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Starting from the general expression for the ground state correlation energy in the adiabatic connection fluc-
tuation dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is
usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for
alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the sec-
ond order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy
similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the ker-
nel used to evaluate the response functions. In this case the use of an approximate kernel is crucial to simplify
the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of
these methods are discussed and it is shown that one can take advantage of density fitting or Cholesky decompo-
sition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the
frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular
reaction energies shows that exchange effects are instrumental to improve over direct RPA results.

I. INTRODUCTION

In the past few years, random phase approximation (RPA)
approaches, which belong to the methods on the 5th rung of
Jacob’s ladder [1], have been on the way of becoming a prac-
tical tool to construct correlation energy functionals [2–23].
Specifically, within the framework of the adiabatic-connection
fluctuation-dissipation-theorem (ACFDT), the electronic cor-
relation energy is expressed in terms of dynamical (frequency-
dependent) linear response functions and the electron-electron
interaction is gradually switched on from the independent par-
ticle reference to the fully interacting state using an adiabatic
connection parameter. Therefore the correlation energy takes
the form of a multiple integral involving both the frequency
and the adiabatic connection parameters. Instead of the exact
linear response function, convenient approximations, like the
RPA, are used.

Among the numerous possible ways to express the RPA
ground state correlation energy, depending on the order in
which the analytical and/or numerical frequency- and inter-
action strength-integrations are performed, one may cite (1)
the density matrix formulation [2], which leads to expressions
involving numerical integration over the interaction strength
and (2) the dielectric matrix formulation which involves a nu-
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merical integral over frequency of a logarithmic expression
involving the dynamical dielectric function. This approach
has mainly been used by solid state theorists [4, 9, 12, 24]
and recently adapted also in a density fitting framework by
Furche et al. [25]. Within this formulation the direct calcu-
lation of the lowest eigenvalues and eigenvectors of the di-
electric matrix [26] can be used to achieve a more compact
representation of dielectric functions [9, 10, 12, 13, 23, 27].
Finally, there are approaches which avoid numerical integra-
tion altogether, like (3) the plasmon formula, obtained after
a double analytical integration on both the frequency and the
interaction strength [7]. An elegant way to obtain the plasmon
expression consists in solving the algebraic Riccati-equations
of the RPA problem [28, 29]. This method has been shown
to be strictly equivalent to a coupled cluster doubles approach
in the ring-approximation (rCCD) [30, 31]. Modifications and
approximations to the rCCD equations and energy expression
has led to a whole class of additional RPA-based approaches
for the ground state correlation energy [18, 29, 32, 33].

The RPA problem can be set up either with the inclusion
of nonlocal exchange effects (leading to a class of approxima-
tions denoted RPAx) or by restricting the coupling between
independent particle responses to the direct Hartree interac-
tion (leading to the class denoted dRPA). Additionally, ac-
cording to the classification and nomenclature proposed in
Ref. 34, RPA methods for the ground-state correlation energy
can be sought in two main flavors: either by the complete
neglect of the exchange integrals, i.e. by taking the contrac-
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tion of the dRPA response function with non-antisymmetrized
two-electron integrals (dRPA-I), or by a full consideration of
non-local exchange, when antisymmetrized two-electron in-
tegrals are contracted with the RPAx response function ma-
trix elements (RPAx-II). This latter approach has been fol-
lowed by some early works in quantum chemistry, based on
Hartree-Fock orbitals [29, 35–37], while dRPA is usually the
method of choice in the density functional context, starting
from Kohn-Sham orbitals. Partial inclusion/omission of non-
local exchange leads to "mixed" methodologies, like dRPA-II
and RPAx-I.

It has been suggested that certain shortcomings of the dRPA
correlation energy can be remedied by including nonlocal ex-
change interactions in a perturbative way, i.e. with the dRPA
polarization propagator being contracted with a list of fully
antisymmetrized two-electron integrals [11, 14]. We can men-
tion, in this aspect, the SOSEX (second order screened ex-
change) corrections, which have been formulated originally
within the rCCD formalism. It has been pointed out that "it
is difficult to motivate this approximation in the framework of
ACFDT" [11]. This situation seems to be somewhat paradox-
ical, since the plasmon formula, identical to the rCCD cor-
relation energy expression, can be derived from ACFDT in a
straightforward manner [7], and there is no fundamental rea-
son to think that an analogous derivation is impossible for SO-
SEX. In fact, it has been shown that a very similar perturbative
screened exchange formula, which has been designated by the
acronym dRPA-IIa, can be obtained within the density matrix
formulation of RPA [34]. Although this expression gives cor-
relation energies numerically very close to the rCCD-based
SOSEX, it has been proven that they are not strictly identi-
cal [38]. Recently, in a similar but different fashion, the AXK
introduced by Bates et al. reduces the self-interaction error
and improves the description of static correlation over dRPA.

In this work we discuss different approximations to effi-
ciently include exchange effects within the dielectric matrix
formulation of the RPA correlation energy. In a quantum
chemical context these methodologies provide an alternative
to the ring-CCD-based RPA formalism. Additionally, these
methods are of significant interest for the solid state physics
community, where the dielectric matrix approach is almost
exclusively used. As it will be shown in the following, the
dRPA-IIa approximation can be derived also in the dielec-
tric matrix formulation of RPA, leading to an alternative al-
gorithm to calculate the SOSEX-like dRPA-IIa energy. At the
same time we have access to the conventional MP2 energy,
which corresponds to the lowest non-vanishing term in the se-
ries expansion of the dRPA-IIa correlation energy. We note
that approximations in the RPAx class lead to other correla-
tion energy estimates, which can be also adapted to the loga-
rithmic formulation. Specifically, the RPAx-Ia approximation
is derived, which includes only the particle-hole contribution
to the exchange kernel. It will be shown that this last approach
provides the most promising results in the numerical tests con-
sidered in this work.

In Sec. II A, the working equations for the well-known di-
electric matrix formulation of the direct RPA method will be
derived from the ACFDT. This version is particularly simple

because of the complete neglect of the exchange effects. In-
corporation of exchange leads to a more complicated expres-
sion and one is constrained to apply various additional ap-
proximations to obtain practical expressions. As discussed
in Sec. II B, one possibility is a SOSEX-like correlation en-
ergy expression, which is the dielectric matrix formulation
of the dRPA-IIa variant. In Sec. II C we will discuss an ad-
ditional variant, which includes exchange effects in the re-
sponse function. The possible practical implementations of
these methodologies are discussed in some details in Sec. III.
Several atomic and molecular systems will be used for numer-
ical illustration of the formalism, in Sec. IV. Finally, Sec. V
contains our conclusions.

II. RPA VERSIONS FROM ACFDT AND THEIR

DIELECTRIC MATRIX FORMULATION

In the adiabatic-connection fluctuation-dissipation theorem
(ACFDT) approach the correlation energy reads as [39, 40]:

EACFDT
c = −1

2

∫ 1

0
dα

∫ ∞

−∞

dω

2π
Tr {Πα(iω) G − Π0(iω) G} , (1)

where G is the matrix representation of the interaction which
contains two-electron integrals (see Eqs. (7) and (16)). In
Eq. 1 the four-index matrix representation of the dynamical
polarization propagator Πα(iω) (also called density matrix re-
sponse function) at interaction strength α is obtained from a
Dyson-like equation,

Πα(iω) = (I − αΠ0(iω) F)−1
Π0(iω), (2)

where F is the interaction kernel matrix (see Eqs. (7)
and (24)). In the two previous equations, the polarization
propagator of the non-interacting reference system, Π0(iω), is
given by:

Π0(iω) = −(Λ0 − iω∆)−1
, (3)

with

Λ0 =

(

ǫǫǫ 0

0 ǫǫǫ

)

and ∆ =

(

1 0

0 −1

)

. (4)

In the random phase approximation (RPA), the elements of the
Λ0 matrix are the independent one-particle excitation energies:
(ǫǫǫ)ia, jb=ǫiaδi jδab, where ǫia=ǫa−ǫi, ǫa is the energy of a virtual
orbital and ǫi the energy of an occupied orbital. Here and in
the following we assume that a finite-dimensional basis set is
used for the representation of occupied and virtual orbitals.

