
HAL Id: hal-01304901
https://hal.sorbonne-universite.fr/hal-01304901

Submitted on 20 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partition with side effects
Fanny Pascual, Krzysztof Rzadca

To cite this version:
Fanny Pascual, Krzysztof Rzadca. Partition with side effects. 22nd IEEE International Conference
on High Performance Computing, HiPC 2015, Dec 2015, Bengaluru, India. �10.1109/HiPC.2015.52�.
�hal-01304901�

https://hal.sorbonne-universite.fr/hal-01304901
https://hal.archives-ouvertes.fr

Partition with side effects

Fanny Pascual
Sorbonne Universités

UPMC (Université Paris 6)
LIP6, CNRS, UMR 7606

Email: fanny.pascual@lip6.fr

Krzysztof Rzadca
Institute of Informatics
University of Warsaw

Warsaw, Poland
Email: krz@mimuw.edu.pl

Abstract—In data centers, many tasks (services, virtual ma-
chines or computational jobs) share a single physical machine.
We propose a new resource management model for such
colocation. Our model uses two parameters of a task—its
size and its type—to characterize how a task influences the
performance of the other tasks allocated on the same machine.
As typically a data center hosts many similar, recurring tasks
(e.g.: a webserver, a database, a CPU-intensive computation),
the resource manager should be able to construct these types
and their performance interactions. Moreover, realistic variants
of our model are polynomially-solvable, in contrast to the
NP-hard vector packing used previously. In particular, we
minimize the total cost in a model in which each task’s cost
is a function of the total sizes of tasks allocated on the
same machine (each type is counted separately). We show
that for a linear cost function the problem is strongly NP-
hard, but polynomially-solvable in some particular cases. We
propose an algorithm polynomial in the number of tasks (but
exponential in the number of types and machines); and another
algorithm polynomial in the number of tasks and machines
(but exponential in the number of types and admissible sizes
of tasks). When there is a single type, we give a polynomial
time algorithm. We also prove that, even for a single type, the
problem becomes NP-hard for convex costs.

Keywords-data center; heterogeneity; resource management;
scheduling; colocation; co-tenancy; partition; complexity; al-
gorithm

I. INTRODUCTION

Data centers, composed of tens to hundreds of thousands
of machines, packaged as virtual machines or services and
sold under the label of cloud, are now changing the way
the industry (and, to some extent, academia and research)
computes. Virtualization packages individual resources into
standard chunks with performance guaranteed by Service
Level Agreements (SLAs). Economies of scale make the
whole endeavour profitable for huge companies, like Google,
or providers of for-hire computational power (such as Ama-
zon EC2, RackSpace or Google Compute Engine).

However, a data center is not just a standard HPC su-
percomputer, but used by Google instead of a university. In
their great majority, HPC workloads are composed of com-
putationally-intensive batch jobs (recent workloads may be
also memory-intensive, which requires significant changes to
HPC resource managers [1]). The goal of an HPC scheduler
is to order jobs so that they are completed as fast as possible,

taking into account site’s policies, fairness and efficiency.
As jobs are computationally-intensive, they all compete for
the same resource—the CPU—so, a cluster node executes
at most as many jobs as CPU cores.

In contrast, a data center workload is more varied. In the
Google trace, just 1.5% of applications contribute 98.5% of
CPU usage [2]. Thus, while there are some computationally-
intensive batch jobs (corresponding to, e.g., Google’s Page
rank recalculation), a large part of the workload are services
(sometimes run in a virtualized environment). A service
models, e.g., a single instance of a web application serving
users (network-intensive); or an instance of a database (IO-
or memory-intensive). (In order not to distinguish at a
semantic level between a service, a virtual machine that may
run it, and a computational job, we will later refer to them
as tasks).

These new features of data center workloads make HPC
models unsuitable for managing data center’s resources. As
tasks require heterogeneous resources [3] (CPU, memory,
hard disk bandwidth, network bandwidth), sharing a single
node among many services is reasonable. Ideally, colo-
cated tasks’ resource requirements should complement each
other, e.g., a memory-intensive database instance should be
allocated with a few IO-intensive web applications with
burst popularity. The goal of the resource manager is also
different: instead of completing tasks as fast as possible, the
resource manager should optimize the end-user experience
(measured as, e.g., a statistics of the response time, e.g.,
time by which 95 or 99 percent of requests are completed).
However, the responsme has a non-linear dependency on the
load of the node [4], [5], [6].

Our model. In this paper, we propose a new model that
captures both complex goal functions and the effects that
tasks have on each other when they are allocated to the
same machine. In classic scheduling, a task’s influence on
other tasks depends solely on its size (which represents its
load, or its processing time). We propose a notion of type of
a task generalizing its side-effects. A task influences other
tasks in function of its size and its type. Thus, the cost
of a task i assigned to a machine M is a function of the
size of the tasks of each type on that machine (if there are

T possible types in the system, this cost function takes T
arguments, the xth argument being the total size of the tasks
of type x on M). In this paper (except in Section IV-B),
we consider a linear cost function. Linear costs roughly
correspond to classic optimality measures; and non-linear
costs model complex end-user performance. In linear cost
function, task i’s cost is the sum of the weighted sizes of all
tasks j assigned to machine M . The weight, which depends
on i’s and j’s types, measures the compatibility between the
two types. Large weights correspond to types that compete
for similar resources. Small weights correspond to types
that complement each other, e.g., a CPU-intensive and a
memory-intensive tasks.

Our model has three main advantages: first, it captures
tasks’ heterogeneity; second, it optimizes the observed (ex-
perienced) performance of the tasks, and not just the usage
of the resources; third, it is a minimal extension of a
standard scheduling model. Tasks’ affinities or interferences,
similar to our notion of type, were proposed in recent
papers on colocation performance [7], [8] (see Section V).
In contrast to bin-packing models, we don’t use a strict limit
on machines’ capacities. Hardware resources are limited,
but a task does not abruptly fail when, e.g., the total cpu
usage (or the disk IO, bandwidth or even memory, with
OS swapping) gets to 100%. Instead, tasks’ performance
is gradually degraded, resulting in slower observed response
times. Additionally, some tasks (e.g. webservers [4]) have
better observed performance if the total cpu usage is 20-
40%, rather than 90-100%. The aim of our model is to go
beyond the crisp constraints of bin-packing, which unreal-
istically treats any packing not exceeding the capacity as
equally good, while not permitting even small overpacking.

