expression for the weight function:

C(k) = 2
π

δk cos(kδ)− sin(kδ)
k2 = 2

π

d
dk

(
sin(kδ)
k

)
. (3.13)
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Anticipating the description of the contact line dynamics, we now derive ∂Φ/∂η at the
substrate level η = 0:

∂Φ
∂η

= − 2
π

∫ ∞
0

kδ cos(kδ)− sin(kδ)
k2 J0(kξ)k dk, (3.14)

where we recognize the sum of two Hankel transforms (see e.g. Sneddon 1995, table IV,
page 528). This allows us to obtain the following explicit expression for ∂Φ/∂η for η = 0:

∂Φ
∂η

= 1 for ξ < δ and ∂Φ
∂η

= − 2
π

(
δ√

ξ2 − δ2
− arcsin

(
δ

ξ

))
for ξ > δ. (3.15)

This result was originally obtained by Schmieden (1953) in the water entry framework.

3.3. Wagner condition and contact line dynamics
With the help of the vertical velocity expression in the near wall region just derived, we
can rewrite the kinematic boundary condition (3.5) as:

H(ξ)− 1
2ξ
∂H
∂ξ

(ξ) = 2
π

(
δ√

ξ2 − δ2
− arcsin

(
δ

ξ

))
for ξ > δ. (3.16)

This inhomogeneous differential equation can be solved using variation of parameters,
i.e. looking for a solution of the form H(ξ) = ξ2f(ξ). This gives:[

f(ξ)
]+∞

δ

= − 2
π

∫ ∞
δ

2
ξ3

(
δ√

ξ2 − δ2
− arcsin

(
δ

ξ

))
dξ. (3.17)

Upon using the far-field decaying behaviour of H (see equation (3.9)), this last equation
reduces to f(δ) = 1

2δ
−2 so that at the contact line the drop deformation is:

H(δ) = δ2f(δ) = 1
2 . (3.18)

In the self-similar space, the Wagner condition therefore takes the following remarkably
simple form:

1
2 = 1

2δ
2 − 1, (3.19)

from which we finally derive the position of the contact line:

δ =
√

3. (3.20)

We note that this result was found in a non-self-similar setting in the recent paper of
Riboux & Gordillo (2014), which also present experimental data in excellent agreement
with this theoretical prediction. It is interesting to remark that the contact line motion
d̃(t̃) =

√
3t̃ just predicted within the framework of Wagner theory is quite close from the

rough truncated sphere approximation r̃intersect =
√

2t̃ (Rioboo et al. 2002). Indeed Fig. 9
reports early post-impact successive positions of the contact line extracted from numerical
simulations performed with Gerris along with our theoretical prediction. Noticeably the
superposition between theory and numerical results is excellent, at least until the moment
of formation of a liquid corolla (here indicated with a red dot).

3.4. Analogy with the normal motion of an expanding disk in an infinite mass of liquid
In §2.2.3 we proposed to visualize the flow in an impacting drop as the one induced by a
flat rising disk expanding radially as the wet area (see also Fig. 6). We are now in a posi-
tion to formally justify this water-entry analogy. The axisymmetric flow induced by ‘the
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Figure 9. Comparison between the theoretical position of the contact line as a function of
time deduced from Wagner theory d̃(t̃) =

√
3t̃ (dashed line) and the position of the contact line

extracted from Gerris computations of an impacting drop at Re = 5000 and We = 250 (grey
dots). The red dot marks the birth of the corolla.

motion of a thin circular disk with velocity U normal to its plane, in a infinite mass of liq-
uid’ is for example analysed in Lamb’s classic textbook §101 (Lamb 1932). After deriving
some elementary axisymmetric solutions of Laplace equation of the form exp(±kz)J0(kr)
in §100, Lamb examined a variety of axisymmetric potential flows. Among those was the
one (later connected to the flow around a flat circular disk in normal incidence) where
at the symmetry plane z = 0 the potential takes the value φ = C

√
a2 − r2 for r < a and

φ = 0 for r > a, with a the disk radius. The solution for this problem was stated under
the following integral representation:

φ(r, z) = −C
∫ ∞

0
e−kzJ0(kr) d

dk

(
sin ka
k

)
dk. (3.21)

And from ‘a known theorem in Electrostatics’, Lamb obtained the expression for the
vertical velocity in the symmetry plane:

−
(
∂φ

∂z

)
z=0

=


1
2πC for r < a, (3.22a)

C

(
arcsin

(a
r

)
− a√

r2 − a2

)
for r > a. (3.22b)

This corresponds precisely to the flow within the impacting drop, after posing C = −2/π
and a = δ, thereby justifying formally our initial analogy between the impact-induced
flow with the one associated with a flat rising disk rapidly expanding with the wet area.
Setting C = 2U/π, Lamb remarked that the above potential indeed describes the flow
winding around a flat disk moving at velocity U . He further noted that a simple expression
for the fluid half-space kinetic energy could be derived from the previous relation:

Tdisk = 4
3ρa

3U2. (3.23)

This expression can immediately be transposed into the (nondimensional) kinetic energy
of the impact-induced flow within the drop:

T̃ = 4
√

3t̃3/2, (3.24)
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or, equivalently, into its dimensioned counterpart:

T = 4
√

3ρU7/2R3/2t3/2. (3.25)

We emphasize that this expression is derived within the frame of the falling drop and, as
such, represents the kinetic energy of the defect flow associated with impact. Although a
direct physical interpretation of this quantity is not straightforward, we will see in §3.7
that the knowledge of this defect kinetic energy will allow for a direct determination of
the impacting force.

3.5. Structure of the velocity field
We now investigate the structure of the velocity field in the contact region and search
for exact closed-form expressions and convenient approximations for this field.

3.5.1. Integral representation of the velocity field
In the fixed frame, the velocity field ũ(r̃, z̃, t̃) inside the impacting drop can formally be
derived from the (untranslated) potential −η+ Φ. Following the arguments developed in
§3.1, this velocity field is simply related to the self-similar velocity field U(ξ, η) via the
relation:

ũ(r̃, z̃, t̃) = U(ξ, η). (3.26)
where the components of the self-similar vector field U = (Uξ,Uη) are:

Uξ(ξ, η) = ∂Φ
∂ξ

, (3.27a)

Uη(ξ, η) = −1 + ∂Φ
∂η

. (3.27b)

Inserting the expression of the self-similar potential determined previously yields the
following integral representation for the vector field components:

Uξ(ξ, η) = − 2
π

∫ ∞
0

√
3k cos(

√
3k)− sin(

√
3k)

k
e−kηJ1(kξ) dk, (3.28a)

Uη(ξ, η) = −1− 2
π

∫ ∞
0

√
3k cos(

√
3k)− sin(

√
3k)

k
e−kηJ0(kξ) dk. (3.28b)

A closed-form expression is unfortunately not accessible in the general case. In the fol-
lowing however we calculate the value of these integrals at some particular places.