The polarization propagator of the non-interacting refer-
ence system [35] then reads:

Π0(iω) =

(

Π
+
0 (iω) 0

0 Π
−
0 (iω)

)

, (5)
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which introduces compact notations for the diagonal blocks,
Π
+
0 (iω) = − (ǫǫǫ − iω1)−1 and Π−0 (iω) = − (ǫǫǫ + iω1)−1.
The dimensions of the matrices appearing in Eq. (1) are

(2Nexc × 2Nexc), where Nexc is the number of the products
between occupied and virtual orbitals. However, since we
need only the trace for the correlation energy, the same re-
sult can be obtained using matrices with a dimension reduced
to (Nexc × Nexc), as it will be shown below.

In several earlier works [15, 41] the derivation of the log-
arithmic energy expression have been based on a Taylor ex-
pansion of matrix functions (namely the inverse and the loga-
rithmic functions). Such a procedure raises some problems of
general validity, since the conditions for an absolute conver-
gence of the series expansions cannot be always satisfied. Be-
low, we propose an alternative derivation using matrix func-
tions, which requires only the weaker condition that the matrix
be diagonalizable. The general definition of a matrix function
is

f (A) = Q f (D) Q−1, (6)

where A = QDQ−1 is the eigendecomposition of the matrix A.
Hence, all along the manuscript, the matrices D are diagonal
matrices of eigenvalues and Q are eigenvectors.

A. Direct RPA

In the direct RPA (dRPA), the nonlocal Hartree-Fock ex-
change is not taken into account in the interaction kernel
F of the Dyson-like equation in Eq. (2). Furthermore, we
will first consider an interaction matrix G constituted of non-
antisymmetrized two-electron integrals in Eq. (1). This yields:

F = G = V =

(

K K

K K

)

, (7)

where Kia, jb = 〈i j|ab〉 are the non-antisymmetrized two-
electron integrals (physicist’s notation) in spin-orbitals. In this
situation, one only has to deal with the matrix product Π0(iω)V
(see Eqs. (1) and (2)). Considering the block-structure of
Π0V,

Π0V =

(

Π
+
0 K Π

+
0 K

Π
−
0 K Π

−
0 K

)

, (8)

application of the following unitary transformation:

U =
1
√

2

(

I I

I −I

)

, (9)

to the integrand of Eq. (1) yields:

Tr{(1 − αΠ0(iω)V)−1
Π0V − Π0V}

= tr{(1 − αΠ0(iω)K)−1
Π0K −Π0K}, (10)

where we use the notation Π0(iω) = Π+0 (iω) + Π−0 (iω). The
notation tr{X} emphasizes that we have reduced the matrix
dimensions as compared to Tr{X} (the same applies later to
det(X)/Det(X) and to log(X)/Log(X)). Defining the func-
tion Πα(iω) that satisfies the (Nexc × Nexc) dimension-reduced
Dyson-like equation,

Πα(iω) =
(

I − αΠ0(iω)K
)−1
Π0(iω), (11)

we retrieve the analog of Eq. (1) with dimension-reduced ma-
trices

EdRPA-I
c = −1

2

∫ 1

0
dα

∫ ∞

−∞

dω

2π
tr {Πα(iω)K −Π0(iω)K} . (12)

Equation (12) can be further transformed either by an analyt-
ical frequency-integration, which leads to the density matrix
expression of the dRPA correlation energy (this has already
been discussed in a previous publication [34], and is briefly
recalled in Appendix A), or by an analytical integration over
the adiabatic connection parameter. This will be done by con-
sidering the eigenvalue decomposition ofΠ0(iω) K. Using the
dimension-reduced Dyson-like equation (Eq. 11), we express
Πα(iω)K seen in Eq. (12) as a matrix function of Π0(iω)K:

Πα(iω)K = Q(iω)
(

I − αD(iω)
)−1

D(iω)Q−1(iω), (13)

where, as stated before, D(iω) is the diagonal matrix of the
eigenvalues of Π0(iω)K and Q(iω) contains its eigenvectors.
Using the cyclic invariance of the trace and denoting by dia

the ia-th diagonal element of D, Eq. (12) becomes

EdRPA-I
c = −

1
2

∫ ∞

−∞

dω

2π

Nexc
∑

ia=1

∫ 1

0
dα

{

dia(iω)
1 − αdia(iω)

− dia(iω)

}

=
1
2

∫ ∞

−∞

dω

2π

Nexc
∑

ia=1

{

log
(

1 − dia(iω)
)

+ dia(iω)
}

=
1
2

∫ ∞

−∞

dω

2π
tr

{

log (I −Π0(iω) K) +Π0(iω) K
}

. (14)

We recognize here the matrix representation of the dielectric
function, ǫǫǫ(iω) = I − Π0(iω)K, and this expression may be
called the dielectric matrix formulation of the dRPA-I corre-
lation energy.

Although it might not be obvious at first sight, a further
analytical integration on the frequency leads directly to the
plasmon formula. Such a relationship has already been men-
tioned by McLachlan et al. in the sixties [42]. Inversely, the
dielectric matrix formulation can be derived from the plasmon
formula, as it has been shown recently by Eshuis et al. [25]. In
Appendix B, we present an alternative derivation of the plas-
mon formula for the dRPA-I correlation energy from the di-
electric formulation of Eq. (12). This seals the strict equiv-
alence of all formalisms in the case of dRPA-I. Notice that
the plasmon formula applies only to the dRPA-I (and to the
RPAx-II, which is not discussed here) energy expressions.
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Moreover, doing a series expansion of the matrix logarithm
in Eq. (14) and retaining only the first non-vanishing term, we
obtain:

E
dRPA-I (2)
c = −1

4

∫ ∞

−∞

dω

2π
tr {Π0(iω) KΠ0(iω) K}

= −1
4

∫ ∞

−∞

dω

2π

∑

ia, jb















−2ǫia
ǫ2

ia
+ ω2

Kia, jb

−2ǫ jb

ǫ2
jb
+ ω2

K jb,ia















= −1
2

∑

ia, jb

Kia, jb K jb,ia

ǫia + ǫ jb

= EdMP2
c , (15)

which corresponds to a direct-MP2 method, that is to say a
version of the MP2 energy without exchange terms [2] (in its
range-separated variant, JMP2 [43]).

B. RPA+SOSEX

Considering the fact that, in the ACFDT expression, the po-
larization propagator carries information about the screening
properties in the system, a SOSEX-like Ansatz consists in re-
placing the direct interaction matrix V by the antisymmetrized
expression W,

G = W =

(

A′ B

B A′

)

, (16)

where the antisymmetrized two-electron integral matrices
have the elements A′

ia, jb
= 〈ib|a j〉 − 〈ib| ja〉 and Bia, jb =

〈i j|ab〉 − 〈i j|ba〉. This particular form of the interaction ma-
trix can be derived from the time dependent Hartree-Fock
equations using the fact that the independent particle wave
function, providing the bare, unscreened response, satisfies
the Brillouin theorem. We note that one can argue for other
choices of the W matrix (vide infra).