Contribution. The main contribution of our paper is a math-
ematical model that captures the effects that heterogeneous
tasks have on each other when they are allocated to the same
machine. The detailed contributions are as follows:
• We propose the problem of Partition with Side Effects

(PSE), in which the cost of a task is a linear function of
the size of the other tasks on the same machine (sizes are
multiplied by factors representing the compatibility between
types).
• We prove that PSE is NP-hard for arbitrary number

of types (Section III-A), and this even for two machines
and tasks of the same size. As a type corresponds to the
type of influence of a group of tasks on other groups, a
consequence of this result is that the number of influences
(types) considered should be small (constant or logarithmic
with the number of tasks).
• We show that there is an optimal solution in which, for

each type ti, there is an order Oi of the machines in which
the tasks sorted in order of non-increasing sizes are assigned
to the machines sorted in order Oi (Section III-C).
• Using the above dominance rule, we derive an exact al-

gorithm polynomial in the number of tasks (but exponential
in the number of types and machines, Section III-D).
• We also give a dynamic programming algorithm poly-

nomial in the number of tasks and machines (but exponential
in the number types and of sizes of tasks, Section III-B).
• For a single type, we give an exact algorithm polyno-

mial in the number of tasks and machines (Section IV-A).
• We show that if the costs are convex (and not linear,

as used above), the problem becomes NP-hard even for a
single type (Section IV-B).

The paper is organized as follows. We define the problem
of partition with side effects in Section II. We then study
two variations of this problem. Section III analyzes the case
with tasks of multiple types and costs linear with the sizes
of tasks. Section IV analyzes the case with tasks of single
type and costs that are linear or convex. Section V discusses
the related work.

II. MODEL

We consider a system where n tasks J = {1, . . . , n} have
to be allocated on a set of m parallel identical machines
M = {M1, . . . ,Mm}. Each task i has a known size pi ∈ N
(this assumption corresponds to the widely used clairvoyant
scheduling model: the sizes can be estimated by the resource
manager using previous instances, or users’ estimates). The
size corresponds to load the task imposes on a machine:
the request rate for a web server; or the cpu load for a cpu-
intensive computation. We assume that the tasks are indexed
by non-increasing sizes: p1 ≥ p2 ≥ · · · ≥ pn.

A partition (also called an allocation) is an assignment
of each of the n tasks to one of the m machines. In other
words, a partition divides the tasks into at most m subsets,
each subset corresponding to the tasks allocated on the same
machine. Given a partition P , we denote by MP,i ∈M the
machine on which task i is allocated in P .

The load of a machine Mj in a partition P is the sum of
the sizes of the tasks assigned to Mj in P . The load of type
t of a machine Mj in a partition P is the sum of the sizes
of the tasks of type t assigned to Mj in P . The cost ci of
task i in P depends on the loads of different types of MP,i,
the machine task i is allocated to (we later formalize ci).
The cost of partition P , denoted by C(P), is the sum of the
costs of the tasks: C(P) =

∑n
i=1 ci. Our aim is to compute

a partition of minimum cost. Such a partition minimizes the
average cost of a task and thus corresponds to the socially-
optimal outcome in the utilitarian model.

The main contribution of this paper lies in modeling side-
effects of colocating tasks on a single machine. The impact
of task i on the cost of another task j is a function of task’s
size pi and task’s type ti. Types generalize tasks’ impact
on the performance and may have different granularities:
for instance, “a webserver” and “a database”; or “a read-
intensive MySQL database”; or, as in [7], “an instance of
Blast” . Let T = {1, . . . , T} be a set of T different types

of tasks. Each task i has type ti ∈ T . Here we again
assume the clairvoyant model: task’s type is known to the
resource manager either by analysis of previous instances,
or by users’ declarations. For each type t ∈ T , we denote
by J t the tasks which are of type t; by n(t) the number of
such tasks (n(t) = |J t|); by jti the i-th largest task of type
t (ties are broken arbitrarily); and by pti this task’s size.

Different types have different influence on the cost of a
task. In most of the paper (except Section IV-B) we use a
linear cost function:

ci =
∑

j on machine MP,i

pj .αtj ,ti ,

where a coefficient αt,t′ ∈ N, defined for each pair of types
(t, t′) ∈ T 2, measures the impact of the tasks of type t
on the cost of the tasks of type t′ (allocated on the same
machine). If αt,t′ = 0 then a task of type t has no impact on
the cost of a task of type t′; the higher the αt,t′ , the larger
the impact. Coefficients are not symmetric, i.e., it is possible
that αt,t′ 6= αt′,t. We consider the linear cost function as it
generalizes, by adding coefficients αt,t′ , one of well-studied
scheduling models [9], [10], in which the cost of a task is the
load of its machine (i.e., if ∀(t, t′) ∈ T 2αt,t′ = 1, the model
reduces to the classical model). The coefficients αt,t′ can be
estimated by monitoring tasks’ performance in function of
their colocation and their sizes, which should be feasible as
a data center runs many instances of similar services [7],
[8].

We denote by PSE (Partition with Side Effects) the
problem of minimizing the total cost C(P) of partition P ,
C(P) =

∑n
i=1 ci, with ci defined by the linear cost function.

In Section IV-B, we study an important generalization of
the cost model, in which the cost of a task is any convex
function of the total load of the machine.

III. SEVERAL TYPES

In this section we analyze the Partition with Side Effects
(PSE) problem in the general case (although always using
the linear cost function; we relax this assumption in Sec-
tion IV-B).

We start by analyzing the complexity of the problem:
Section III-A shows that PSE is NP-hard for arbitrary
number of types even for two machines and unit-size tasks.
Section III-B proposes a dynamic programming algorithm
polynomial in the number of tasks and machines, but
exponential in the number of admissible sizes of tasks
and in the number of types. Then, in Section III-C, we
give a dominance rule: we show that there is an optimal
solution in which, for each type ti, there is an order Oi
of the machines in which the tasks sorted in order of non-
increasing sizes are assigned greedily to the machines sorted
in order Oi. This property will be called the SPT property
(where SPT stands for “Shortest Processing Time”). It allows
us to construct another dynamic programming algorithm

called CUTJUXTAPOSE (Section III-D), polynomial in the
number of tasks, but exponential in the number of types and
machines.

Before we analyze the complexity of PSE, we mention
several special cases that can be efficiently solved using the
results presented in Section IV.

One type / equivalent types: when there is only one
type, or, alternatively, if there is a value C such that for
each pair of types t and t′ (including t = t′), αt,t′ = C, we
show in Section IV-A that PSE can be solved in O(n2m).

Independent types: when for all i 6= j αi,j = 0, the
types are independent: by using T times the algorithm
of Section IV-A (for each type we use this algorithm to
assign optimally the tasks of the considered type to the m
machines), we obtain an optimal solution in O(n2m).