3.5.2. Closed-formed expressions for the velocity field along the axis and the substrate
Simple analytical solutions for the velocity field can be obtained from (3.28) at precise
locations. Along the symmetry axis for example, where ξ = 0, the properties of integrals
of exponentials allow to write:

Uη(ξ = 0, η) = −1 + 2
π

(
arctan

(√
3
η

)
−
√

3η
3 + η2

)
for η ≥ 0. (3.29)

This last result is confronted with numerical velocity profiles extracted from Gerris compu-
tations in Fig. 10. The nice agreement between the theoretical solution and the numerical
profiles seen in the self-similar space (Fig. 10b) here holds over more than a decade in
time.
Analogously, analytical forms for (3.28) can also be obtained along the substrate plane
η = 0 by exploiting the properties of Hankel transforms (Sneddon 1995). An expression
for the vertical velocity is already provided with equation (3.15), after inserting δ =

√
3.
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Figure 10. Left : Axial velocity profiles along the axis extracted from Gerris computations at
times t̄ = 3× 10−3, 5× 10−3, 10−2, 5× 10−2 and 10−1. Right : Comparison between the analyt-
ical prediction for the axial velocity given by equation (3.29) (red dashed line) and numerical
solutions obtained with Gerris, rescaled in the self-similar space (blue solid lines). The physical
parameters for this simulation are Re = 5000 and We = 250.

We remark that this analytical solution elucidates the faster-than-free-flight motion of
the free surface near the contact line discerned in §2.2.2. Likewise the radial velocity
distribution across the wet area is found to be:

Uξ(ξ, η = 0) = 2
π

ξ√
3− ξ2

for 0 ≤ ξ <
√

3. (3.30)

This unphysical inviscid slip velocity ũe(ξ) = Uξ(ξ, η = 0) cannot be observed in our sim-
ulations encompassing viscous effects. But this quantity is nonetheless relevant for it
corresponds to the edge velocity of the viscous boundary layer (studied in detail in §4).

3.5.3. An unusual stagnation point flow
In the very vicinity of the origin, the first order power series of the velocity field (3.28)
reads: 

Uξ(ξ, η) ' 2
π
√

3
ξ, (3.31a)

Uη(ξ, η) ' − 4
π
√

3
η, (3.31b)

or, equivalently, in dimensioned variables:
ur(r, z, t) '

2
π
√

3

√
U

R

r√
t
, (3.32a)

uz(r, z, t) ' −
4

π
√

3

√
U

R

z√
t
. (3.32b)

Though simple, this peculiar structure for the impact-induced unsteady stagnation point
flow is nonetheless counter-intuitive and could not have been inferred from simple dimen-
sional analysis. Noteworthy enough, this result is at variance with the typical structure
of the later intermediate flow associated with spreading ū ' (r̄/t̄,−2z̄/t̄) (see e.g. Eggers
et al. 2010; Lagubeau et al. 2012; Yarin & Weiss 1995).

3.5.4. Beyond the stagnation point: a remark on the overall velocity field structure
The previous approximation for the impact flow is valid in a small region near the origin.
To further investigate the limits of this representation we show Fig. 11 different radial
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Figure 11. Self-similar radial velocity as a function of η for ξ = 0.125, 0.25, 0.5, 1 and 1.5. These
velocities are rescaled by the outer solution of the boundary layer ũe(ξ) given by equation (3.30).
Blue solid lines represent the numerical solutions extracted from Gerris computations in the
self-similar space for t̄ = 5× 10−3, 10−2, 5× 10−2 and 10−1 (Re = 5000 and We = 250). The red
dashed line represents the theoretical solution Uξ(ξ, η) given by equation (3.28a). Note that the
boundary layer is so thin that it is almost indistinguishable (see also Fig. 19).

velocity profiles corresponding to various locations ξ. The collapse of the numerical pro-
files taken at various r̄ and t̄ (but such that r̄/

√
t̄ = r̃/

√
t̃ is constant in each figure)

onto the theoretical profiles is again an illustration of the relevance of the self-similar
representation. But it is also to be noted that while the stagnation point ansatz disre-
gards any radial velocity variation in η, the profiles exhibit a sensible variation along
the vertical coordinate η. This variation is best depicted with Fig. 12 where theoretical
radial velocity profiles divided by ũe(ξ) taken at different values ξ have been repre-
sented. Noteworthy enough, profiles corresponding to ξ . 1 collapse on a single curve.
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Figure 12. Evolution of the analytical self-similar radial velocity given by equation (3.28a) as
a function of η for ξ = 0.125, 0.25, 0.5, 1 and 1.5. These velocities are rescaled by the outer
solution of the boundary layer Uξ(ξ, η = 0) = ũe(ξ), equation (3.30).

We therefore speculate that in this region the radial velocity can be approximated by a
separated-variable solution such that Uξ(ξ, η) = ue(ξ)f(η) for ξ . 1, where f is a func-
tion capturing the whole dependence of the profile with the height. For larger values of ξ
though, significant deviations from this behaviour arise and variable separation cease to
hold: Uξ(ξ, η) = ũe(ξ)g(ξ, η) for ξ & 1 where g is a function satisfying g(ξ, η = 0) = 1, in
order to recover the slip velocity for η = 0. We remark that the latter prediction remains
particularly accurate across the contact region, even close to the contact line position
ξ =
√

3.

3.5.5. Flow pattern, contact line bypass and Lamb analogy
We now define the self-similar stream function Ψ(ξ, η) in the drop reference frame from
the potential: 

1
ξ

∂Ψ
∂η

= ∂Φ
∂ξ

, (3.33a)

−1
ξ

∂Ψ
∂ξ

= ∂Φ
∂η

. (3.33b)

By integration of the previous relations we deduce the following expression for Ψ(ξ, η):

Ψ(ξ, η) = 2
π

∫ ∞
0

√
3k cos(

√
3k)− sin(

√
3k)

k2 e−kηξJ1(kξ) dk, (3.34)

up to a constant. Formally, Ψ(ξ, η) is the stream function describing the winding flow
around a flat rising disk (Lamb 1932, §108). Figure 13 offers a comparison between
the streamlines of this Lamb analogy and the ones computed with Gerris for the drop
impact problem in the self-similar space. A good qualitative agreement between the
analytical and the numerical streamlines is noticeable, comforting the expanding disk
analogy followed here. Interestingly the winding motion around the contact line, as well
as the falling velocity overshoot near this region, are both captured with this analogy
and can be correlated with the peculiarities of the winding flow near the edge of a rising
disk.