The resulting correlation energy expression corresponds to
the dRPA-II variant [34],

EdRPA-II
c = −1

2

∫ 1

0
dα

∫ ∞

−∞

dω

2π
Tr {Πα(iω) W − Π0(iω) W} ,

(17)

which can be designated also as screened exchange dRPA
(dRPA-SX), since the dRPA response function screens the

full, Coulomb plus exchange interaction represented by the
matrix W.

As a consequence of the more complicated block structure
of the W interaction matrix, it is less obvious to reduce the
dimensions of the problem in the dRPA-II correlation energy
as compared to the dRPA-I case. It is reasonable to decompose
W into a "major" contribution, involving four identical blocks
B and a "minor" correction, which consists in the (A′ − B)
difference of the diagonal blocks:

W =

(

B B

B B

)

+

(

(A′ − B) 0
0 (A′ − B)

)

. (18)

The major contribution to the integrand can be brought to
a convenient form by applying the unitary transformation U

(Eq. 9) to the matrix products under the trace in Eq. (17).
After evaluating the inverse of the blocked matrix and sub-
sequent matrix multiplications, one gets the trace of the major
contribution in dimension-reduced matrices. The minor con-
tribution to the energy expression of Eq. (17) can be neglected,
as is shown in Sec. 2 of the Supporting Information, and this
leads to the following approximation of the screened exchange
dRPA, denoted in our previous publication [34] as dRPA-IIa:

EdRPA-IIa
c = −1

2

∫ 1

0
dα

∫ ∞

−∞

dω

2π
tr {Πα(iω) B −Π0(iω) B} .

(19)

As in the dRPA-I case, after analytical frequency integra-
tion we get the same density matrix formulation expression
as the one we have obtained in a quite different manner in
Ref. 34.

Before exploring another alternative, which consists in an
analytical integration according to the interaction strength pa-
rameter, the reader must bear in mind the close analogy of
dRPA-IIa and the so-called SOSEX (second order screened
exchange) approximation [11, 44], usually defined in the
framework of a drCCD (direct ring coupled cluster doubles)
theory. Although the above ACFDT-based expression is not
strictly equal to the drCCD-based SOSEX, their difference
appears only at the third order of perturbation, as was demon-
strated in Ref. 38. The difference of those two variants has
been found numerically small for all of the systems studied up
to now [34]. The approximation, which leads from dRPA-II
to dRPA-IIa shows in a self-explanatory manner the pertur-
bation character of the SOSEX (dRPA-IIa), i.e. "second-order
screened exchange" compared to the fully screened exchange
(SX, i.e. dRPA-II) version.

In order to perform the analytical integration along the adi-
abatic connection path, we take advantage of the matrix func-
tion formalism (with now obvious notations for Q and dia):
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EdRPA-IIa
c = −1

2

∫ ∞

−∞

dω

2π

Nexc
∑

ia=1

∫ 1

0
dα

{(

(

1 − αdia(iω)
)−1 − 1

)

(

Q−1
Π0(iω)BQ

)

ia,ia

}

=
1
2

∫ ∞

−∞

dω

2π

Nexc
∑

ia=1

{(

log
(

1 − dia(iω)
)

d−1
ia (iω) + 1

)

(

Q−1
Π0(iω)BQ

)

ia,ia

}

=
1
2

∫ ∞

−∞

dω

2π
tr

{

log (I −Π0(iω)K) K−1B +Π0(iω) B
}

. (20)

Particular care has to be taken to define the inverse of K in
Eq. (20), since this matrix might be singular or close to singu-
lar in certain representations. Since the (close to) zero eigen-
values dia(iω) do not contribute to the sum over ia in Eq. (20),
as can be seen from an expansion of the logarithm, it is im-
plicit that K−1 = K−1

Π
−1
0 Π0 = QD−1Q−1

Π0 is defined in
terms of a pseudoinverse where [D−1]ia,ia = d−1

ia
for finite dia

and [D−1]ia,ia = 0 for dia = 0 (or below a certain small thresh-
old).

By decomposing the antisymmetrized two-electron inte-
grals as B = K − K̃, where the K̃ matrix has the elements
K̃ia, jb = 〈ab| ji〉, the correlation energy can be separated to a
dRPA-I contribution and a SOSEX correction:

EdRPA-IIa
c = EdRPA-I

c + ESOSEX
c (21)

ESOSEX
c = −1

2

∫ ∞

−∞

dω

2π
×

tr
{(

log (I −Π0(iω)K) +Π0(iω) K

)

K−1K̃

}

. (22)

Furthermore, it is easy to verify that the second order ap-
proximation to the dRPA-IIa correlation energy is exactly the
usual MP2 correlation energy (again by doing a series expan-
sion of the matrix logarithm):

E
dRPA-IIa (2)
c = −1

4

∫ ∞

−∞

dω

2π
tr {Π0(iω)KΠ0(iω)B}

= −1
2

∑

ia, jb

Kia, jb B jb,ia

ǫia + ǫ jb

= EMP2
c . (23)

An identical result has been obtained in the Appendix of
Ref. 34. It is important to mention that in this context the MP2
correlation energy represents the first non-vanishing contri-
bution to a converging series only if all the eigenvalues of
Π0(iω)K are smaller than 1.

C. Approximate RPA with exchange

The RPAx variants are based on a response function ΠRPAx
α

which fully takes into account the nonlocal exchange effects
by a Hartree-Fock type kernel. In other words, the response
function Π

RPAx
α satisfies the following Dyson-like equation,

where F = W in Eq. (2):

Π
RPAx
α (iω) = (I − αΠ0(iω) W)−1

Π0(iω). (24)

In the RPAx-I case, that is to say with G = V in Eq. (1), the
ACFDT expression becomes:

ERPAx-I
c = −1

2

∫ 1

0
dα

∫ ∞

−∞

dω

2π
×

tr
{

(

I − αΠ0(iω) W
)−1

Π0(iω)V − Π0(iω)V
}

. (25)

Let us write again W as a sum of two terms,

W =

(

B B

B B

)

+

(

A′ − B 0

0 A′ − B

)

, (26)

and use the transformation U on the matrix product under the
trace. Neglecting the minor correction contribution leads to
the RPAx-Ia energy:

ERPAx-Ia
c = −

1
2

∫ 1

0
dα

∫ ∞

−∞

dω

2π
tr

{

Π
RPAX
α (iω)K −Π0(iω)K

}

,

(27)

where we define ΠRPAX
α (iω) which satisfies the dimension-

reduced Dyson-like equation, obtained from Eq. (24) after
taking an approximate kernel FRPAX = B including only the
major contribution from Eq. (26):

Π
RPAX
α (iω) =

(

I − αΠ0(iω)B
)−1
Π0(iω). (28)

The notation RPAX (with capital X) refers to an analogy to an
approximate RPA variant with exchange, proposed by Hessel-
mann [18]. The relationships to Hesselmann’s approach will
be discussed elsewhere. Comparison to Eqs. (19) and (11)
shows that, formally, the roles of the matrices K and B is
merely exchanged with respect to the dRPA-IIa energy expres-
sion. Hence, the corresponding logarithmic formula obtained
after α-integration is:

ERPAx-Ia
c =

1
2

∫ ∞

−∞

dω

2π
tr

{

log
(

I −Π0(iω)B
)

B−1K +Π0(iω)K
}

,

(29)
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again defining B−1 in terms of a pseudoinverse involving the
eigenvalues of Π0(iω)B.