Large influences: If influences are very large for each
pair of types t′ 6= t (i.e., ∀(t′, t) ∈ T 2, t 6= t′ : αt′,t >∑
t∈T (n

(t)αt,t
∑
i∈Jt pi)), and if T ≤ m, then sharing

machines between tasks of different types is inefficient.
Indeed, the cost of allocating two tasks of different types
on a same machine incurs a cost larger than the total
cost of a partition where the tasks do not share machines
(
∑
t∈T n

(t)αt,t
∑
i∈Jt pi is the cost of a partition using T

machines, each dedicated to a specific type).
For a given possible configuration (assignment of a number
of machines to each type, such that the total number of
machines is m), we can compute an optimal partition in
polynomial time, again by using T times the O(n2m)-
algorithm of Section IV-A. We consider all the possible
configurations, and the partition of minimum cost over all
the configurations is returned. In order to count the number
of possible configurations, we show how to generate all
these configurations: since there is at least one machine
per type, w.l.o.g. we assign machine m − i + 2 to type
i, for each i ∈ {2, . . . , T} (at least one machine will be
assigned to type 1 later). There remains m−T +1 machines
to assign. We throw T − 1 balls on the m − T + 1 first
machines: let k1, . . . , kT−1 be the T − 1 machines (sorted
by non decreasing index) on which there is a ball (there
may be several balls on the same machine). Machines with
ID smaller than or equal to k1 (there is at least such a
machine) are assigned to the tasks of type 1; for each
j ∈ {2, . . . , T − 1}, machines with ID larger than kj−1
and smaller than or equal to kj are for the tasks of type j;
machines with ID larger than kT−1 and at most m− T + 1
are for the tasks of type T . The number of configurations is
equal to the number of way to throw T−1 balls on m−T+1
machines, i.e., the number of (T − 1)-combinations with
repetitions from a set of size m− T + 1, that is(
(m−T+1)+(T−1)−1

(T−1)
)

=
(
m−1
T−1

)
. Thus the complexity of

our algorithm is O(
(
m−1
T−1

)
n2m) ⊂ O(n2mT). This is a

polynomial time algorithm when T is a constant.

A. Complexity with arbitrary number of types

Proposition III-A.1: The decision version of PSE is
strongly NP-complete if the number of types is not fixed,
and this even if there are only two machines and if all the
tasks have unit size.

Proof: We reduce strongly NP-complete SIMPLE MAX
CUT [11] to PSE. The SIMPLE MAX CUT problem is the
following one: given a graph G = (V,E) and a positive
integer K, is there a partition of V into two disjoints sets
V1 and V2 such that the number of edges that have one
endpoint in V1 and the other endpoint in V2 is at least K ?

The decision version of PSE is as follows: given an
instance of PSE, and a bound B, is there a partition with
cost at most B ? We construct an instance of PSE from
an instance of SIMPLE MAX CUT as follows: we have two
machines M1 and M2, and n = |V | tasks {1, . . . , n}, each
one of size 1, and of a different type. We label the vertices
of V by the integers from 1 to |V |. Each task i corresponds
to vertex i of V . The values α correspond to edges: for
each (i, j) ∈ V 2, αti,tj = 1

2 if {i, j} ∈ E and αti,tj = 0 if
{i, j} /∈ E. We fix B = |E| −K.

We first show that there is a solution to PSE if there is
a solution to SIMPLE MAX CUT. Assume that there is a
solution to the SIMPLE MAX CUT: let V1 and V2 be two
sets such that the number of edges that have one endpoint
in V1 and one endpoint in V2 is at least K. We construct a
partition P for PSE by assigning the tasks corresponding to
vertices in V1 (resp. V2) to machine M1 (resp. M2). For each
task i ∈ {1, . . . , n}, let ni =

∑
j∈MP,i|{i,j}∈E 1 (for each

task i on M1 (resp. on M2), ni is the number of neighbours
of vertex i in V1 (resp. in V2)). The cost of task i is ci =∑
j∈MP,i

αtj ,tipj = 1
2

∑
j∈MP,i|{i,j}∈E 1 = 1

2ni. The total
cost of the allocation P is C(P) =

∑n
i=1 ci =

1
2

∑n
i=1 ni.

Note that
∑n
i=1 ni is twice the number of edges for which

both endpoints are in the same set (an edge {i, j} between
two vertices in the same set adds 1 to ni and 1 to nj).
Therefore 1

2

∑n
i=1 ni is at most |E| −K since there are at

least K edges which have an endpoint in V1 and an endpoint
in V2. Thus, C(P) = 1

2

∑n
i=1 ni ≤ |E| −K = B. There is

a solution to PSE.

Assume now that there is a partition P of cost at most B
for PSE. We partition the set V = {1, . . . , n} into two sets
V1 and V2 following the partition P : if task i is assigned
to machine M1 (resp. M2) in P then vertex i belongs to
V1 (resp. i belongs to V2). The total cost C(P) is equal
to the sum of the costs of the tasks. The cost of a task i
is
∑
j∈MP,i

αtj ,tipj = 1
2

∑
j∈MP,i|{i,j}∈E 1. Therefore, the

cost of P is equal to the number of edges which have both
endpoints either in V1 or in V2. Since the cost of P is at
most B = |E| −K, then there are at least K edges which
have an endpoint in V1 and an endpoint in V2: there is a
solution to SIMPLE MAX CUT.

There is a solution to PSE if and only if there is a solution

to SIMPLE MAX CUT. As PSE is (trivally) in NP, and as
SIMPLE MAX CUT is strongly NP-complete, PSE is also
strongly NP-complete.

B. Allocation for a fixed number of sizes

We now present a dynamic programming algorithm which
solves PSE in polynomial time if the number of types is
constant and if the number of possible sizes for the tasks is
also constant.

For each type t ∈ T , we denote by lt the number of
different sizes of a task of type t. Each possible size of a
task of type t has a index in {1, . . . , lt}. The size of a task
of type t and of size index j ∈ {1, . . . , lt} is pjt (note that
in this subsection we deliberately put the type t in subscript
in order not to confuse pjt , the size of the task with the size
index j, with ptj , the size of the j-th largest task of type t).
We denote by Cjt the set of the tasks which are of type t
and of size pjt . The number of such tasks is njt = |C

j
t |.

By C(y11 , . . . , y
l1
1 , y

1
2 , . . . , y

l2
2 , . . . , y

1
T , . . . , y

lT
T , r) we de-

note the cost of an optimal solution of problem PSE when
there are r machines and yjt tasks of type t and of size
pjt . For short, we will denote this cost by C

(
(yjt), r

)
(with

t ∈ {1, . . . , T} and j ∈ {1, . . . , lt}). The following dynamic
programming algorithm (proved in Proposition III-B.1) finds
in polynomial time an optimal solution of PSE.

The cost of an optimal allocation on a single machine is:

C
(
(yjt), 1

)
=

T∑
t=1

T∑
t′=1

αt,t′

(
lt∑
k=1

ykt p
k
t

) lt′∑
k=1

ykt′

 . (1)

The cost of an optimal allocation on r ≥ 2 machines is:

C
(
(yjt), r

)
= min

(xj
t :x

j
t∈{0,...,y

j
t})

(
C
(
(yjt − x

j
t), r − 1

)
+ C

(
(xjt), 1

))
.

(2)

The cost of an optimal solution of PSE is C((njt),m).
As usual, by backtracking we can deduce from C((njt),m)
an allocation of minimal cost.