3.6. Self-similar pressure
From the knowledge of the velocity potential we are now in a position to derive the
pressure field as the time derivative of the potential. In the self-similar space, the pressure
field is given by equation (3.4). Figure 14 proposes a comparison between the structure
of the self-similar pressure extracted from numerical computations performed with Gerris
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Figure 13. Comparison between the flow pattern within an impacting drop (left) and around
a rapidly expanding disk (Lamb analogy, right) in the self-similar space. In both cases, the
streamlines are represented in the moving frame. The red dots represent the theoretical position
of the contact line ξ =

√
3. The numerical streamlines represented on the left are derived from

the velocity field computed with Gerris at t̄ = 10−3 (Re = 5000 and We = 250). The theoretical
streamlines shown on the right correspond to isovalues of Ψ(ξ, η) defined in equation (3.34) (note
the correspondence with Lamb’s figure page 145).

Figure 14. Comparison between the pressure field developing inside an impacting drop (left)
and around a rapidly expanding disk (Lamb analogy, right). The pressure field represented on
the left is extracted from Gerris computations and represented in the self-similar space (t̄ = 10−3,
Re = 5000, We = 250; The isovalues are: 0.12, 0.24, 0.36, 0.48, 0.6, 0.72, 0.84). The self-similar
theoretical pressure field represented on the right is given by equation (3.4) (isovalues: 0.13,
0.28, 0.445, 0.57, 0.73, 0.9, 1.2). Though isovalues have been slightly changed between the two
panels, theoretical and numerical results are in a good overall agreement.

and the theoretical prediction. There it can be seen that the overall structure of the
pressure field developing in the impacting drop, and in particular the pressure peak in
the vicinity of the contact line already pinpointed out in Fig. 1, nicely matches with
the theory. Interestingly, the structure just described is at variance with the pressure
distribution around a flat disk rising steadily (Lamb’s original problem). Indeed in such
a configuration the pressure is expected to be maximal in the stagnation point area,
whereas in our model problem the pressure peaks near the contact line/disk edge. This is
a consequence of the motion unsteadiness: the pressure is here dominated by the ∂φ̌/∂t̃
contribution rather than the steady 1

2∇̃φ̌
2 term.

As in §3.5.2, closed form expressions for the pressure can be obtained along the axis
and the substrate plane. The radial structure of the self-similar pressure across the wet
area reads P(ξ, η = 0) = 3

π
√

3−ξ2
for 0 ≤ ξ <

√
3. This analytical prediction is con-

fronted with Gerris numerical results in Fig. 15. After a transient numerical initialization
phase (corresponding to the red curves), the pressure profiles collapse on the self-similar
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Figure 15. Left: Pressure trace on the substrate z̄ = 0 obtained from the numerical simulations
between t̄ = 5× 10−4 and 10−1 for Re = 5000 and We = 250. The color code for each decade is
the same as in Fig. 17. Note that the curves are equally distributed within each decade. Right:
Same as in the left but in the self-similar space. The black dashed curve represent the analytical
solution for P(ξ, η = 0).

Figure 16. Pressure along the axis r̄ = 0 obtained with Gerris for t̄ = 5×10−3, 10−2, 5×10−2 and
10−1 (same as in Fig. 10 right) represented in the self-similar space (Re = 5000 and We = 250).
The red dashed line is the analytical solution for P(ξ = 0, η). Fluctuations of the pressure around
the theoretical prediction is to be related with numerical projections errors.

analytical solutions (blue curves). In accordance with the overall pressure field structure
depicted earlier, the pressure radial profile presents a local minimum at ξ = 0 and a
maximum in the vicinity of the contact line, that is for ξ =

√
3 – where the analytical so-

lution exhibits an inverse square-root singularity, as in water-entry problems (e.g. Cointe
1989; Howison et al. 1991). We note that for later times the pressure peak is smoothed
out in the numerical simulations (grey curves). As this regularization coincides with the
birth of the ejecta sheet, we conjecture that this fall-off can appropriately be described
with a second-order Wagner theory (Korobkin 2007; Oliver 2007).
Similarly the expression for the self-similar pressure along the symmetry axis can also

be obtained analytically: P(ξ = 0, η) = 3
√

3
π(3+η2) for η ≥ 0. Figure 16 compares this last

result with rescaled axial pressure profiles extracted from numerical simulations. There
again the agreement between the computations and the theory is seen to hold for a large
time span.
The structure of the pressure field in the vicinity of the origin can be inferred from

these last results. Reexpressing the pressure cuts determined in terms of r̃, z̃ and t̃, we
get: 

p̃(r̃, z̃ = 0, t̃) = 3
π
√

3t̃− r̃2
, (3.35a)

p̃(r̃ = 0, z̃, t̃) = 3
√

3t̃
π(3t̃+ z̃2)

. (3.35b)
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Figure 17. Time evolution of the pressure p̄(0, 0, t̄) measured at the origin in the numerical
simulations with Gerris (Re = 5000 and We = 250). Note that each decade is represented with
a different colour. The theoretical prediction p̄(0, 0, t̄) =

√
3
π
t̄−

1
2 is superimposed with a black

dashed line.

From these two relations, we deduce the following expansion for the pressure near the
origin:

p̃(r̃, z̃, t̃) =
√

3
π

t̃−
1
2

(
1 + r̃2

6t̃
− z̃2

3t̃

)
+ . . . (3.36)

This expression provides with a local approximation for ∂φ̌/∂t̃ from which, after time in-
tegration and space differentiation, we readily recover the stagnation point flow structure
found earlier: (ũr̃, ũz̃) = 2

π
√

3 (r̃/
√
t̃,−2z̃/

√
t̃). This near-axis behaviour emphasizes again

that simple intuitive dimensional analysis suggestion r/t and −z/t is here not relevant.
The leading order term for the pressure at the origin follows:

p̃(0, 0, t̃) =
√

3
π

t̃−
1
2 , or, with dimensions p(0, 0, t) = ρU3/2

π

√
3R
t
. (3.37)

This result extends the t− 1
2 scaling law proposed by Josserand & Zaleski (2003) on the

basis of scaling arguments. A comparison between this theoretical prediction and Gerris
numerical simulations is proposed Fig. 17, using the color code of Fig. 15. After a numeri-
cal transient phase, the pressure rapidly reaches the self-similar regime. Remarkably, this
short-time similarity regime is nicely captured with Wagner theory up to times as large
as t̄ = 0.5. At this point, a sharp departure from similarity is observed and the pressure
promptly drops to 0. The physical mechanisms involved in this transition regime are still
to be elucidated.