The second order approximation yields the MP2 energy in
the exact same manner as the dRPA-IIa case (consider the ex-
change of the matrices K and B in Eq. (23)).

As shown in Sec. IV, the approximate RPAx-Ia correla-
tion energy expression leads to the most accurate results for
the systems considered in this work. Additionally, while the
RPAx-I approximation (Eq. 25) is known to suffer from in-
stabilities when the initial states are approximated from semi-
local functionals [34], the RPAx-Ia is numerically stable.

III. COMPUTATIONAL REALIZATION

For the practical implementation, it is worth noting that
spin-adaptation of all the equations is trivial: in spacial or-
bitals, the two-electron integrals read as Kia, jb == 2〈i j|ab〉,
A′

ia, jb
=2〈ib|a j〉 − 〈ib| ja〉, Bia, jb=2〈i j|ab〉 − 〈i j|ba〉 and K̃ia, jb=

〈i j|ba〉.
In the following, we present an orbital-based implementa-

tion of the equations derived in Sec. II. An implementation
using density fitting is shown in the Appendix. C.

A. Orbital-based implementation

The computational realization of equations (14), (20) and
(29) may proceed following a common scheme. In fact,
Eq. (14) can be considered as a special case of Eq. (20), where
B = K, and Eq. (29) can be obtained by interchanging the
roles of B and K in Eq. (20). Therefore we focus our attention
to the case of Eq. (20), i.e. the dRPA-IIa energy expression.

We can rewrite Eq. (20) in terms of the symmetric matrices
P(iω) = Π1/2

0 (iω)KΠ1/2
0 (iω) and P̃(iω) = Π1/2

0 (iω)K̃Π1/2
0 (iω)

as

EdRPA-IIa
c =

∫ ∞

0

dω

2π
tr
{

(

log
(

I − P(iω)
)

+ P(iω)
)

×

(

I − P−1(iω) P̃(iω)
)

}

, (30)

where we took advantage of the cyclic invariance of the trace
and used the symmetry of Π0(iω) with respect to the replace-
ment of iω by −iω to restrain the integral to the positive imag-
inary axis. The derivation of Eq. (30) also requires the follow-
ing identity for a generic function of a matrix f :

f (Π1/2
0 KΠ

1/2
0 ) = Π−1/2

0 f (Π0K)Π1/2
0 , (31)

that can be easily derived from the matrix function for-
malism and from the fact that Q−1

Π0KQ = D implies
(Q−1
Π

1/2
0 )Π1/2

0 KΠ
1/2
0 (Π−1/2

0 Q) = UT
Π

1/2
0 KΠ

1/2
0 U = D (the

matrix U defines the unitary transformation that diagonalizes
the Hermitian matrix Π1/2

0 KΠ
1/2
0 ).

By expressing Eq. (30) in terms of the (diagonal) eigenvalue
matrix D we obtain

EdRPA-IIa
c =

∫ ∞

0

dω

2π
tr
{

(

log
(

I − D(iω)
)

+ D(iω)
)

×

(

I − D−1(iω) D̃(iω)
)

}

, (32)

with D̃(iω) = UTP̃(iω)U =
(

UT
Π

1/2
0 (iω)

)

K̃
(

Π
1/2
0 (iω)U

)

=

Q−1
Π0(iω)K̃Q. It should be emphasized that the matrix P̃

has been transformed with the eigenvectors of P and therefore
is not diagonal. Nevertheless in order to calculate the trace
of its product with the diagonal matrix D−1 we need only its
diagonal elements, which will be designated by the shorthand
notation d̃ia(iω) = [D̃(iω)]ia,ia = [UTP̃(iω)U]ia,ia.

The presence of potentially very small eigenvalues may
lead to numerical instabilities. This can be avoided by using
the following power series expansion of the logarithm under
a given threshold of the eigenvalue dia(iω) (in practice, the
summation is carried up to n = 4 and the threshold is 0.0001):

EdRPA-IIa
c ≈ −

∫ ∞

0

dω

2π

Nexc
∑

ia=1

∑

n=2

1
n

dn−1
ia (iω)

(

dia(iω) − d̃ia(iω)
)

.

(33)

At second order, n = 2, we obtain the MP2 energy, which
can be designated as "Casimir-Polder transform MP2"

EMP2
c = −1

2

∫ ∞

0

dω

2π

Nexc
∑

ia

dia(iω)
(

dia(iω) − d̃ia(iω)
)

, (34)

and which offers an interesting alternative to calculate con-
ventional MP2 energies, especially in solids [45]. Higher or-
der terms of the series expansion do not correspond exactly to
the MP3 and MP4 energies. A vague analogy can be noted
between this expression and the Laplace-transform method to
obtain the MP2 energy [25].

B. Numerical frequency integration

In principle, the numerical frequency integration is ex-
pected to be "fairly unproblematic" [46], since the integrand
is expected to have a smoothly decaying behavior. While it
seems to be really the case for solids, where a mapping of the
Gauss-Legendre quadrature to the [0,∞] interval (truncated
at about 30 a.u.) with an exponentially decaying weighting
function ensures a reasonable convergence (0.05 mH) with
only 16 quadrature points [46], an accuracy of 0.2 mH (about
0.15 kcal/mol) claimed by the same authors is clearly insuffi-
cient for atoms and molecules. The situation for atomic and
molecular systems is not better for more sophisticated weight-
ing function models either.

Lu et al. have performed the frequency integration by a 10-
point Gauss-Legendre quadrature in the range of u ∈ [0, 1],
where u = (1+ω/ω0)−1, with ω0 = 1 a.u. This quadrature was
found rather insensitive to the choice of the ω0 parameter [9].
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We have implemented the method proposed by Eshuis,
Yarkony and Furche [25], based on the Clenshaw-Curtis
quadrature [47], which consists in writing the integral of a
function F(ω) as

∫ ∞

0
dω F(ω) ≈

∑

p

wp

2π
F(ωp), (35)

where ωp = a cot tp with tp = pπ/(2Ng) and wp =

a π/((int(p/Ng) + 1)Ngsin2tp). This quadrature scheme has
a single scaling parameter a, which can be adjusted to each
individual system by requiring that the following analyti-
cally solvable expression, based on a diagonal model of the
dRPA dielectric matrix formulation of Eq. (14) (remember
that Π0(iω) = −2ǫǫǫ1/2(ǫǫǫ2 + ω2)−1ǫǫǫ1/2) :

EdRPA-I
c ≈ 1

2

∑

ia

∫ ∞

−∞

dω

2π











log













1 +
2ǫiaKia,ia

ǫ2
ia
+ ω2













−
2ǫiaKia,ia

ǫ2
ia
+ ω2











= −1
2

∑

ia

(

ǫia + Kia,ia −
√

ǫ2
ia
+ 2ǫiaKia,ia

)

, (36)

be reproduced at best by the numerical integral,

EdRPA-I
c ≈

∑

ia

∑

p

wp

2π

{

log
(

1 +
2ǫiaKia,ia

ǫ2
ia
+ ω2

p

)

−
2ǫiaKia,ia

ǫ2
ia
+ ω2

p

}

. (37)

This tuning method of the parameter a can be extended for
the dRPA-IIa case, using the analytically solvable dRPA-IIa
diagonal approximation:

EdRPA-IIa
c ≈1

2

∑

ia

∫ ∞

−∞

dω

2π











log













1 +
2ǫiaKia,ia

ǫ2
ia
+ ω2













−
2ǫiaKia,ia

ǫ2
ia
+ ω2











×
{

1 −
K̃ia,ia

Kia,ia

}

=−1
4

∑

ia

{(

ǫia + Kia,ia −
√

ǫ2
ia
+ 2ǫiaKia,ia

)}

. (38)

Note that the diagonal approximation to the dRPA-IIa correla-
tion energy is half the diagonal approximation to the dRPA-I
correlation energy seen in Eq. 36 (remember that in spatial or-
bitals we have Kia, jb=2〈i j|ab〉 and K̃ia, jb= 〈i j|ba〉) and there
is no need to re-optimize the free parameter of the numerical
quadrature.