Proposition III-B.1: If the number of types and the num-
ber of possible sizes for the tasks are constant, the above
described dynamic programming algorithm optimally solves
PSE in O(n2

∑
t∈T ltm).

Proof: When there is a single machine, there is only
one possible allocation, whose cost is the sum, over all the
couples of types (t, t′) ∈ T 2, of the cost that the tasks of
type t imply on the cost of the tasks of type t′ (i.e., the load
of the tasks of type t times the number of tasks of type t′,
times αt,t′). This cost is expressed by the right hand side of
Equation 1. The value C

(
(yjt), 1

)
is thus valid.

For each t ∈ {1, . . . , T}, and then for each j ∈
{1, . . . , lt}, let yjt ∈ {0, . . . , n

j
t} be a number of tasks

of type t and of size pjt , and let xjt ∈ {0, . . . , y
j
t }. The

expression C
(
(yjt − x

j
t), r − 1

)
+C

(
(xjt), 1

)
computes the

cost of an optimal solution among the solutions where there
are xjt tasks of type t and of size pjt on machine Mr, and
where there are yjt − x

j
t tasks of type t and of size pjt on

machines M1 to Mr−1. In any partition of the tasks (yjt), the
number of tasks of type t and of size pjt on Mr is between
0 and yjt . Thus, the right hand side of Equation 2 computes
the optimal cost of a partition where there are yjt tasks of
type t and of size pjt to assign to r machines, and Equation 2
is valid.

Therefore, by using Equations 1 and 2, we can compute
C((njt),m), the cost of an optimal solution of problem PSE.
Let us now analyze the time complexity of this algorithm.

Since, on a given subset of the machines, the number
of tasks of type t and size pjt is between 0 and njt , the
number of possible vectors (yjt) is

∏
t∈T ,j∈{1,...,lt}(n

j
t +

1) < (n + 1)
∑

t∈T lt . Thus, the number of possible values
of C((yjt), r) that we have to compute is smaller than
m(n + 1)

∑
t∈T lt . Each value C((yjt), 1) is computed in

O(T 2(maxt lt)
2), which is a constant time since T and

lt are constant. Each value C((yjt), r), with r ≥ 2, is
computed at most in (n + 1)

∑
t∈T lt (once the values C

with less than r machines have been computed and stocked).
Therefore, if the number of types and the number of possible
sizes for the tasks are constant, the complexity of this
dynamic programming algorithm is O(n2

∑
t∈T ltm): it is

a polynomial time algorithm.

C. The Shortest Processing Time (SPT) Property
An allocation fulfills the shortest processing time (SPT)

property if, for each type ti, there is an order Oi of
the machines in which the tasks sorted in order of non-
increasing sizes are assigned to the machines sorted in order
Oi. As we demonstrate here, there is an optimal allocation
which fulfills the SPT property. This dominance rule will
allow us to derive an optimal algorithm in the next section.

More formally, for each type ti, if two tasks s (short) and
l (long) of type ti are assigned to machine Mi, then the other
machines are not assigned tasks of type ti of intermediate
sizes (sizes larger than ps but smaller than pl). In other
words, an allocation fulfills the SPT property if, for each
type q and each machine Mi ∈ M the tasks of type q
assigned to Mi are a single, contiguous sublist of a list (i :
ti = q) where the tasks are sorted by non-increasing sizes.
We say that a triple of tasks (s, l, x) such that ps < px < pl
breaks the SPT property if tasks s and l are allocated to
the same machine whereas task x is allocated to another
machine.

Lemma III-C.1: For each instance of PSE there exists an
optimal allocation which fulfills the SPT property.

Proof: Let P be an optimal allocation for a given
instance I of PSE. If P fulfills the SPT property then
the proof is complete. Otherwise, let us transform P into

an allocation of the same cost and which fulfills the SPT
property. As P does not fulfill the SPT property, there are
three tasks s (small) x (medium) and l (large) of type t ∈ T
such that ps < px < pl and such that tasks s and l are in P
on the same machine, Mi, and task x is on another machine
Mj 6=Mi.

Let us denote by Ps−x an allocation in which s and x
are exchanged (i.e., task s is on Mj , task x is on Mi, and
the remaining tasks k /∈ {s, x} are on the same machines as
in P , MPs−x,k = MP,k). Likewise, we denote by Pl−x an
allocation in which l and x are exchanged. We now show
that the costs of the partitions Ps−x and Pl−x are equal to
the cost of P .

For each type q ∈ T , and for each machine M ∈M, the
number of tasks of type q on M is the same in P , Ps−x,
and Pl−x. For each type q ∈ T , let us denote by nqi (resp.
nqj) the number of tasks of type q on Mi (resp. Mj).

For each task a which is not allocated to Mi or Mj in
P , the cost of a is the same in P , Ps−x, and Pl−x. Indeed,
the cost of a task depends only on the tasks allocated on
the same machine, and the partitions P , Ps−x, and Pl−x
are identical on all the machines except machines Mi and
Mj . In Ps−x on Mi, the loads of the other types remain the
same, so the cost of each task of type q increases exactly by
(px− ps)αt,q compared to its cost in P , since the exchange
of s and x increases on Mi the load of type t by (px− ps).
Likewise, in Ps−x on Mj , the cost of each task of type q
decreases by (px− ps)αt,q compared to its cost in P , since
the exchange of s and x decreases on Mj the load of type
t by (px − ps). Therefore, we have:

cost(Ps−x) = cost(P) +
∑
q∈T

((px − ps).αt,q.nqi)+

+
∑
q∈T

(
(ps − px).αt,q.nqj

)
= cost(P) + (px − ps)

∑
q∈T

(
αt,q.(n

q
i − n

q
j)
)

Likewise,

cost(Pl−x) = cost(P) +
∑
q∈T

((px − pl).αt,q.nqi)+

+
∑
q∈T

(
(pl − px).αt,q.nqj

)
= cost(P) + (px − pl)

∑
q∈T

(
αt,q.(n

q
i − n

q
j)
)

If
∑
q∈T

(
αt,q.(n

q
i − n

q
j)
)

< 0 then cost(Ps−x) <
cost(P), which is impossible since P is optimal. Likewise, if∑
q∈T

(
αt,q.(n

q
i − n

q
j)
)
> 0 then cost(Pl−x) < cost(P),

which again is impossible since P is optimal. Thus,∑
q∈T

(
αt,q.(n

q
i − n

q
j)
)
= 0,

and cost(P) = cost(Pl−x) = cost(Ps−x).
We now consider an optimal allocation Ps−x. If Ps−x

fulfills the SPT property, we are done. Otherwise we repeat
the above algorithm (starting with Ps−x as the current allo-
cation) until the obtained partition fulfills the SPT property.
As, at each step we decrease the number of triples of tasks
breaking the SPT property, the algorithm converges. Since
the cost of the allocation does not change, and since the
original allocation P is optimal, we will obtain an optimal
allocation which fulfills the SPT property.