3.7. Normal force induced by drop impact
Building on the last set of results, we deduce the total net normal force imparted by an
impacting drop on the underlying substrate at early times. Integrating the pressure on
the wet surface, we have:

F̃ (t̃) = 1√
t̃

∫∫
S
P(ξ, η = 0) dS = 2π

√
t̃

∫ √3

0

3ξ
π
√

3− ξ2
dξ = 6

√
3t̃. (3.38)

The dimensional counterpart of this net total force induced by the drop on the substrate
therefore reads:

F (t) = 6
√

3ρU5/2R3/2√t, (3.39)
where the force is seen to increase as t 1

2 for short times. Interestingly F (t) could have been
inferred directly from energy arguments, with no knowledge of the pressure distribution.
Indeed, writing the global kinetic energy conservation for the upper semi-infinite space,
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we have:
d
dtT = −

∮
pu · n dS, where T =

(∫∫∫
ρu2

2 dV
)
. (3.40)

In the context of a flat rising disk, the kinetic energy reduces to Tdisk = 4
3ρa

3U2 (Lamb
§102). This expression can immediately be transposed to the impacting drop problem so
that T = 4

√
3ρU7/2R3/2t3/2 (see equation (3.25) in §3.4). The power of pressure forces

then follows as d
dtT = 6

√
3ρU3R2 (Ut

R

)1/2. Dividing this power by U , we recover exactly
the previously obtained result for the net normal total force. This alternate derivation
of the normal force provides with yet an other illustration of the relevance of Lamb’s
analogy for the drop impact problem.

4. Matching with the viscous solution
The inertial limit (large Reynolds number hypothesis) investigated so far has allowed

us to model the flow within an impacting drop as the winding motion of an inviscid fluid
around an expanding disk, appropriately described by an harmonic potential obeying
the unsteady Bernoulli equation (§2.2). Actually the agreement between the correspond-
ing theoretical results and numerical Navier-Stokes computations carried out with Gerris
(encompassing viscous effects) consolidate this approximation, see e.g. Figs 10 for veloc-
ity, 16 for pressure or 9 for contact line motion comparisons. Most presumably, viscous
effects are here dominating only in very thin boundary layers developing along the wet
substrate. And indeed, even if the overall agreement between the radial velocity profiles
and the inviscid solution is evident, a careful examination of Figure 11 reveals the pres-
ence of these thin layers in the very vicinity of the solid wall. Even if spatially confined,
these boundary layers nonetheless play a key role when comes e.g. the question of the
erosion potential of an impacting drop. Consequently we now set out to describe the in-
ner structure of these viscous layers and to match it to the previously determined outer
inviscid solution. Viscous shear stresses and total erosion potential are eventually briefly
discussed.

4.1. A simple boundary layer problem?
Typically, the (inviscid) slip velocity ũe(r̃, t̃) = 2

π r̃/
√

3t̃− r̃2, here first introduced equa-
tion (3.30), and the no-slip condition at the substrate, trademark of real fluids, are
reconciled through the introduction of a viscous boundary layer. According to the classic
boundary layer theory (e.g. Schlichting 1968), the transverse scale of this layer is Re−1/2,
so that an appropriate inner coordinate Z̃ can be defined via z̃ = Re−1/2Z̃. The most
simple idea at this point is to think that the outer variables scales defined in §2.3 imply
that the non-linear terms of the boundary layer equation are negligible when compared
to unsteady and viscous terms, so that this equation would simply read:

∂Ũr
∂t̃

= −∂p̃
∂r̃

+ ∂2Ũr

∂Z̃2
, (4.1)

where capitalized variables refer to boundary layer quantities. Considering that Euler
equation in the inviscid outer domain reduces to ∂ũe

∂t̃
= −∂p̃∂r̃ , the boundary layer equation

can be recast as the following diffusion equation for the defect velocity:

∂

∂t̃
(Ũr − ũe) = ∂2

∂Z̃2
(Ũr − ũe). (4.2)
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The corresponding solution can then be expressed as a convolution between the forcing
term and the Green function of the heat equation:

Ũr = ũe(r̃, t̃)−
Z̃

2
√
π

∫ t̃

0
exp

(
− Z̃2

4(t̃− τ)

)
ũe(r̃, τ)
(t̃− τ) 3

2
dτ. (4.3)

Unfortunately this solution leads to a paradoxical cancelling of shear stresses at the wall.
We conjecture that this unreasonable result stems from the fact that the sharp longi-
tudinal variations associated with the contact line motion have here been disregarded.
Specifically non linear terms do balance unsteady terms, at least near the contact line
location r̃ =

√
3t̃. As a result, the boundary layer actually grows from this moving point

both in space and time. While a comprehensive analysis of this problem demands a care-
ful balance of each term likely resulting in a non linear boundary layer problem, beyond
the scope of the present study, we nonetheless propose in the following an approximation
based on an analogy with boundary layers developing behind shockwaves.

4.2. Approximation of the drop impact boundary layer via an analogy with
shock-induced boundary layers

We now depict qualitatively the inner viscous structure of the velocity field by using a
simple analogy. First remembering the tank-treading movement in the vicinity of the
contact line observed and discussed in §2.2.2, we point out the violent change in radial
velocity when passing through the contact line. In other words, the contact line embodies
a neat discontinuity where the slip velocity sees its value suddenly change from 0 to ũe.
Building on this observation, we consider in the following the contact line as a kind of
shock wave sweeping the substrate, and seeding a boundary layer in its trail (see figure
18). This problem is classic in compressible flows and was solved by Mirels (1955) in
the context of a shock tube (see Schlichting 1968, for more details). In this study, a
fluid initially at rest is swept by a shockwave travelling at celerity Us in the direction
x and instantly acquires an impulse of velocity U∞ in the process. Behind the normal
shockwave is left a growing viscous boundary layer.
The Ansatz for Mirel’s solution is to introduce ηm = z/

√
t− x/Us as the self-similar

variable. This variable not only takes into account time variations but also longitudinal
effects from the shock backwards in x. Disregarding any pressure gradient but considering
both unsteady and nonlinear effects, the momentum equation may be rewritten in terms
of ηm and of the velocity U∞f ′(ηm):

f ′′′(ηm)+ 1
2(ηm−

U∞
Us

f(ηm))f ′′(ηm) = 0, with f(0) = f ′(0) = 0, and f ′(∞) = 1. (4.4)

Note that compressible effects have here been absorbed via an appropriate Lees-Dorod-
nitsyn’s transformation (see Stewartson 1964). Two limiting cases clearly emerge from
the picture. For large U∞/Us (and after a rescaling and a change of sign due to the choice
of origin), the velocity profile tends to a Blasius profile. Conversely, for small values of
the velocity ratio, the velocity rather adopts an error function profile. Note that profiles
corresponding to intermediate values of this ratio can be found in Schlichting’s textbook.
From this sound result we may by analogy transpose this approach to the drop impact

problem (see Fig. 18). Obviously the outer solution for the drop impact problem is quite
more complex for neither Us nor U∞ are constant. The core idea consists in drawing a
parallel between the shock (at position Ust) and the contact line (at position

√
3t̃) on

the one hand, and between the steady slip velocity U∞ and ũe(r̃, t̃) on the other hand.
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Figure 18. Left: Sketch of the contact line during its motion and of the growing boundary
layer in its trail, analogous to that developing behind a shockwave. Right: Shockwave-induced
boundary layer, reproduced from the german edition of Schlichting textbook (Schlichting 1968).
Notations are from Schlichting, with a correspondence between x and r̃. Note that in the shock-
wave case, U∞ and Us are both constant.