IV. NUMERICAL RESULTS

We have implemented the dielectric matrix based dRPA-
I (Eq. 14), dRPA-IIa (Eq. 20), and RPAx-Ia (Eq. 29) energy
formulae in an occupied-virtual basis set representation within
the development version of the MOLPRO quantum chemistry
package [48, 49]. Although this algorithm is expected to be
less efficient than the density fitting approach (in particular

for larger systems), we considered this implementation useful
to produce benchmark results exempt of density fitting uncer-
tainties.

Below we present electron correlation energies for some
atoms and ions [50, 51] and a test set of reaction energies [18].
The correlation energy from the different RPA approxima-
tions ERPA

c has been calculated starting from a self-consistent
DFT calculation based on the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional. The total RPA energy is then
evaluated from the expression

ERPA
tot = EEXX + ERPA

c , (39)

where EEXX is the Hartree-Fock energy computed from PBE
orbitals.

For comparison purposes, we also provide results obtained
from the rCCD-based SOSEX approximation [11, 44] and the
dRPA-II approximation as derived within the adiabatic con-
nection approach [34]. As already discussed in Sec. I and
Sec. II B the dRPA-IIa (Eq. 20) and the rCCD-based SOSEX
are analogous although not strictly equivalent; the numeri-
cal calculations below help to better quantify this statement.
The dRPA-II approximation as derived within the adiabatic
connection approach is equivalent to the dynamical polariz-
ability expression in Eq. 17, that, however, cannot be conve-
niently implemented (both frequency and coupling constant
integration are necessary and the dimensionality of the polar-
izability cannot be reduced). In this case the comparison be-
tween the dielectric matrix-based dRPA-IIa and the adiabatic
connection-based dRPA-II is useful to understand the effect of
the approximation of the kernel introduced by discarding the
minor contribution to Eq. 18. To avoid confusion the dRPA-
I, dRPA-IIa, and RPAx-Ia approximations derived within the
dielectric matrix formulation will be denoted with an addi-
tional “DIEL”, the SOSEX approximation with an additional
“rCCD”, and the dRPA-II approximation within the adiabatic
connection approach with an additional “AC”.

A. Frequency quadrature

The frequency integrations in Eqs. 14, 20 and 29 are carried
out by a quadrature. We tested the convergence of the Gauss-
Chebyshev[52], Gauss-Legendre[2] and Clenshaw-Curtis (de-
scribed in Sec. III B) schemes with respect to the number of
quadrature points, for calculations on several atoms and ions.
The RPA correlation energies were computed using the aug-
cc-pCVXZ basis sets (X=6 for He, X=5 for Ne, Ar, B+, and
Al+, and X=Q for Li+, Na+, Be, and Mg). The results of
the convergence study can be found in Table I and Figure 1,
where we use as reference the dRPA-I PLASMON (for which
both the frequency and coupling constant integrations are an-
alytical, see Appendix B), and the dRPA-IIa AC and RPAx-Ia
AC energies (for which no PLASMON analog exists). We
see that the Gauss-Chebyshev and Gauss-Legendre schemes
yield, in this case, unsatisfying results: the Gauss-Chebyshev
scheme has a slow convergence with respect to the number of
quadrature points in all the cases studied, and while the Gauss-
Legendre quadrature performs well for Be, He and Li+, it ex-
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FIG. 1. Convergence with respect to the number of quadrature
points of the Gauss-Chebyshev, Gauss-Legendre and Clenshaw-
Curtis schemes for Li+ (up) and Mg (down). The dRPA-I DIEL en-
ergy is compared to the dRPA-I PLASMON energy, and the dRPA-
IIa DIEL and RPAx-Ia DIEL are compared against their AC analog.

hibits a slow convergence in the cases of B+, Mg and Na+. On
the other hand, the Clenshaw-Curtis quadrature was found to
converge rapidly for all studied atoms and ions. As a result,
we choose in the following to perform the frequency integra-
tion with a 48-points Clenshaw-Curtis quadrature.

B. Atomic correlation energies

As a first test, we applied the dielectric matrix formalism
to compute correlation energies for several atoms and ions.
To verify the accuracy of the RPA-based approximations we
compared the obtained results with the full configuration in-
teraction (FCI) quality correlation energy estimates by David-
son and collaborators [50, 51]. For a meaningful comparison
it is necessary to keep into account that the FCI-quality corre-
lation energies have been obtained with respect to a Hartree-
Fock reference point. For this reason we redefined the RPA
correlation energies ẼRPA

c as the difference of RPA total ener-
gies and regular Hartree-Fock energies. This procedure was
already used in Ref. 34. Core excitations have been included

TABLE I. Errors made in the calculation of the dRPA-I DIEL energy
using 24-, 48-, 72- and 96-points Gauss-Chebyshev, Gauss-Legendre
and Clenshaw-Curtis quadrature schemes (in percentage with respect
to the dRPA-I PLASMON result).

B+ Mg Na+ Be He Li+
Gauss-Chebyshev

24 1.51 0.07 0.90 1.63 0.51 1.81
48 1.09 1.42 1.05 0.84 0.16 0.51
72 0.78 1.45 0.81 0.44 0.04 0.15
96 0.58 1.16 0.66 0.22 0.01 0.05

Gauss-Legendre
24 -2.22 -3.38 -2.23 -1.06 -0.13 -0.46
48 -0.78 -1.17 -0.78 -0.23 -0.02 -0.09
72 -0.37 -0.52 -0.35 -0.09 -0.01 -0.03
96 -0.21 -0.27 -0.19 -0.04 0.00 -0.01

Clenshaw-Curtis
24 -0.35 -0.77 0.02 -0.23 0.00 0.00
48 -0.02 -0.04 0.00 -0.01 0.00 0.00
72 0.00 0.00 0.00 0.00 0.00 0.00
96 0.00 0.00 0.00 0.00 0.00 0.00
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FIG. 2. Percentage error of total correlation energies compared to
the FCI-quality estimates by Davidson and his coworkers [50, 51]
for simple closed shell atoms and ions calculated with different RPA
variants. Correlation energies have been extrapolated to the CBS
limit.

in the calculations. The RPA-based correlation energies were
computed in the complete basis set (CBS) limit by the usual
1/X3 formula [53] considering aug-cc-pCVXZ basis sets up
to X=6 for He, up to X=5 for Ne, Ar, B+, and Al+, and up
to X=Q for Li+, Na+, Be, and Mg. The ratios between the
RPA-based correlation energies ẼRPA

c and reference FCI cor-
relation energies EFCI

c are shown in Fig. 2. As expected the
dRPA-I DIEL approximation strongly overestimates the abso-
lute value of the correlation energy (by 50 to 100 %). On the
other hand, the dRPA-IIa DIEL and RPAx-Ia DIEL approxi-
mations, which include exchange contributions, significantly
improve over the direct RPA results and lead to a percent-
age of the correlation energy close to 100 %. On the scale
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of Fig. 2 the dRPA-IIa DIEL and SOSEX rCCD results are
basically indistinguishable (the largest difference is found for
Al+, where SOSEX rCCD gives 95.79% of the FCI correla-
tion energy and dRPA-IIa 95.57%). The dRPA-II AC, which
does not rely on the neglect of the minor contribution to the
kernel discussed in Eq. 18, provides the worst results among
the approximations including exchange effects. Additionally,
in order to quantify the one-electron self-interaction error, we
computed correlation energies for the hydrogen atom. Also
in this case the exchange contribution significantly improves
the results: The dRPAI-I correlation energy of -0.08 Ha de-
creases to about -0.04 Ha for the dRPA-II, dRPA-IIa, SOSEX,
and RPAx-Ia approximations. As expected, the dRPA-IIa cor-
relation energy was found to be exactly half of the dRPA-I
value.