D. CutJuxtapose: Partition using the SPT property

We show in this section an optimal algorithm for PSE,
called CUTJUXTAPOSE (Algorithm 1) that uses the SPT
property (Lemma III-C.1). CUTJUXTAPOSE is exponential
in the number of types T and in the number of machines
m, but polynomial in the number of tasks n.

As the SPT property specifies, for each type, an optimal
ordering of tasks (from the largest to the smallest), CUTJUX-
TAPOSE “cuts”, for each type t, the ordered sequence of
tasks of type t into at most m sub-sequences (each sub-
sequence corresponds to a set of tasks of type t assigned
to the same machine). Then, CUTJUXTAPOSE “juxtaposes”
(combines) sub-sequences belonging to different types (i.e.,
sub-sequences of a given type are allocated to different
machines).

The main function, CutJuxtapose, cuts the sequence
of tasks of type t, (jt1, j

t
2, . . . , j

t
n(t)), into m sub-sequences

using indices denoting the cut points kt1, k
2
2, . . . , k

t
m−1 (these

indices are sorted in non-decreasing order). There will be
m−1 cut points among n(t) possible indices. All the possible
subsequences should be generated, so the cut points are
generated as combinations (to test all the possibilities) with
replacement (to allow empty allocations for some machines:
if some cut points are equal, the resulting sub-sequences
are empty, corresponding to a type that do not use all the
machines). The first sub-sequence spans tasks of type t
with indices (1, . . . , kt1); the i-th subsequence (with i < m)
spans the tasks of type t with indices (kti−1 + 1, kti) — this
subsequence is empty if kti−1+1 > kti ; the last subsequence
spans the tasks of type t with indices (ktm−1+1, n(t)). Given
m sub-sequences for each type, the algorithm finds a optimal
way to combine them by testing all sub-sequences’ permu-
tations (function Juxtapose). The algorithm allocates on
the i-th machine the i-th sub-sequence of first type, J1

i ,
combined with the i-th (after permutation) sub-sequence of
the second type, J2

π2(i), etc.

Proposition III-D.1: Algorithm CUTJUXTAPOSE com-
putes in O(n(m−1)T (m!)T−1) an optimal allocation of prob-
lem PSE.

Proof: By Lemma III-C.1 we know that there exists an
optimal partition which fulfills the SPT property. Algorithm
CUTJUXTAPOSE consider all the possible SPT partitions:

function CutJuxtapose consider all the possible ways to
divide the tasks of each type into at most m subsequences,
and then for each of these ways it computes the best
partition where the tasks of each subsequence share the
same machine. Indeed, given m sets of tasks for each type,
function Juxtapose consider all the possible assignments
of the sets to the machine (given that two sets of the same
type are on different machines), and it returns the best
partition. When the subsequences correspond to the ones of
an optimal solution, the algorithm computes then an optimal
solution PSE. This is thus the solution which is returned by
the algorithm.

The number of combinations with replacement when
we took k elements among n is

(
n+k−1

k

)
. Thus the

number of call of function Juxtapose done by al-
gorithm CUTJUXTAPOSE is

∏
i∈{1,...,T}

(
n(i)+m−2
m−1

)
. The

time complexity of Juxtapose is (m!)T−1 since all
the permutations of the subsequences of type t 6= 1
are computed. Thus the time complexity of CUTJUXTA-
POSE is

(∏
i∈{1,...,T}

(
n(i)+m−2
m−1

))
(m!)T−1, which is in

O(n(m−1)T (m!)T−1).
If the number of machines, m, and the number of types,

T , are constant, then the complexity of CUTJUXTAPOSE is
O(nT (m−1)): it is a polynomial time algorithm.

Note also that when there are only two types (A, B),
Juxtapose reduces to finding the minimal cost bipartite
matching between sets {JA1 , . . . , JAm} and {JB1 , . . . , JBm}.
The cost of matching JAi (with the total size LAi =∑
j∈JA

i
pj) with JBj (with total size LBj) is equal to

|JAi |αB,ALBj + |JBj |αA,BLAj . By solving bipartite matching
with the optimized Kuhn-Munkres algorithm [12], the com-
plexity of Juxtapose is O(m3), and thus the complexity
of the whole CUTJUXTAPOSE is O(n(m−1)Tm3).

IV. SPECIAL CASE: SINGLE TYPE

We consider in this section that all the tasks are of the
same type, t1. We start by proposing a polynomial time
algorithm solving PSE in this case. This algorithm allows
us to solve the special cases detailed in the introduction of
Section III. Then, in Section IV-B we study general cost
functions. So far, we studied a linear cost function: if all the
tasks have the same type the cost of each task is proportional
to the load of the machine on which it is. However, more
complex cost functions are interesting from the systems
perspective (e.g., webserver’s response time in function of
load is convex [4], [5], [6]). We show in Section IV-B that if
the cost function is strictly convex then the problem becomes
NP-hard in the strong sense. A concave cost function is not
as realistic, since it would mean that, with unit size tasks,
the average cost of a task decreases when the number of
tasks on the same machine increases.

Algorithm 1: The CUTJUXTAPOSE algorithm
Notation:
CR(n,m) — generate all m tuples as combinations with
replacements choosing m numbers from 1..n; the returned tuples are
sorted;
Perm(m) — generate all permutations of sequence 1..m

1 Juxtapose((J1
1 , J

1
2 , . . . , J

1
m), (J2

1 , J
2
2 , . . . , J

2
m),

2 . . . , (JT1 , J
T
2 , . . . , J

T
m))

3 cmin =∞; optPart = [];
4 for π2 in Perm(m) do
5 for π3 in Perm(m) do

6
. . .

7 for πT in Perm(m) do
8 part[1]← J1

1 ∪ J2
π2(1)

∪ · · · ∪ JT
πT (1)

;

9 part[2]← J1
2 ∪ J2

π2(2)
∪ · · · ∪ JT

πT (2)
;

10
...

11 part[m]← J1
m ∪ J2

π2(m)
∪ · · · ∪ JT

πT (m)
;

12 if C(Part) < cmin then
13 optPart← part;
14 cmin← C(part);
15 return optPart;

16 CutJuxtapose(J1, J2, . . . , JT)
17 cmin =∞; optPart = [];
18 for (k11 , k

1
2 , . . . , k

1
m−1) in CR(n(1),m− 1) do

19 for (k21 , k
2
2 , . . . , k

2
m−1) in CR(n(2),m− 1) do

20
. . .