Following this simple analogy the longitudinal velocity is approximated with:

Ũr(r̃, z̃, t̃) = 2r̃
π
√

3t̃− r̃2
f ′

(
z̃

2
√
t̃− r̃2/3

√
Re
)
. (4.5)

where f ′ is solution of an equation which is analogous to Eq. (4.4). The so-called com-
posite solution (Van Dyke 1975), which is an expansion valid in the ideal fluid and in the
boundary layer, then follows:

ũcomp
r =− 2

π

∫ ∞
0

√
3k cos(

√
3k)− sin(

√
3k)

k
e
−k z̃√

t̃ J1( kr̃√
t̃
) dk

+ 2r̃
π
√

3t̃− r̃2

(
f ′

(
z̃

2
√
t̃− r̃2/3

√
Re
)
− 1
)
.

(4.6)

In practice we approximated f ′ with erf function. Figure 19 proposes a comparison be-
tween the numerical velocity profiles extracted from Gerris computations and this approx-
imation, which proves to provide a fairly good description for the flow. We also tested
this prediction for different values of the Reynolds number in the range 250 to 5000. The
actual velocity profiles extracted from the simulations are confronted Fig. 20 with the
theoretical prediction. Interestingly, we note that this asymptotic result remains accu-
rate even for the lowest values of the Reynolds number. As a side note, we remark that
replacing the error function with Blasius profile yields a slightly more marked deviation
between theory and numerical results. That said we chose not to tune the velocity ratio
appearing in equation (4.4) as (i) this is too speculative and (ii) such adjustment is
certainly beyond the limits of our analogy.
It is interesting to note that for ξ smaller than

√
3, Mirel’s self-similar variable ηm

tends to Re1/2η = Z̃/
√
t̃, so that the vertical structure for solution (4.5) now simply

involves erf
(

1
2Re

1/2η
)
. Actually, this solution is merely the purely diffusive solution of

equation (4.2) for constant forcing (ũe constant in time).
From the previous results we may extract several quantities, such as the displacement

thickness or the locus of iso-velocities. The displacement thickness δ1 can readily be
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estimated with f ′ = erf as:

δ1 = 1√
Re

∫ +∞

0

(
1− Ũr

ũe

)
dZ̃ = 2

√
π
√
Re

√
t̃− r̃2/3. (4.7)

Similarly, isolines for the velocity can be extracted both for Gerris computations and for
boundary layer theory. Figure 21 provides with a qualitative comparison between theory
and numerical results, and it can be remarked that the overall prediction is more than
just qualitative.
Though the velocity ratio (2r/π/

√
3t̃− r̃2)/(

√
3t̃/2/t̃) (counterpart of U∞/Us in equa-

tion (4.4)) is infinite near the shock, we note that the agreement between numerical and
theoretical solutions is actually surprisingly good. We conjecture that whenever this ratio
decreases to a value lower than one, i.e. near the centre and for large times where this
ratio behaves as (4r̃)/(3π) so tends to 0, the error function approximation emerges as
the solution of equation (4.4). Eventually we remark that an in-depth analysis of these
phenomena demands a more involved description for the boundary layer. The Interactive
Boundary Layer theory (see e.g. Lagrée 2010), may be a candidate. Another promising
approach might be the careful boundary-layer analysis of Elliott & Smith (2015) with
intricate multiple structures. Anyway, a deeper analysis of the Wagner region (Cointe
1989; Oliver 2002; Korobkin 2007; Oliver 2007) has to be performed.

4.3. Estimation of the shear stress and the total drag
With this boundary layer solution, we are now in a position to provide with an estimation
of the wall shear stress τ̃ = 1

Re∂Ũr/∂Z̃
∣∣
Z̃=0, i.e. the viscous component of the stress which

has been disregarded so far. And indeed this quantity is of paramount importance as far
as raindrop-induced erosion of erodible beds is concerned (Ellison 1945; Rein 1993; Lagrée
2003; Leguédois et al. 2005). Upon using equation (4.5) (with the same erf approximation
for function f ′ as before), we readily obtain:

τ̃(r̃, t̃) = 2
√

3r̃
π

3
2 Re1/2(3t̃− r̃2)

. (4.8)

This theoretical prediction is confronted Fig. 22 with numerical profiles for the shear
stress extracted from Gerris computations, and is shown to nicely agree with observations.
From this local distribution for the stress we may infer the total drag induced with a
drop impact, by integration over the wet area:

D̃(t̃) =
∫ 2π

0

∫ √3t

0
τ̃(t̃) r̃ dr̃ dθ. (4.9)

Unfortunately this integral diverges due of the 1/x singularity developing in the near
contact line region, and visible from Fig. 22 left. Such singularities are usually a signature
of an additional physics in the diverging region, not taken into account in the model.
And indeed, Fig. 22 right reveals that the calculated shear stress significantly deviates
from the theoretical prediction at some small distance ∆ from the contact line position
to reach a maximum value. Now integrating the local shear stress up to r̃ =

√
3t̃ − ∆,

where ∆ is this small cut-off length, we can provide an estimation for the drag at leading
order in log(∆):

D̃(t̃) = 3
√

t̃

πRe

(
−2 log

(
∆√
t̃

)
− 4 + log(12)

)
. (4.10)
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Figure 19. Inner-boundary layer radial velocity profiles at different locations ξ : 0.125, 0.25,
0.5, 1 and 1.5. Blue solid lines correspond to numerical solutions obtained with Gerris at
t̄ = 5 × 10−3, 10−2, 5 × 10−2 and 10−1 for Re = 5000 and We = 250 and represented in the
self-similar space. Note that velocities are rescaled by their maximum value. The red dashed
lines stand for the theoretical composite solution (equation (4.6)) blending the self-similar vis-
cous boundary layer solution with the self-similar Wagner inviscid solution for impact. The
composite solution is also rescaled by the edge velocity ũe(ξ) given by equation (3.30).