C. Application to reaction energies

In this section we discuss a series of results for the reaction
energy test set proposed by Hesselmann [18]. In this case
the accuracy is evaluated with respect to CCSD(T) bench-
mark results; CCSD values are also provided for comparison
purposes. Similarly to Ref. 18, the correlation energy in the
complete basis set limit is obtained by extrapolating the val-
ues obtained with the aug-cc-pVTZ and aug-cc-pVQZ basis
sets. Reaction energy results are detailed in Table II for the
different approximations considered in this work. The sim-
ple dRPA-I DIEL approximation gives substantial mean er-
ror (ME) and mean absolute error (MAE): 2.18 kcal/mol and
2.32 kcal/mol, respectively. The dRPA-IIa DIEL approach,
with a MAE of 1.99 kcal/mol and a ME of -1.43 kcal/mol,
improves to a certain extent the results of dRPA-I DIEL. Ta-
ble II also shows that dRPA-IIa and SOSEX produce similar
results, with a difference of at most 0.2 kcal/mol. The use of
the full exchange kernel (Eq. 18), as done in dRPA-II AC, de-
teriorates the accuracy and leads to a MAE that is even larger
than in the case of the simple dRPA-I approach. We finally
consider the RPAx-Ia DIEL approximation. The correspond-
ing MAE and ME are significantly decreased with respect to
the other methods and close to CCSD values. Considering
these results for reaction energies and the previous results for
atoms and ions in Sec. IV B, we can notice that the RPAx-Ia
approach is the most promising within the dielectric matrix
approximations studied in this work. Additionally, RPAx-Ia
is more stable than RPAx-I (Eq. 25) when using PBE as start-
ing point [34]. It is important to notice that the PBE and the
non-self-consistent PBE0 (post-PBE) approximations lead to
the significant MAEs of 4.68 and 4.57 kcal/mol, respectively.

The reaction test set in Table II involves only energy dif-
ferences between molecular energies. To better understand
the performance of each method it is interesting to also dis-
cuss the total energy of each molecule. Detailed results are
summarized in Table III, where the deviation of the total en-
ergy of each molecule from CCSD(T) reference values is pre-
sented. Since an error cancellation is expected when energy
differences are computed, it is not surprising that the approx-
imations in Table III lead to MEs and MAEs with respect to
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-1.2

-1.1

-1

-0.9

-0.8

 0  1  2  3  4  5  6

E
ne

rg
y 

(H
ar

tr
ee

)

Distance (Angstrom)

CCSD
dRPA-IIa AC
dRPA-IIA DIEL
SOSEX rCCD
dRPA-II AC
RPAx-Ia DIEL

FIG. 4. Dissociation curve of H2

CCSD(T) that are substantially larger than what previously
seen in Table II. For total energies the dRPA-I approxima-
tion leads to the largest deviation with a MAE of about 168
kcal/mol. The dRPA-IIa DIEL, the SOSEX rCCD, and the
dRPA-II AC approximations all have a considerably lower
MAE (about 30 kcal/mol). However, it is important to notice
that dRPA-II AC tends to overestimate the total energy while
dRPA-IIa DIEL and SOSEX rCCD underestimate it. Consid-
ering Table III, the method that gives the most accurate re-
sults is RPAx-Ia DIEL, which provides a MAE of less than 9
kcal/mol and outperforms CCSD.

To help the visualization of the results in Table III, we show
in Fig. 3 the relative error of total energies obtained within
different RPA approximations with respect to CCSD(T) re-
sults. The dRPA-I DIEL approximation leads to substantially
larger errors and, in order to make the graph more readable,
has not been included in the figure. The trend of the curves
shows that the relative error tends to be approximately con-
stant by increasing the molecular size. Since CCSD/CBS is
exact for two-electron systems it is not surprising that the cor-
responding relative error for H2 is zero. For all the other meth-
ods H2 is instead the most problematic case, which is related
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TABLE II. Reaction energies for 16 chemical reactions (in kcal/mol). The mean error (ME) and mean absolute error (MAE) are computed with respect to CCSD(T)/CBS. The results with
the smallest deviation from the benchmark value are marked in bold face.

Reaction dRPA-I dRPA-IIa SOSEX dRPA-II RPAx-Ia PBE PBE0 CCSD CCSD(T)
DIEL DIEL rCCD AC DIEL post-PBE

C2H2+H2 → C2H4 -48.03 -51.97 -51.99 -48.29 -51.57 -52.15 -55.32 -50.46 -49.44
C2H4+H2 → C2H6 -37.54 -42.41 -42.23 -38.31 -40.26 -40.66 -43.96 -40.49 -39.47
C2H6+H2 → 2CH4 -17.50 -19.00 -18.98 -18.15 -18.45 -18.61 -19.01 -18.76 -18.18
CO+H2 → HCHO -3.07 -4.94 -4.98 -1.39 -4.84 -12.45 -12.62 -5.61 -5.47
HCHO+H2 → CH3OH -26.88 -32.75 -32.55 -27.77 -30.96 -29.66 -33.44 -30.78 -29.70
H2O2+H2 → 2H2O -82.53 -92.66 -92.48 -86.07 -89.62 -81.81 -86.78 -89.55 -87.63
C2H2+H2O→ CH3CHO -38.01 -39.68 -39.73 -37.33 -39.28 -44.25 -45.49 -38.53 -38.28
C2H4+H2O→ C2H5OH -13.15 -15.73 -15.58 -12.77 -14.35 -15.67 -17.85 -14.43 -14.12
CH3CHO+H2 → C2H5OH -23.17 -28.02 -27.85 -23.73 -26.64 -23.57 -27.67 -26.36 -25.28
CO+NH3 → HCONH2 -6.61 -9.77 -9.83 -5.06 -9.35 -21.04 -19.80 -9.35 -10.26
CO+H2O→ CO2+H2 -5.04 -3.81 -3.85 -1.93 -3.80 -17.62 -12.86 -3.76 -6.18
HNCO+NH3 → NH2CONH2 -17.34 -22.89 -22.81 -18.71 -22.02 -18.45 -23.03 -22.04 -20.70
CO+CH3OH→ HCOOCH3 -10.07 -12.49 -12.56 -8.54 -12.14 -22.44 -20.85 -12.12 -13.59
HCOOH+NH3 → HCONH2+H2O -0.79 -1.76 -1.76 -1.17 -1.60 -1.76 -2.03 -1.24 -1.16
CO+H2O→ CO2+H2O -87.57 -96.47 -96.33 -87.99 -93.42 -99.43 -99.64 -93.31 -93.81
H2CCO+HCHO→ C2H4O+CO -4.99 -5.67 -5.47 -5.44 -5.26 5.06 0.52 -4.93 -3.83
ME 2.18 -1.43 -1.37 2.15 -0.40 -2.34 -3.92 -0.29
MAE 2.32 1.99 1.90 2.36 1.12 4.68 4.57 0.95
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TABLE III. Differences between total energies computed within different approximations and CCSD(T)/CBS reference values (in kcal/mol). Mean error (ME) and mean absolute error
(MAE) of total energies are included in the table. The results are presented for the 21 molecules involved in the reactions considered in Table II (in kcal/mol). The molecules are sorted in
increasing order of the absolute values of CCSD(T) total energies.