21 for (kT1 , k
T
2 , . . . , k

T
m−1) in CR(n(T),m− 1) do

22 part← Juxtapose(
23 ((1, . . . , k11), (k

1
1 + 1, . . . , k12), . . . , (k

1
m−1 + 1, . . . ,m)),

24 . . . ,
25 ((1, . . . , kT1), (kT1 + 1, . . . , kT2), . . . , (kTm−1 + 1, . . . ,m)));

26 if C(part) < cmin then
27 optPart← part;
28 cmin = C(part);
29 return optPart;

A. Optimal algorithm with linear costs

We show in this section a polynomial time algorithm,
based on dynamic programming, for allocating tasks to
machines. This algorithm is optimal for a single type and
linear costs, thus finds the socially-optimal outcome in the
Koutsoupias and Papadimitriou model [9], in which the cost
of each task is the load of its machine.

For each machine j ∈ M we denote by Lj the load of
machine j: Lj =

∑
i on machine j pi. The cost of each task

i is thus ci = LMP,i
, the load of the machine on which task

i is allocated. As for a single type, the cost of a partition
P is αt1,t1

∑n
i=1 LMP,i

, without loss of generality, we fix
αt1,t1 = 1. We recall that the tasks are indexed in non-
increasing order of loads: p1 ≥ p2 ≥ · · · ≥ pn.

We denote by C(x, r) the cost of an optimal solution of
problem PSE when there are r machines and tasks of indices
1 to x (x ∈ {1, . . . , n}, and r ∈ {1, . . . ,m}). The following
dynamic programming algorithm (proved in Proposition
IV-A.1) finds in polynomial time the optimal solution of

PSE. The algorithm uses the SPT property (Section III-C):
thus, when extending an allocation from r to r+1 machines,
it checks allocations with 1, 2, . . . , (x − 1) smallest tasks
on machine r. More formally, for all x ∈ {1, . . . , n}, and
r ∈ {1, . . . ,m− 1}, we have:

C(x, r + 1) = min
i∈{1,...,x−1}

C(x− i, r) + i

x∑
j=x−i+1

pj

 .

(3)
The cost of an allocation on a single machine can be

directly computed. For each x ∈ {1, . . . , n}, we have:

C(x, 1) = x

x∑
i=1

pi. (4)

The optimal cost of a solution of PSE is C(n,m). As
usual, by backtracking we can deduce from C(n,m) an
allocation of minimal cost.

Proposition IV-A.1: The above dynamic programming al-
gorithm optimally solves single type PSE in O(n2m).

Proof: Let us first show that for each x ∈ {1, . . . , n}
and r ∈ {1, . . . ,m}, the value C(x, r) computed by the
above dynamic programming is the optimal cost to allocate
the x largest tasks of the considered instance on r machines.
Once we will have shown this, we will deduce that C(n,m)
is the optimal cost of a solution of PSE, and thus that this
algorithm is valid.

The proof is by induction on r, the number of machines.
When there is only one machine, there is only one possible
allocation, and its cost is equal to the number of tasks times
the load of the machine. Thus Equation 4 is valid.

Let us now assume that for each y ∈ {1, . . . , x − 1},
C(y, r) is the optimal cost to allocate the y largest task of
the instance on r machines, and let us show that C(x, r +
1) is the optimal cost to allocate the x largest task of the
instance on r + 1 machines. Since there exists an optimal
SPT allocation (as shown in Lemma III-C.1), there exists an
optimal allocation O of the x largest tasks of the instance
on r+1 machines, where the smallest tasks are on the same
machine. In O, let i∗ ∈ {1, . . . , n} be the number of tasks
which are on the machine to which the smallest task x is
allocated. As O is an SPT allocation, this machine has the
i∗ smallest tasks x− i∗+1, . . . , x. The cost of O is C(x−
i∗, r)+ i∗

∑x
j=x−i∗+1 pj . Indeed,

∑x
j=x−i∗+1 pj is the cost

of each of the i∗ smallest tasks in O and C(x− i∗, r) is by
induction the minimal cost to allocate the other tasks (the
x − i∗ largest tasks on r machines). Equation 3 computes
the cost of a feasible solution: if i′ ∈ {1, . . . , n} is the
value of i that minimizes

(
C(x− i, r) + i

∑x
j=x−i+1 pj

)
then this equation computes the cost of a solution where the
i′ smallest tasks are on the same machine, and the other tasks
are partitionned optimally on the r remaining machines. This
value is minimized when i′ = i∗. Thus C(x, r + 1) is the

minimum cost of a partition of the x largest tasks on r + 1
machines.

Therefore, C(n,m) is the cost of an optimal solution of
problem PSE. It can be be computed in O(n2m). Indeed,
we stock the values C(x, r) on a n×m matrix. Each value
C(x, r+1) can be computed in O(n) once the values C(x−
i, r) are known (for each x ∈ {2, . . . , n},

∑x
j=2 pj can be

computed at the beginning of the algorithm in O(n), and
then when we compute C(x, r+1) we have x ≤ n costs to
examine — each cost being computed in O(1) if we start
by i = x− 1 and decrement i until i = 1).

B. Complexity for strictly convex cost

Until now, we assumed that a task’s cost is a linear com-
bination of the loads of the different types on its machine.
Many phenomena are, however, not linear. For instance, a
webserver’s query response time rises slowly with load until
a certain threshold, but then it rapidly increases [4], [5], [6].
In this section, we show that it is NP-hard to minimize costs
given by a convex cost function, even for a single type.

More formally, we assume in this section that the cost of
task i in partition P is ci = f(LMP,i

), where f is a strictly
convex function (and LMP,i

is the load of the machine on
which task i is allocated in P). Let us denote by PCSE
(which stands for “Partition with Convex Side Effects”)
the following problem (note that this problem has a natural
extension to several types):
Input: n tasks (of different sizes), a number m of machines,
and an increasing and strictly convex cost function f .
Output: a partition which minimizes the sum of the costs∑n
i=1 ci =

∑n
i=1 f(LMP,i

).

Proposition IV-B.1: For any cost function f which is in-
creasing and strictly convex, the decision version of problem
PCSE is strongly NP-complete.

Proof: We do a reduction from problem 3-PARTITION,
which is strongly NP-complete [11], to our problem. The
3-PARTITION problem is the following one: the input is a
finite set A of 3q elements, a bound B ∈ Z+, and a “size”
s(a) ∈ Z+ for each a ∈ A, such that s(a) satisfies B

4 <
s(a) < B

2 and such that
∑
a∈A s(a) = qB; the question

is: can A be partitioned into q disjoint sets S1, . . . , Sq such
that, for i ∈ {1, . . . , q},

∑
a∈Si

s(a) = B ?
The decision version of problem PCSE is as follows:

given an instance of problem PCSE, is there a partition P
with total cost C(P) =

∑n
i=1 ci at most K ?

The instance of PCSE corresponding to an instance of the
3-PARTITION is the following: we have m = q machines
{M1, . . . ,Mm} and n = 3q tasks. For each element a ∈ A,
we have a task ja of size pa = s(a). We set the budget
K = nf(B).