Upon noting that this quantity can be dimensionalised with ρU2R2, the expression for
the total drag in dimensioned variables follows:

D(t) = 3√
π
µ

1
2 ρ

1
2U2R

√
t

−2 log

 ∆√
Ut
R

− 4 + log(12)

 . (4.11)

Noticeably, the departure from the theoretical prediction pinpointed out in Fig. 22 right
seems to occur at a precise location in self-similar variables, therefore suggesting a

√
t̃ time

dependence for ∆. From the numerical computations the value of ∆/
√
t̃ can be estimated

to be around 0.03. Note that this is obviously a crude estimation, which nonetheless allows
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Figure 20. Same as Fig. 19, but for different Reynolds number Re : 250, 500, 1250, 2500 and
5000 and at the fixed location in self-similar space ξ = 1.5.

Figure 21. Left: Isolines for the radial velocity ũr extracted from the numerical simulations.
Right: Theoretical isolines for the radial velocity given by the composite expansion ũcomp

r . Note
that the transverse scale has here been stretched to visualize the boundary layer.

to propose the following estimate for the impact-induced drag:

D(t) ' 10.7µ 1
2 ρ

1
2U2R

√
t. (4.12)

To further refine this prediction, the true nature of the cut-off length ∆ needs to be
clearly identified. Several candidates for governing this quantity naturally emerge, with
for example the viscous 1/Re regularisation length in the vicinity of the contact line
region or the inertial matching with the Wagner inner layer of typical size (d(t)/R)2. To
probe the nature of the cut-off length ∆ we performed extra simulations for Reynolds
number varying over more than a decade. Indeed should ∆ arise from viscous effects
it should vary appreciably with the Reynolds number. However an analysis of these
various simulations revealed that ∆ hardly changed with varying viscosities, as shown in
Table 4.3. These preliminary results advocate for an inviscid nature of the cut-off length
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Figure 22. Left: Numerical and theoretical shear stress distribution underneath the drop, repre-
sented in the self-similar space (the numerical data are taken at times t̄ = 5×10−3, 10−2, 5×10−2

and 10−1). Right: Same data represented as a function of the distance from the contact line (log
plot). This representation reveals a cut-off distance ∆ from which the 1/x singularity is screened.
Importantly the numerical mesh size has been chosen to be small enough (∆x = 5 × 10−4) to
ensure the resolution of the fine-scale motion in the vicinity of the contact line.

Re 250 500 1250 2500 5000

∆ 0.03− 0.05 0.03− 0.06 0.03− 0.05 0.03 0.03

Table 2. Cut-off length ∆ (illustrated Fig. 22 right) estimated for different Reynolds numbers
Re : 250, 500, 1250, 2500 and 5000. Although Re varies over more than a decade, the value of ∆
is quite insensitive to this variation. This suggests that the physical nature of this cut-off length
does not rely on viscosity.

which could be revealed with a next order in the ideal fluid expansion. This requires
further investigation.

5. Further comments and conclusion
Capillary phenomena as well as possible aerodynamic effects from the surrounding gas
have been disregarded so far. In this last part we shall estimate their influence on impact
and discuss natural extensions of the present work. A summary and general conclusion
then follow in §5.5.

5.1. Influence of capillary phenomena
The Weber number provides with a global measure of the ratio of available kinetic en-
ergy to surface energy. For low values of this number (with respect to unity), drops
typically bounce (Richard & Quéré 2000) while preserving their shape or gently spread
(Pasandideh-Fard et al. 1996) according to the wetting properties of the underlying sub-
strate. Note that even in this regime of droplet deposition, fast phenomena associated
with the imbalance of surface stresses can set in (Stebnovskii 1979). When the initial ki-
netic energy of the drop can no more be neglected in front of the surface energy (We ∼ 1),
a surface wavefield starts to develop on the drop, shaping it into a characteristic liquid
pyramid or torus (Renardy et al. 2003). For even higher values of the Weber number, such
as the inertial limit We� 1 investigated in the present paper, we do not expect capillary
phenomena to have a significant influence on a global scale, but locally surface tension
can still play a dominant role. For example, the high-curvature turnaround region at the
lamella root is typically a place where capillarity presumably plays an important role.
But due to scale separation, this region is invisible at our level of description. Indeed,
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in classic impact analyses see e.g. Oliver (2002), the typical extent of this intermediate
Wagner region associated with highly curved interfaces is found to be O(ε2), to be com-
pared both with the O(ε) size of the main impact region considered throughout this paper
(see §2.3) and with the O(ε3) thickness of the lamella. In the framework of our first-order
theory, we therefore do not anticipate appreciable deviations stemming from this zone.
Conversely, for a correct description of the ejected liquid sheet feeding conditions and of
the pressure fall-off near the lamella root reported Fig. 15, an accurate representation of
this matching region appears mandatory.
The contact line is an other region where marked effects from capillarity are to be ex-
pected. Drop impact is characterized with fast motions near the contact line. This violent
dynamic wetting phenomenon can arguably bring about issues in our description of im-
pact. Actually Blake et al. (1999) demonstrated that nonlocal hydrodynamics could play
a significant role in the dynamic contact angle selection. Based on experimental data,
Blake et al. further put forward the possible ‘mutual interdependence’ between the phe-
nomena in the near contact line region and the far-field hydrodynamics. This complex
interplay was further confirmed in the context of drop impact by Šikalo et al. (2005), but
especially for the late receding phase. Interestingly, these authors demonstrated that the
early evolution of the dynamic contact angle was quite insensitive to the experimental
conditions and fairly well captured by the contact angle of a truncated sphere. This nice
agreement certainly advocates for a predominance of inertial effects over capillary cor-
rections emanating from the dynamic contact line, at least in the early stage of impact.
And indeed, remembering that shortly after impact the fluid motion in the contact area
is essentially vertical, it appears likely that the point of contact can be determined with
mere inertial arguments. In our simulations, dynamic effects have been disregarded in
the description of the contact angle, which has been set to the constant value π/2. The
agreement between our simulations and the purely inertial theory is again an indication
of the unimportance of dynamic wetting. It might further be interesting to note that the
surface energy gained by wetting the solid is of the order of 1/We when rescaled by the
initial kinetic energy. Again this heuristically rules out any leading effect from wetting
in the short-term dynamics. This ratio evolves with time though, and ultimately wetting
phenomena become dominant, as evidenced by the late t1/10 spreading behaviour consis-
tent with Tanner’s law in the experiments of Rioboo et al. (2002) performed with purely
wetting liquids.