Molecule EdRPA-I
tot − E

CCSD(T)
tot EdRPA-IIa

tot − E
CCSD(T)
tot ESOSEX

tot − E
CCSD(T)
tot EdRPA-II

tot − E
CCSD(T)
tot ERPAx-Ia

tot − E
CCSD(T)
tot ECCSD

tot − E
CCSD(T)
tot

DIEL DIEL rCCD AC DIEL
H2 -24.67 0.77 0.77 -6.41 -1.92 0.00
CH4 -92.61 9.34 9.14 -21.57 -1.22 4.60
NH3 -93.92 12.96 12.70 -18.89 1.56 5.90
H2O -94.95 15.86 15.58 -15.22 4.05 6.25
C2H2 -115.23 22.65 22.09 -26.26 6.50 11.82
C2H4 -138.49 20.89 20.30 -31.52 2.45 10.80
C2H6 -161.23 18.73 18.31 -36.76 -0.26 9.78
CO -120.23 26.80 26.14 -23.32 9.69 12.52
HCHO -142.51 28.09 27.39 -25.65 8.39 12.38
CH3OH -164.36 25.82 25.31 -30.13 5.21 11.30
H2O2 -170.33 35.98 35.23 -25.59 12.01 14.42
H2CCO -186.86 37.15 36.17 -35.69 11.62 19.21
C2H4O -210.29 36.61 35.79 -39.63 8.91 17.96
CH3CHO -209.91 37.11 36.21 -40.53 9.55 17.82
C2H5OH -232.47 35.14 34.42 -45.38 6.27 16.74
HNCO -188.46 41.28 40.25 -32.07 15.23 21.17
HCONH2 -210.50 40.25 39.26 -37.01 12.16 19.34
CO2 -189.37 44.27 43.27 -27.87 18.04 21.19
HCOOH -211.90 43.75 42.74 -33.33 15.09 19.76
NH2CONH2 -279.03 52.05 50.85 -48.97 15.47 25.73
HCOOCH3 -281.07 53.72 52.47 -48.40 16.35 25.29
ME -167.54 30.44 29.73 -30.96 8.34 14.48
MAE 167.54 30.44 29.73 30.96 8.66 14.48
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to the fact that the reference determinant is constructed from
PBE orbitals. The dRPA-IIa DIEL and SOSEX rCCD approx-
imations give almost identical curves for all the molecules
considered here (the difference is at most 1.2 kcal/mol, for
NH2CONH2 and HCOOCH3). With the exception of H2,
the RPAx-Ia relative error is systematically lower than in the
CCSD case. However, as seen in Table II, the accuracy of
RPAx-Ia slightly worsens with respect to CCSD in the case
of reaction energies, whose evaluation takes advantage of an
error cancellation effect.

In Fig. 4, we show dissociation curves for the singlet state
of the H2 molecule, for which CCSD is exact. In the litera-
ture we can find several studies of H2 dissociation in the con-
text of RPA. The influence of the reference orbitals has often
been studied[6, 21, 54]. The use of unrestricted Kohn-Sham
orbitals is thought to allow for some inclusion of static corre-
lation in the description of the dissociation[6, 54]. Note first
that we observed that the Clenshaw-Curtis frequency quadra-
ture is suitable for a certain range of distances only, and that
one will need to switch to other quadrature schemes a large
distances. Indeed, for large interatomic distances H2 is a mul-
tireference problem characterized by quasi-degenerate deter-
minants and dielectric matrix diverges for ω → 0, hence the
currently implemented integration schemes fail. This is an in-
teresting subject for future work. The dRPA-II AC diverges
at larger distances, which can also be explained by the fact
that the system is dominated here by non-dynamical corre-
lation. Hence, the coupling-constant integrand is not smooth
enough for numerical AC quadratures, as can be inferred from
a study of the integrand itself (see for example [6]). The SO-
SEX curve shows no bump and is consistent with earlier stud-
ies in the literature[14, 19, 55, 56]. The dRPA-IIa AC and
dRPA-IIa DIEL, although not theoretically equivalent to SO-
SEX, are both very close to the SOSEX curve. Note that the
dRPA-IIa DIEL starts to show a deviation from the dRPA-IIa
AC results: this is related to the frequency quadrature prob-
lem. The RPAx-Ia-DIEL energy, calculated from a broken-
symmetry SCF is very close to the CCSD curve, despite the
fact that the fractional deviation between RPAx-Ia-DIEL and
CCSD is the worst for H2 among all the molecules shown on
Fig. 3. Note, however, that the absolute deviation is not large
in the equilibrium structure and at dissociation it gets even
smaller.

V. CONCLUSIONS, PERSPECTIVES

The main result of the present work is to show that in
contrast to a widely accepted view it is possible to conve-
niently include exchange effects in the dielectric matrix for-
mulation of RPA correlation energy. Two particular cases
have been derived and numerically implemented: the SOSEX-
like dRPA-IIa correlation energy and an approximate variant
of the RPAx-I method, named RPAx-Ia. Our derivation of
the dielectric matrix formulation of the RPA proceeds in a
"conventional" or "traditional" way, i.e. from the full adiabatic
connection formula at an RPA level. This is in contrast to
the work of Eshuis and Furche, who started from the plasmon

formula of the dRPA-I energy and derived directly the den-
sity fitting expressions. Our approach is strictly equivalent to
theirs for dRPA-I but offers in addition a well-defined route to
get alternative variants including exchange in a similar form.
Furthermore, the connections with the previously studied den-
sity matrix formulation are straightforwardly established and
therefore our previous results concerning the relationship be-
tween the adiabatic connection and rCCD RPA can be simply
transferred.

We think that the main interest of the dielectric matrix for-
malism of RPA in a quantum chemical (more precisely LCAO
based) context is mostly conceptual. As demonstrated by the
work of Eshuis and Furche, this formalism is well-adapted
for density fitting implementations, which is computationally
advantageous, in particular for the dRPA-I case, which is an
O(N4 log(N)) method. The exchange-including variants are
expected to show a somewhat less advantageous O(N5 log(N))
behavior which is comparable to the scaling of DF-MP2 [57]
or RI-MP2 [58, 59]. The brute-force orbital-based implemen-
tations are of O(N6) scaling.

It is important to notice the new approximations developed
within this work may be of significant interest for the con-
densed matter physics community, that mostly rely on the di-
electric matrix formalism to compute RPA correlation ener-
gies [3, 6, 8, 9, 12, 23].

