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Abstract

A method is proposed to evaluate in a non-contact way the phase velocity dispersion

curves of circumferential waves around a shell of arbitrary shape immersed in a fluid. No

assumptions are made about the thickness nor the material of the shell. A geometrical

model is derived to describe the shape of the radiated wavefronts in the surrounding

fluid, and predict the positions of its centers of curvature. Then the time-reversal

principle is applied to recover these positions and to calculate the phase velocity of the

circumferential waves. Numerical finite-difference simulations are preformed to evaluate

the method on a circular and on an elliptic thin shells. The different dispersion curves

branches can be recovered with an error of less than 10%.

PACS numbers : 43.20.Mv, 43.30.Jx, 43.40.Rj
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I INTRODUCTION1

Circumferential waves are interface-type waves propagating around a cylindrical object.2

They can be classified into two groups : internal and external waves. The external waves3

(generalized Stoneley waves, Franz waves, creeping waves) reside essentially at the external4

interface of the object. Their velocity is close to that of the waves in the surrounding medium5

(water in the present case). The internal waves are analogous to Rayleigh waves in the case6

of a plain cylinder or to Lamb waves in the case of shells. They depend on the material7

constituting the scatterer, and are thus suitable to perform evaluation or characterization of8

the material.9

Circumferential waves are generated when an incident wave hits the interface at a critical10

angle of incidence β where, following Snell’s law, β = asin c0
cφ
, c0 and cφ denoting the phase11

velocities of acoustic waves in the surrounding medium and of the circumferential wave, re-12

spectively. During the propagation, circumferential waves radiate in the surrounding medium13

at the same angle β, and thus contribute to the scattered field when a revolution object is hit14

by an incident wave. This can be underlined for example by applying a Sommerfeld-Watson15

transform on the classical partial wave decomposition of the scattered field : the contri-16

butions may be separated into geometrical components (specular reflection, transmission)17

and circumferential waves [1, 2, 3]. At high frequencies, the contribution of the radiated18

circumferential waves in a given point may be evaluated using the Geometrical Theory of19

Diffraction [4], which has especially been applied on spheres [5].20

Visualization of the radiated waves can be done using the Schlieren method, allowing21

the observation of the wavefronts shape [6, 7, 8]. The geometrical shape of these wavefronts22

have been studied in [6, 9, 10]. In particular, in the case of a circular cylinder of radius23

a, the wave front equation have been shown to be an involute of a circle of radius (a sin β)24

with the same center as the cylinder [11]. Figure 1 (adapted from [6]) shows the geometrical25

construction of the radiated wavefronts.26

The aim of this paper is to describe a method to evaluate the dispersion curves of cir-27

cumferential guided waves in thin shells of arbitrary geometry immersed in a fluid, observed28

at a distance by an array of receivers. The method was initially suggested by Thomas et29
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Figure 1: Geometrical construction of the radiated wavefront by a circumferential wave

around a circular cylinder (adapted from ref. [6]).

al. [12] for thin circular cylindrical shells, based on the time reversal of the waves radiated30

in the fluid by the circumferential waves. Building on the later, Prada al. [13] were able to31

measure several lamb modes dispersion branch by applying the DORT method (a French32

acronym for Décomposition de l’Opérateur de Retournement Temporel), taking advantages33

of the analysis of the iterative time reversal operators [14]. In particular, the DORT method34

allowing the separation of the different contributions in the case of multi-modal propagation35

of the circumferential waves. Experimental application was successfully conducted on a thin36

cylindrical steel shell [12, 13] and on a thicker cylindrical bone mimicking phantom [15, 16].37

The later work on a bone mimicking phantom was motivated by the potential to measure the38

properties of the cortical shell of the femoral neck by an ultrasound scanner, in the context39

of osteoporosis fracture risk assessment. In order to accommodate the complex geometry of40

the femoral neck, the method of measurement of circumferential waves was first extended41

from circular shell to a particular case of elliptic shells where the major axis of the ellipse42

is parallel to the transducer array [17]. In the present paper, the basis of the method is43

revisited and a generalization is proposed to evaluate cylindrical objects, the external cross44

section of which can be circular as in [12, 13, 15], elliptic, or of arbitrary geometry.45