5.2. Influence of ambient air
For about a decade or so, there has been an increasing realization of the role played by
surrounding air in liquid impact in general, and drop impact in particular (Josserand
& Thoroddsen 2016). Following key experiments performed by Xu et al. (2005) on air-
induced splash triggering, a number of studies have focused on the events preluding liquid
sheet ejection. The first significant effect of surrounding air is to impart a dimple-like
deformation in the bottommost region of the drop (see experimental observations of the
dimple obtained by Thoroddsen et al. 2005 and X-ray ultra-fast imagery of the com-
plex dynamics of this air pocket by Lee et al. 2012). Smith et al. (2003) first depicted
theoretically this process by coupling lubrication in the squeezed air film and potential
flow inside the drop. These authors notably evidenced the presence of off-axis pressure
peaks. While more recent studies raised doubt about the link between this dimple for-
mation and splash triggering per se – that might merely be a secondary independent
consequence of the presence of surrounding gas (Duchemin & Josserand 2011), this gas
pocket is nonetheless formed over timescales and lengthscales overlapping that of the
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Figure 23. Left: Time evolution of the pressure as measured under an impacting drop with
air-induced dimple formation (i.e. bubble entrapment) taken into account. The red trace moni-
tors the pressure at the origin. The physical parameters of this Gerris simulation are Re = 5000
and We = 250. The superimposed black dashed line corresponds to the theoretical solution
p̄(0, 0, t̄) =

√
3
π

(t̄− t̄impact)−
1
2 delayed from t̄impact, where t̄impact is the real impact time (in the

numerical simulations, t̄impact corresponds to the time at which liquid and solid are just one grid
cell away). Right: Close-up of the bottommost point of the drop in the numerical simulation (at
t̄ = 1.54 × 10−1). The position of the interface is materialised with a blue line. The colormap
illustrates the distribution of the pressure field within the drop and in the gas layer. Noteworthy
enough the isopressure lines seamlessly cross the interface, revealing the transparency of the
dimple to pressure. Note that for the sake of clarity, the vertical scale has here been magnified
by a factor 22.

phenomenon reported in the present paper (Mani et al. 2010). It is therefore legitimate
to question about the impact of this air entrapment phenomenon on our results.
In order to investigate these effects, we performed a simulation of a liquid drop approach-
ing a solid substrate, deforming as a result of lubrication pressure rise in the film, and
finally impacting the substrate. Figure 23 represents the time evolution of the pressure
exerted on the support at the axis. Considering that air delays the moment of impact
(Mani et al. 2010), we introduce a time shift timpact corresponding to the moment where
the drop and the solid are only a grid cell apart. Interestingly our results reveal that
the pressure at the origin (measuring now the entrapped bubble pressure) is fairly well
captured by relation (3.37) after replacing t̃ with the true time from impact t̃− t̃impact,
that is:

p̃(0, 0, t̃) =
√

3
π

(t̃− t̃impact)−
1
2 . (5.1)

This agreement between our prediction and a simulation incorporating air entrapment
effects not only validates and extends our results beyond the initial scope of Wagner
impact theory (disregarding air effects), but also suggests that the results of the present
manuscript correspond to the far-field behaviour of an impacting drop in presence of
surrounding gas. This observation outlines the appealing prospect of describing both the
dimple geometry and associated dynamical fields by analytical means.

5.3. Main results
In this paper, the short-term dynamics of a drop impacting a rigid substrate has been
elucidated. A self-similar solution for the impact-induced flow has in particular been
unraveled and matched to a self-similar viscous boundary layer. This solution has been
intensively validated with numerical Gerris computations, and this constant cross-testing
between asymptotic theory and multiphase adaptive flow simulations is one of the key
feature of the present approach. In the course of this investigation, several important



Drop impact on a solid surface : short time self-similarity 31

results have been substantiated. These results allow both for a simple yet accurate qual-
itative depiction of drop impact along with an in-depth quantitative understanding of
this phenomenon. These key results are summarised in the following:
• A fundamental analogy between the water entry of a solid object (Wagner’s original

problem) and drop impact exists.
• During the earliest moments post-impact, the contact line follows a tank-treading

motion. There is in particular no contact line sweeping motion.
• The impact-induced flow is concentrated in the contact zone, and the far-field merely

corresponds to an undisturbed rigid-body motion reducing to a global free-flight at ve-
locity U . There is no global or large-scale drop deformation during impact.
• The position of the contact line is given by the simple relation d(t) =

√
3RUt.

Though simple, this locus does not correspond to the cut radius of a truncated sphere.
• The wet footprint extent of the drop dictates the size of the impact-induced per-

turbed flow.
• There is a consistent analogy between the impact-induced flow within the drop and

the flow induced by a flat rising expanding disk (Lamb’s analogy).
• The impact pressure is to be associated with the unsteady Bernoulli contribution

−∂tφ. It cannot be inferred from usual inertial steady contribution −ρU2.
• As a corollary to the previous point, the impact pressure is extremal at the contact

line. It is not maximal at the stagnation point.
• A full three-dimensional self-similar solution for the impact-induced flow of an in-

viscid drop exists and matches quantitatively realistic numerical data on drop impact.
• Analytical solutions for this flow have been presented in integral forms (with some

explicit closed-form expressions along some particular locations), see table 5.3 (in dimen-
sional form).
• An original inviscid stagnation point structure with an unexpected r/

√
t slip velocity

develops in the vicinity of the origin. The velocity field structure markedly differs from
the classic r/t prediction occurring for later times.
• An approximate self-similar solution for the viscous boundary layer seamlessly match

with the inviscid impact-flow (analogy with Mirels shockwave problem).
• Self-similar variables have the same structure z/

√
t both in the outer region and in

the boundary layer.
• From the knowledge of the distribution of the dynamical fields across the wet area,

the expressions for the normal and tangential total force on the substrate are provided.
• The asymptotic solution is found to be numerically valid over several decades in

time up to t = 0.5R/U . This solution was found to be insensitive to air-induced dimple
formation.
• For times of order one, the present results remain at least qualitative.