Let us now show that there is a solution to the 3-
PARTITION problem if and only if there is a solution to
the corresponding instance of the PCSE problem. Assume

first that there is a solution to the 3-PARTITION problem.
Let {S1, . . . , Sm} be the sets obtained in this solution. Let
us consider the partition where, for each i ∈ {1, . . . ,m}, the
tasks which correspond to the elements of Si are allocated
on Mi. In this partition, since

∑
a∈Si

s(a) = B, the load
on each machine is equal to B. The cost of each task is
thus f(B), and the sum of the costs is nf(B). There is a
solution of cost K = nf(B) for the PCSE problem.

Let us now assume that there is a solution P to the PCSE
problem, and let us show that there is a solution to the
corresponding instance of the 3-PARTITION problem. Let
nj be the number of tasks on Mj in P , and let Lj be the
load of Mj in P . The cost of P is C(P) =

∑m
k=1 nkf(Lk).

Assume by contradiction that there is in P a machine Mi

such that ni > 3. In this case, there exists in P a machine
Mj such that nj < 3 (since there are 3m tasks). On Mi, the
load is Li > B, since there are at least 4 tasks on Mi and
each task has a size strictly larger than B

4 . On the contrary,
on Mj , the load is Lj < B, since there are at most 2 tasks on
Mj and each task has a size strictly smaller than B

2 . Thus,
ni > nj and Li > Lj (and thus f(Li) > f(Lj)). Hence
nif(Li) + njf(Lj) > (ni − 1)f(Li) + (nj + 1)f(Lj). By
increasing each nj smaller than 3 up to 3, and by decreasing
each ni larger than 3 up to 3, we decrease at each step the
cost of the solution (each time we increase by one unit the
coefficient of f(Lj), we simultaneously decrease by one unit
the coefficient of f(Li) > f(Lj)). We obtain that C(P) =∑m
k=1 nkf(Lk) >

∑m
k=1 3f(Lk). Since f is strictly convex,∑m

k=1 3f(Lk) ≥ 3mf(
∑m

k=1 Lk

m) = 3mf(B) = K. Thus
C(P) > K: there is a contradiction. Thus there are exactly
three tasks per machine in P .

Since there are three tasks per machine, and since
P is a solution of problem PCSE, we have C(P) =

3
∑m
i=1 f(Li) ≤ K = 3mf(B). Since B =

∑m
i=1 Li

m ,∑m
i=1 f(Li) ≤ mf(

∑m
i=1 Li

m). Since f is strictly convex, this
can be true only if for each i ∈ {1, . . . ,m}, Li =

∑m
i=1 Li

m .
In this case, there are three tasks per machine, and the load
of each machine is B. If we denote by Si the set of elements
of A corresponding to the tasks allocated on Mi in P , we
have for each set Si, with i ∈ {1, . . . ,m},

∑
a∈Si

s(a) = B:
there is a solution to the 3-PARTITION problem.

There is a solution to the 3-PARTITION if and only if there
is a solution to the corresponding instance of the PCSE.
As PCSE is (trivially) in NP, PCSE is thus strongly NP-
complete.

V. RELATED WORK

Alternative models of data center resource manage-
ment. There is no standard model of data center resource
management (standard in the sense in which the parallel
job model is standard for HPC). Existing models can be
roughly categorized into variants of multi-dimensional bin-
packing (to model heterogeneous resource requirements),

stochastic optimization (to model uncertainty), and statistical
approaches.

Multi-dimentional bin-packing. In bin-packing
approaches, tasks are modeled as items to be packed
into bins (machines) of known capacity [13]. To model
heterogeneous tasks and resources, bin packing is extended
to vector packing: an item’s size is defined as a vector with
dimensions corresponding to requirements on individual
resources (CPU, memory, disk or network bandwidth) [14].
These are hard optimization problems: bin packing is
strongly NP-hard (but has an asymptotic PTAS [15]),
while two-dimensional vector packing does not admit an
asymptotic PTAS [16] Alternatively, if tasks have unit-size
requirements, simpler representations can be used, such as
maximum weighted matching [17]. In our model, machines’
capacities are not crisp—instead, tasks’ costs gradually
increase with increased load.

Stochastic versions of combinatorial optimization prob-
lems. Stochastic versions of classical optimization prob-
lems [18], [19], [20], [21] can be used to model uncertainty
of tasks’ resource requirements or their variability in time.
In these representations, some parameters of an instance are
random variables, e.g., items’ sizes in bin packing. A typical
goal is to construct an optimal solution (in terms of the
number of bins used, or the value of the items picked to
a knapsack) that violates the capacity constraints only with
a small probability. These models, however, rarely lead to
practical algorithms, at the same time requiring restrictive
assumptions on the stochastic models of jobs, as usually the
algorithms work only for a certain distribution.

Statistical approaches. Bobroff et al. [22] uses statistics
of the past CPU load of tasks (CDF, autocorrelation, peri-
odograms) to predict the load in the “next” time period;
then they use bin packing to calculate a partition mini-
mizing the number of used bins subject to a constraint
on the probability of overloading servers. Di et al. [23]
analyze resource sharing for streams of tasks to be processed
by virtual machines. Sequential and parallel task streams
are considered in two scenarios—when there are sufficient
resources to run all tasks; and when the resources are
insufficient. For sufficient resources, optimality conditions
are formulated; for insufficient resources, fair scheduling
policies are proposed.
Analysis of effects of colocation. Podzimek et al. [8]
analyze the performance of colocated CPU-intensive tasks.
Their measured performance interference metric is similar
to our αtj ,ti coefficient. Kim et al. [7] focuses on exper-
imental measures of performance interference between a
few concrete HPC applications. This interference, called the
affinity metric, is similar to our αtj ,ti coefficients. They
propose a greedy allocation heuristics, but they don’t study
the complexity of the problem, nor the optimality of their
heuristics.

Game-theoretic approaches. There is a strong connection
between our model and games, in which each task is owned
by a selfish agent who wants to minimize task’s cost.

Load balancing games. Our model relates to the load-
balancing games introduced by Koutsoupias and Papadim-
itriou [9], in which the cost of each task is the total load
of the machine to which the task is allocated. This model
represents, e.g., a system of servers from which users down-
load large files: tasks correspond to requests of individual
users and each the user aims at contacting a server with the
smallest load [10]. Contrarily to what we do in this paper, the
game model considers that each task is owned by an agent,
and that each agent chooses on which machine its task will
be scheduled. In most papers, the authors aim at minimizing
the maximum load over all the machines (see [10] for a
survey), but in some papers [24], [25] the aim is to minimize
the average social cost, as we do in our paper. However,
to our best knowledge, no centralized optimal algorithm to
minimize the average cost of the tasks has been studied. In
Section IV-A, we have given a polynomial time algorithm
which solves this problem.