3



II CONFIGURATIONS46

The method introduced in this article processes the wavefront radiated in an acoustic medium47

by a circumferential wave to recover its phase velocity. It can in principle be applied to any48

cylindrical shell of arbitrary cross section. For the purpose of illustration the details of the49

configurations given below will be used throughout the remaining of the article.50

Three different cylindrical shells will be considered51

• A circular shell of radius a=10mm;52

• An elliptical shell of major semi-axis r1=10mm and minor semi-axis r2=7.5mm, with53

the major axis oriented parallel to the array (α = 0◦);54

• The same elliptical shell, but with its major axis oriented at an angle α = 30◦.55

In the case of the ellipses, α denotes the angle between the major axis and an axis parallel56

to the array. For all the cases, the thickness of the shell is constant and taken to e=1mm.57

With the typical mean radius of the shell a=10mm, the ratio e/a is small (weak curvature58

of the shell). As a consequence, the properties of the circumferential guided modes will be59

close to those of the leaky Lamb modes in a plane plate [18, 19, 20]. With the frequency60

range of interest centered around f0=1MHz (ke ' 4 in water), three Lamb modes will be61

observed. The external fluid surrounding the shell is water, and the shell is considered as62

filled with air. The chosen properties of the medium constituting the shell are close to those63

of the cortical bone [21] (table 1).64

Table 1: Material properties used for simulations (Longitudinal velocity cL, shear velocity

cT and density ρ)

cL cT ρ

(m.s−1) (m.s−1) (g.cm−3)

Water 1500 - 1

Shell 4000 1800 1,85

A 128 elements transducer array of total width D=64mm is used to record the radiated65

wavefronts in order to determine the phase velocity cϕ by applying the time reversal principle.66
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This transducer is located at a distance F=60mm from the center of the object. The general67

configuration for the simulations is presented in fig. 2.

Figure 2: General configuration of the setup used to evaluate the dispersion curves of the

circumferential guided waves around a thin cylindrical shell.
68

III CASE OF CIRCUMFERENTIAL WAVES IN ELLIPTICAL SHELLS OB-69

SERVED AT A VERY LARGE DISTANCE70

At a distance of the shell, the radiated rays seem to arise from a virtual point source inside71

the object [22]. The position of this virtual source depends on both the phase velocity of the72

circumferential wave (through the critical angle β) and the geometrical shape of the shell. By73

applying the time reversal principle [23] it is possible to retrieve the position of this virtual74

source as a focal spot. The position of the latter is then used to recover the phase velocity75

cϕ for each frequency [12]. In the case of a circular shell, the incident plane wave generates76

a pair of symmetrical circumferential waves traveling in opposite directions (clockwise and77

counterclockwise), providing two distinct virtual sources (see fig. 3). If the assumption is78

made that the receivers are located toward the infinity in the left, the distance d between79

these virtual sources is linked with the phase velocity cϕ with the relation80

cϕ =
2ac0
d

, (1)

c0 denoting the celerity in the surrounding fluid and a the external radius of the cylinder.81

The same argument as in [12] has been applied to the case of an elliptic shell with major82

semi-axis r1 and minor semi-axis r2, and which major axis is parallel to the transducer83
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Figure 3: Principle of the generation and radiation of circumferential waves around a thin

circular cylinder.

array [17]. This leads to the explicit relation (2)84

cϕ =
c0
r2d

√
4r41 + (r22 − r21)d2 , (2)

linking the dimensions of the ellipse r1, r2, the celerity c0 in the surrounding fluid, and the85

distance d between the two focal spots obtained by time reversal. In particular, the result86

of eq.(1) for the circular shell is retrieved when putting r1 = r2 = a in eq (2).87

In the case of an elliptic shell with an arbitrary orientation compared to the array, or in88

the case of a shell of arbitrary cross section, the derivation of a relation such as eq. (2) is89

much more complex. In particular, the symmetry with respect to the horizontal axis is lost,90

which imposes the upper and lower parts of the shell to be considered separately. Moreover91

in equations (1) or (2), the assumption is made that the transducer array is located at an92

infinite distance, so that the radiation of the circumferential wave is considered to be parallel93

to the horizontal axis, which is obviously not the case, in particular for the receivers located94

at the edges of the array. These limitations are addressed in the rest of the paper.95

IV GEOMETRICAL MODEL OF THE RADIATED WAVEFRONT96

In this section we develop a model to describe the radiation of circumferential guided waves97

using geometrical acoustics.98
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Figure 4: Notations used to describe the radiation of a circumferential wave around a shell

of arbitrary cross section.