As shown in this work, the relatively poor performance of
the dRPA-I is improved to a certain extent by the dRPA-IIa
(SOSEX-like) method. The approximate RPAx-Ia approach
is surprisingly good for the systems considered in this paper.
In the future more test cases will certainly be necessary to
fully establish the accuracy of the RPAx-Ia method. Addi-
tionally, this methodology is suitable for implementation in
plane-wave codes [23, 27] and applications to solids will be
soon possible.
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Appendix A: Equivalence of the density matrix and logarithmic

expressions

In this appendix we show the equivalence of the density ma-
trix and logarithmic expressions of the dRPA-I correlation en-
ergies described in this paper. The derivation holds for dRPA-
IIa, by replacing K with B. Let us recall Eq. (12) as:

EdRPA-I
c = −1

2

∫ 1

0
dα

∫ ∞

−∞

dω

2π
tr
{

Πα(iω)K −Π0(iω)K
}

. (A1)

Since
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Π0(iω) = Π+0 (iω) +Π−0 (iω) = −2ǫǫǫ1/2(ǫǫǫ2 + ω2I)−1
ǫǫǫ

1/2
, (A2)

from the "dimension-reduced" Dyson equation Π−1
α (iω) =

Π
−1
0 (iω) − αK, we have

Π
−1
α (iω) = −1

2
ǫǫǫ
−1/2(Mα + ω

2I)ǫǫǫ−1/2
, (A3)

where

Mα = ǫǫǫ
1/2(ǫǫǫ + 2αK)ǫǫǫ1/2. (A4)

The symmetric matrix Mα can be brought to a diagonal form
using its eigenvectors and eigenvalues:

MαZα = ZαΩ
2
α, ZαZ

T
α = ZT

αZα = I. (A5)

Thus we find:

Π
−1
α (iω) = −

1
2
ǫǫǫ
−1/2ZαZ

T
α(Mα + ω

21)ZαZ
T
αǫǫǫ
−1/2

= −1
2
ǫǫǫ−1/2Zα(Ω

2
α + ω

2I)ZT
αǫǫǫ
−1/2, (A6)

and furthermore:

Πα(iω) = −2ǫǫǫ1/2Zα(Ω
2
α + ω

2I)−1ZT
αǫǫǫ

1/2. (A7)

Noting that

∫ ∞

−∞

dω

2π

(

Ω2
α,ia + ω

2
)−1
=

1
2
Ω−1
α,ia, (A8)

where ia labels the eigenvalues of Mα, i.e. the diagonal ele-
ments of Ω, we get

∫ ∞

−∞

dω

2π
Πα(iω) = −ǫǫǫ1/2ZαΩ

−1
α ZT

αǫǫǫ
1/2 = −ǫǫǫ1/2M−1/2

α ǫǫǫ1/2.

(A9)

Furthermore, since M0 = ǫǫǫ
2, we have

∫ ∞

−∞

dω

2π
Π0(iω) = −ǫǫǫ1/2ǫǫǫ−1ǫǫǫ1/2 = −I, (A10)

which finally leads to

EdRPA-I =
1
2

∫ 1

0
dαPc,αK, (A11)

with

Pc,α = ǫǫǫ
1/2M−1/2

α ǫǫǫ
1/2 − I. (A12)

This derivation demonstrates the equivalence of the density
matrix and dielectric matrix formulations of the dRPA-I (and
mutatis mutandis, of the dRPA-IIa) energy expressions.

Appendix B: Plasmon formula

Starting from Eq. (14), we re-write the argument of the log-
arithm by using the "dimension-reduced" Dyson equation in
the following form:

I −Π0(iω) K = Π0(iω)Π−1
1 (iω). (B1)

Combining Eqs.(A2) and (A6), one obtains

Π0(iω)Π−1
1 (iω) = ǫǫǫ1/2(ǫǫǫ2 + ω2I)−1Z1(ΩΩΩ2

1 + ω
2I)ZT

1ǫǫǫ
−1/2
.

(B2)

Employing tr
{

log(X)
}

= log {det(X)} and properties of the de-
terminant leads to:

tr
{

log
(

Π0(iω)Π−1
1 (iω)

)}

= log
{

det
(

(ǫǫǫ2 + ω2I)−1(Ω2
1 + ω

2I)
)}

=
∑

ia

log















Ω2
1,ia + ω

2

ǫ2
ia
+ ω2















=
∑

ia

log















1 +
Ω2

1,ia − ǫ
2
ia

ǫ2
ia
+ ω2















. (B3)

For the evaluation of the trace of Π0(iω)K we use the defi-
nition of M1 to write K = 1

2ǫǫǫ
−1/2(M1 − ǫǫǫ2)ǫǫǫ−1/2 and we obtain

tr {Π0(iω) K} = −tr
{

(ǫǫǫ2 + ω2I)−1
(

M1 − ǫǫǫ2
)}

. (B4)

Summarizing, one finally obtains:

EdRPA-I
c =

1
2

∫ ∞

−∞

dω

2π

∑

ia











log













1 +
Ω2

ia
− ǫ2

ia

ǫ2
ia
+ ω2













−
M1,ia,ia − ǫ2ia
ǫ2

ia
+ ω2











,

(B5)

which, after integration (see Sec. 1 of the Supporting Infor-
mation), becomes

EdRPA-I
c =

1
2

{
Nexc
∑

ia

Ωia −
Nexc
∑

ia

(ǫia + Kia,ia)
}

. (B6)

Appendix C: Density-based implementation of dRPA

The dRPA correlation energy can be brought to a compu-
tationally more efficient form by using density fitting (some-
times called resolution-of-identity) or Cholesky decomposi-
tion methods applied to the two-electron integrals. In these
techniques the (Nexc×Nexc) two-electron integral matrix is de-
composed as (see also Sec. 3 of the Supporting Information)

Kia, jb =
[

MMT
]

ia, jb
= 2

∑

G

Lia,GLG, jb, (C1)
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where M is a (Nexc × Naux) rectangular matrix, and Naux is
significantly smaller than Nexc (but larger than Nocc+Nvirt). As
shown in Sec. 3 of the Supporting Information, the correlation
energy Eq. (14) of our paper becomes

EdRPA-I
c =

∫ ∞

0

dω

2π
tr

{

log (1 − C(iω)) + C(iω)
}

, (C2)

where C(iω) = MT
Π0(iω) M is a (Naux × Naux) matrix and 1

is here the unit matrix of dimension Naux. Remembering that
Π0(iω) = −2ǫǫǫ1/2(ǫǫǫ2 +ω2I)−1ǫǫǫ1/2 it is easy to see that Eq. (C2)
is the same expression as the one obtained in an elegant but
relatively involved manner by Eshuis et al. [25], starting from
the plasmon expression of the correlation energy and the inte-
gral representation of the square root of a matrix.

The density fitting technique can be generalized to the sec-
ond order screened exchange correction in the dRPA-IIa cor-
relation energy, leading to the following expression (see Sec. 3
of the Supporting Information)

EdRPA-IIa
c =

∫ ∞

0

dω

2π
tr
{

(

log
(

1 − C(iω)
)

+ C(iω)
)

×

(

1 − C−1(iω)Y(iω)C−1(iω)
)

}

, (C3)

and the corresponding density fitting Casimir-Polder trans-
form MP2 energy is obtained as the second-order contribution
(n = 2) in Eq. (C3):

EMP2
c = −1

2

∫ ∞

0

dω

2π
tr
{

C2(iω) − Y(iω)
}

. (C4)

As shown in the Sec. 3 of the Supporting Information, the
matrices C(iω) and Y(iω) are defined in terms of the matrices
appearing in the decomposition of the two-electron integrals
seen in Eq. (C1) and of the orbital energy differences:

C(iω) = 2
∑

i

Xii(iω), (C5)

and

Y(iω) = 2
∑

i j

Xi j(iω)Xi j(iω), (C6)

with

[Xi j(iω)]PQ =
∑

a

LP,ia

−2ǫia
ǫ2

ia
+ ω2

L ja,Q. (C7)

In the density fitting case the working equations are simi-
lar to those in the orbital-based implementation. They can be
obtained after diagonalization of the C(iω) matrix and take ad-
vantage of the fact that the dimensions (Naux×Naux) of the ma-
trix to be diagonalized is considerably smaller than Nexc×Nexc.
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