Coalition structure generation. Our model is also related
to the coalition structure generation (CSG, see [26] for a
recent overview). CSG consists in partitioning a set of agents
(tasks) into subsets (called coalitions); each agent affects
the cost of the coalition she is assigned to (but not the
costs of the other coalitions). However, in CSG the aim
is to minimize the total cost of all coalitions (and not the
average cost of an agent). Additionally, in CSG the number
of coalitions is not bounded, while we bound the number
of subsets by the number of machines m. Aziz et al. [27]
analyzes CSG with players having types. When the number
of types is a constant, they give a polynomial algorithm.
However, their notion of type is more restrictive than ours:
two players have the same type if their influence on the costs
of the others is exactly the same.

VI. CONCLUSIONS AND PERSPECTIVES

We propose a new model describing the performance
of tasks colocated on machines. Our model introduces the
notion of type. Types describe and allow to deal with tasks’
heterogeneity: e.g., a computationally-intensive task and a
database instance influence the performance of a web server
in a different way. We studied Partition with Side Effects, a
family of problems in which the cost of a task is a function of
the loads of different types allocated to the same machine.
For linear cost functions, we showed that the problem is
strongly NP-complete for an arbitrary number of types.
We proposed two optimization algorithms: one polynomial
in the number of tasks and machines (but exponential in
the number of sizes of tasks and types); and another one
polynomial in the number of tasks (but exponential in the
number of machines and types). For a single type, we gave a

polynomial time algorithm. We also proved that the problem
becomes strongly NP-complete when the cost function is
strictly convex, and this even for a single type.

We leave open the NP-completeness of Partition with Side
Effects with a constant number of types.

A systems-oriented future work is to validate our model
in an actual data center resource manager: this would open
many interesting questions on, e.g., automatic classificiation
of tasks into types or inferring their coefficients.

In this paper, we minimized the total cost. Another natural
research direction is to add weights to the tasks (and
to minimize the weighted total cost), or to minimize the
maximal cost. Note that even for a single type and two
machines this last problem is NP-hard since it reduces to
the widely studied optimization of the makespan on parallel
machines (P ||Cmax).

The notion of type of a task can also be applied to
generalize other problems, as for example load balancing
games (load balancing games with types would correspond
to our problem in which agents choose themself on which
machines their tasks will be scheduled). On an opposite
side, our notion of types may be also used to reduce the
complexity of coalition structure generation problems.

Acknowledgements: We thank the anonymous reviewers for
their helpful comments.
This research has been partly supported by Polish National
Science Center grant Sonata (UMO-2012/07/D/ST6/02440)
and by the Google Faculty Research Award.

REFERENCES

[1] D. Klusácek and H. Rudová, “Multi-resource aware fairshar-
ing for heterogeneous systems,” in JSSPP, Proc., 2014.

[2] S. Di, D. Kondo, and F. Cappello, “Characterizing and
modeling cloud applications/jobs on a Google data center,”
The Journal of Supercomputing, vol. 69, no. 1, pp. 139–160,
2014.

[3] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” in SoCC, Proc. ACM, 2012, p. 7.

[4] L. P. Slothouber, “A model of web server performance,” in
WWW, Proc., 1996.

[5] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web server
performance modeling using an m/g/1/k* PS queue,” in ICT,
Proc., vol. 2. IEEE, 2003, pp. 1501–1506.

[6] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application
performance management in virtualized server environments,”
in NOMS, Proc. IEEE, 2006, pp. 373–381.

[7] S. Kim, E. Hwang, T.-K. Yoo, J.-S. Kim, S. Hwang, and
Y.-R. Choi, “Platform and co-runner affinities for many-task
applications in distributed computing platforms,” in CCGrid
Proc. IEEE CS, 2015.

[8] A. Podzimek, L. Bulej, L. Y. Chen, W. Binder, and P. Tuma,
“Analyzing the impact of cpu pinning and partial cpu loads on
performance and energy efficiency,” in CCGrid Proc. IEEE
CS, 2015.

[9] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,”
in STACS, ser. LNCS, C. Meinel and S. Tison, Eds. Springer,
Jan. 1999, no. 1563, pp. 404–413.

[10] B. Vöcking, “Selfish load balancing,” in Algorithmic Game
Theory, N. Nisan, T. Roughgarden, E. Tardos, and V. V.
Vazirani, Eds. Cambridge University Press, Sep. 2007, pp.
517–542.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
Jan. 1979.

[12] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” JACM,
vol. 19, no. 2, pp. 248–264, 1972.

[13] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approx-
imation algorithms for bin packing: A survey,” in Approxi-
mation algorithms for NP-hard problems, D. Hochbaum, Ed.
PWS, 1996, pp. 46–93.

[14] M. Stillwell, F. Vivien, and H. Casanova, “Virtual machine
resource allocation for service hosting on heterogeneous
distributed platforms,” in IPDPS Procs. IEEE, 2012, pp.
786–797.

[15] W. Fernandez de la Vega and G. Lueker, “Bin packing can
be solved within 1 + epsilon in linear time,” Combinatorica,
vol. 1, no. 4, pp. 349–355, 1981.

[16] G. Woeginger, “There is no asymptotic PTAS for two-
dimensional vector packing,” Information Processing Letters,
vol. 64, no. 6, pp. 293–297, 1997.

[17] O. Beaumont, L. Eyraud-Dubois, C. Thraves Caro, and
H. Rejeb, “Heterogeneous resource allocation under degree
constraints,” IEEE TPDS, vol. 24, no. 5, pp. 926–937, 2013.

[18] K. W. Ross and D. H. Tsang, “The stochastic knapsack
problem,” Communications, IEEE Trans. on, vol. 37, no. 7,
pp. 740–747, 1989.

[19] A. Goel and P. Indyk, “Stochastic load balancing and related
problems,” in FOCS. IEEE, 1999, pp. 579–586.

[20] M. Chen, H. Zhang, Y.-Y. Su, X. Wang, G. Jiang, and
K. Yoshihira, “Effective vm sizing in virtualized data centers,”
in IFIP/IEEE IM. IEEE, 2011, pp. 594–601.

[21] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual
machines with dynamic bandwidth demand in data centers,”
in INFOCOM, Proc. IEEE, 2011, pp. 71–75.

[22] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement
of virtual machines for managing SLA violations,” in IM,
Proc. IEEE, 2007, pp. 119–128.

[23] S. Di, D. Kondo, and C. Wang, “Optimization of composite
cloud service processing with virtual machines,” IEEE Trans.
on Computers, 2015 (in print).

[24] B. Awerbuch, Y. Azar, and A. Epstein, “The price of routing
unsplittable flow,” in STOC, Proc., 2005, pp. 57–66.

[25] G. Christodoulou and E. Koutsoupias, “The price of anarchy
of finite congestion games,” in STOC, Proc., 2005, pp.
67–73.

[26] E. Elkind, T. Rahwan, and N. R. Jennings, “Computational
coalition formation,” in Multiagent Systems, G. Weiss, Ed.
MIT Press, 2013.

[27] H. Aziz and B. De Keijzer, “Complexity of coalition structure
generation,” in AAMAS, Proc., 2011, pp. 191–198.