A Description of the shell99

We consider a thin cylindrical shell of arbitrary cross section, the edge of which is described100

by the polar curve ρ(θ) (see fig. 4). It corresponds to the Cartesian coordinates101


x(θ) = ρ(θ) cos θ

y(θ) = ρ(θ) sin θ

(3)

The external normal vector ~n for each point of the shell is defined by the relation102

~n(θ) =


nx =

y′√
y′2 + x′2

=
ρ′ sin θ + ρ cos θ√

ρ′2 + ρ2

ny =
−x′√
y′2 + x′2

=
ρ sin θ − ρ′ cos θ√

ρ′2 + ρ2

(4)

where the ′ denotes the derivative with respect to θ. ~n can also be defined by its orientation103

γ relative to the horizontal axis ~x (see Fig. 5), expressed as104

tan γ(θ) =
ny
nx

=
ρ sin θ − ρ′ cos θ

ρ′ sin θ + ρ cos θ
. (5)

Finally, the arc length s(θ1, θ2) between two points of the shell defined by the polar angles105

θ1 and θ2 is106

s(θ1, θ2) =

∫ θ2

θ1

√
ρ′(θ)2 + ρ(θ)2dθ . (6)
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Figure 5: Direction of the radiation ~k+ and ~k− for a circumferential wave propagating

counterclockwise and clockwise.

B Wavefront equation107

We consider a circumferential guided wave propagating at the phase velocity cϕ and frequency108

ω around the shell. This guided wave radiates in the surrounding medium at the angle β.109

The radiated wave has the velocity c0 in the surrounding medium. As the circumferential110

waves may propagate in both clockwise (denoted as superscript +) and counterclockwise111

(denoted as −) directions along the shell, radiation in the directions ~k− and ~k+ will be112

considered (fig. 5).113

The time t = 0 is taken when the circumferential wave is at θ = 0 in the shell. At the114

time t, a given point M of coordinates (x, y) is reached by a wave radiated in straight line115

from the point P of coordinates (ρ, θ) on the shell (Fig. 5). The circumferential wave has116

traveled along a distance s(0, θ) at the celerity cϕ in the shell and the radiated wave has117

traveled from P to M at the celerity c0.118

The radiated wavefronts are the set of pointsM reached at the time t. Considering polar119

angles θ in [0; 2π], the coordinates of the radiated wavefront F+(t, θ) for a counterclockwise120

circumferential wave is (eq. (7)):121

F+(t, θ)


x(t, θ) = ρ(θ) cos θ + c0

(
t− s(0, θ)

cϕ

)
cos
(
γ(θ) + β

)
y(t, θ) = ρ(θ) sin θ + c0

(
t− s(0, θ)

cϕ

)
sin
(
γ(θ) + β

) (7)
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and a similar result for F−(t, θ) radiated by a clockwise circumferential wave (eq. (8)):122

F−(t, θ)


x(t, θ) = ρ(θ) cos θ + c0

(
t− s(θ − 2π, 0)

cϕ

)
cos
(
γ(θ)− β

)
y(t, θ) = ρ(θ) sin θ + c0

(
t− s(θ − 2π, 0)

cϕ

)
sin
(
γ(θ)− β

) (8)

In the two formulations (7) and (8), only the physically relevant solutions are considered to123

respect causality. These corresponds to the terms describing the propagation in water from124

P to M , where the quantity (t− s/cϕ) is positive.125

C Centers of curvature of the wavefront126

Time-reversing the radiated wavefront results in a focal spot at the center of curvature of F±.127

The radius of curvature Rc of these curves is defined from the derivatives of its coordinates128

x(t, θ) and y(t, θ) with respect to θ129

Rc(t, θ) =
(x′2 + y′2)3/2

x′y′′ − y′x′′
, (9)

where ′ and ′′ denote the derivatives with respect to θ. The internal normal vector Nint of130

the curve is defined for each point (x(t, θ), y(t, θ)) by equation (10)131

Nint(t, θ) =
1√

x′2 + y′2


−y′

x′
(10)