5.4. Perspectives
The results obtained in the present manuscript offer several appealing prospects. On the
role of surrounding air first, the last results of §5.2 support the idea that the dimple
geometry and characteristics could be derived analytically, with a far-field corresponding
to the here presented flow. The question of the role of air in suppressing the pressure
divergence (Josserand et al. 2015), or in altering the shear stress distribution is also
a central point for a correct description of a single drop impact action. Similarly, the
question of the scope of the present results for impact on a liquid film or on a soft/erodible
substrate is also of interest. Indeed, the analytical and numerical toolboxes developed
here might well be transposed to other rheologies (such as Bingham, see Staron et al.
(2013) or granular media, (Lagrée et al. 2011)). While the inverse-square-root singularity
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(r = 0, z = O(d(t)) > 0+) (0 ≤ r < d(t) =
√
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√
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Table 3. Summary of the main results of the paper in dimensioned form. The top part of the
table refers to ideal fluid results (left: closed-form results along the axis of symmetry, right:
along the substrate). The left middle part sums up inviscid stagnation point results, and the
right middle part summarises the viscous boundary layer results. Observables such as the net
normal force F (t) and tangential force D(t) are reminded as well in the bottom part of the table.

of the pressure is integrable and yields a finite normal force, the sharper singularity
observed in the viscous shear stress distribution leads to a divergence for the total drag.
From the simulations, it appears that the singularity is screened over a lengthscale ∆.
As discussed in §4 this cut-off length proves to be quite insensitive to variations of the
Reynolds number. This result suggests that the nature of ∆ would be purely inertial.
A second-order correction of the ideal fluid solution is therefore probably necessary to
explain this regularisation.
While the rudimentary description for the viscous boundary layer proposed in the manuscript
certainly necessitates a refined analysis, the question of inertial effects at the Wagner re-
gion scale is also worth studying. Not only an in-depth investigation of such effects might
provide an explanation for the regularisation of the shear stress, but it shall shed light
over the onset of lamella formation, which still conceals mysteries. Finally the process
responsible for the loss of self-similarity observed at intermediate times is still uncertain:
confinement effects arising when the impact-flow lengthscale overlaps with the drop ex-
tent, eventual deceleration in the far-field region or contact line geometrical departures
from the square-root law are all a priori legitimate to explain the final pressure fall-off,
and certainly needs further investigation.

5.5. To conclude
Within the numerous limits carefully drawn along this paper, a consistent asymptotic
description of the dynamics and geometry of drop impacting a solid surface has been
proposed. The results may simply be summarised through three analogies: Wagner water
entry (drop impact being the dual of this problem), Lamb’s disk winding flow (that
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Figure 24. Typical mesh structure refined adaptively by Gerris flow solver during a simulation.

accurately represents the flow induced with the impact) and Mirels shockwave-induced
boundary layer (remarkably capturing the boundary layer developing in the contact
line’s trail). The original strategy developed throughout this paper has been to validate
those three analogies through a constant confrontation between numerical simulations
and asymptotic analysis. Our study revealed that very powerful state-of-the-art adaptive
codes now allow to probe all the dynamic features of realistic violent events such as
drop impact, but in the meantime, it also emphasised again how powerful and useful
asymptotic analysis is in providing an in-depth understanding of such phenomena and in
uncloaking the raw data delivered by the code. Finally our study brought to light some
interesting features and observables (such as the particular stagnation point structure,
pressure distribution, contact line motion, viscous total drag force) never observed to date
neither in simulations nor in experiments. This certainly arouses the exciting prospect
of their unveiling in future experimental studies.

6. Appendix
6.1. Gerris flow solver

All the numerical simulations were performed with the open-source code Gerris (freely
downloadable at http://gfs.sourceforge.net – see also Popinet 2003, 2009; Lagrée
et al. 2011, for details). Gerris is a solver of the incompressible Navier-Stokes equations
taking into account multiple phases and surface tension. The code makes use of a finite-
volume approach and of a Volume-of-Fluid (VoF) method for an accurate description
of the transport of the interfaces between two-phase flows. It also features an adaptive
mesh refinement procedure allowing for both a precise description of flows with large
scale separation and a reduction of computational costs. Typically in our simulations the
finest grid is chosen to be concentrated along free surfaces and within the contact zone to
fully capture the features of the pressure field and of the boundary layers (see Fig. 24). In
these areas the corresponding local resolution usually corresponds to 4096×4096 but can
reach local density as high as 32768×32768 if needed (examples being Fig. 1 or Fig. 2).

The simulations carried out in this study all correspond to the impact of a water drop
in air with a Reynolds number of 5000 and a Weber number of 250. The computations
were performed in an axisymmetric configuration. We emphasize that both liquid and
air motions were computed with Gerris, but, to be consistent with the post-impact theory
developed in this paper the simulations disregarded air cushioning and dimple formation
(except explicitly specified, see §5.2). To avoid dimple formation in this multiphase flow

http://gfs.sourceforge.net
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Figure 25. Comparison between the pressure measured in the Gerris simulations at the origin
for two different maximum level of mesh refinement (red dots) and the theoretical prediction
(black dashed line). The left panel corresponds to a simulation where the maximal grid density
is 2048×2048, and the right panel to a simulation where the maximal density is 4096×4096 (in
both cases the physical parameters are Re = 5000 and We = 250). The analytical solution of
the pressure is given by p̄(0, 0, t̄) =

√
3
π
t̄−

1
2 , see equation (3.37). After a short transient, both

simulations quickly reach the same self-similar asymptotic regime.

Figure 26. Close-up of Fig. 25 right. Note that the numerical evolution for the pressure is
slightly above (about 7 %) the analytical solution.

simulation, the initial configuration is set to a slightly truncated liquid sphere already
touching the solid surface. The liquid is initialised with a constant downward velocity.
The initial sphere penetration r̄0 = 10−4 is at most one grid cell deep (for example the
grid spacing is ∆x ' 5 × 10−4 for 4096×4096 simulations). Finally a no-slip boundary
condition is enforced at the substrate level and the contact angle is fixed at π/2. The
reliability of the results has been thoroughly checked with a convergence study on the
refinement level, and with particular attention paid for the pressure field and the position
of the contact line convergence. Fig. 25 proposes a comparison between the evolution of
the pressure field measured at the origin for two levels of resolution (2048×2048 and
4096×4096). For both cases the numerical solution quickly converges to the theoretical
solution p̄(0, 0, t̄) =

√
3
π t̄−

1
2 (see equation (3.37)) around t̄ = 5 × 10−3 and leaves the

self-similar regime at around t̄ = 6×10−1. We remark that after a transient period, both
numerical solutions give consistent information and collapse onto the theoretical solution
over almost three decades. Note that the occurrence of sporadic glitches in the numerical
solution (see e.g. Figs 17, 25 or 26) are to be related with the classic difficulty of computing
the pressure in projection methods, such as the one implemented in Gerris (Brown et al.
2001; Popinet 2003). We finally remark that an error of ca. 7 % between the numerical
prediction for the pressure at the origin and the theoretical prediction was consistently
noted in our simulations (see Fig. 26). The nature of this discrepancy is uncertain though,
and might either be related to the aforementionned numerical difficulties in computing
the pressure or to the limits of our first-order asymptotic description for drop impact.
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