It is then possible to determine the centers of curvature C+(t, θ) and C−(t, θ) for each132

point of the wavefronts F±(t, θ) following133

C±(t, θ) = F±(t, θ) +Rc(t, θ)Nint (11)

In the case of a circular shell of radius ρ(θ) = a, we have γ(θ) = θ and s(0, θ) = aθ. The134

above relations simplifies and lead to relations (12).135

C±circle(t, θ) =


xc(θ) = a

c0
cϕ

sin(θ ± β)

yc(θ) = −a c0
cϕ

cos(θ ± β)
(12)
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Figure 6: Wavefronts around a circular shell for two circumferential waves (with a=10mm

and c0/cϕ=0.6). Solid line is for the counterclockwise guided wave and dashed line for the

clockwise guided wave. The gray lines are the locus of the centers of curvature of the radiated

wavefronts.

In this case, Ccircle
± does no longer depend on time, implying that it does not depend on136

the distance of observation. The centers of curvatures of the wavefronts are located on a137

circle of radius a c0
cm

centered on O. This result is consistent with those of Padilla [11] and138

can justify the equation (1) used in [12] and [13]. An example of radiated wavefronts and139

their associated centers of curvature is presented in figure 6 in the case of a circular shell.140

Due to the symmetry of the configuration, the set of centers of curvature are the same for141

both the counterclockwise and the clockwise wavefronts.142

In the case of an elliptic shell, it is possible to obtain a semi-analytic result, involving143

incomplete elliptic integrals, but in the case of a shell of arbitrary cross section, the wavefronts144

and their centers of curvature (eqs. (7), (8) and (11)) have to be computed numerically. The145

case of an elliptic shell is represented in figure 7. The locus of the centers of curvature146

describe a rather complex shape compared to the case of a circular shell. Moreover the locus147

corresponding to each wavefront (clockwise and counterclockwise) are different.148
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Figure 7: Wavefronts around an elliptic shell for two circumferential waves (with r1=10mm,

r2=7.5mm and c0/cϕ=0.6). Plain line is for the counterclockwise guided wave and dashed

line for the clockwise guided wave.

V OBSERVATION OF THE RADIATED WAVEFRONTS BY A TRANS-149

DUCER ARRAY150

In practice, only a small amount of the radiated wavefronts will reach an array of receivers,151

arising from a limited part of the shell. Accordingly, the time-reversed received signals will152

focus at a reduced number of centers of curvature. Considering the configuration presented153

in section II, figure 8 shows the centers of curvature of the part of the wavefronts reaching154

the array in the case of a circular shell (a) and of an elliptical shell (b, c). The points155

corresponding to the origin of the wavefronts are visible in light gray.156

The centers of curvature C± (in gray) are then reduced to a unique point, denoted C0,157

which represents the centroid of the centers of curvature for a given wavefront, weighted158

by a Hamming window over the elements of the array (this apodization is chosen to attach159

greater importance to the central elements, leaving the external elements with a low but160

nonzero level). These C0 points are represented with black points on figure 8. We can notice161

that in the case of the elliptical shell the spatial distribution of the centers of curvature C±162

is limited (in the figure, the centers of curvature are often masked by the point representing163

their centroid C0).164

The expressions of F±(t, θ) also depend on time. It is possible to evaluate the phase delay165
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Figure 8: Recording of the wavefronts by a transducer array for a circumferential wave,

according to the configuration presented in section II and c0/cϕ=0.6.

φi between the signals recorded for each element i of the array.The time-reversal principle166

can then be applied using these delays: Assuming a frequency f0=1MHz and that each167

element acts as a point source in plain water with the wavenumber k0 = 2πf0
c0

, the field Φi168

emitted by each element i at the distance ri in free space is the classical two-dimensional169

Green’s function in the far field approximation (eq. (13))170

Φi(ri, φi) =
ei(k0ri+φi)
√
ri

. (13)

Adding the fields Φi for each emitter of the array leads to a time-reversed focal spot.171

Some examples are presented on figure 9 for the 3 configurations of section II. The position172

of the maxima of the focal spots (white star) is very close to the centroids C0 (white circles)173

of the centers of curvature C± of the wavefronts. This confirms that the time reversal process174

focuses on the center of curvature of the wavefronts. This also shows that considering only175

the centroids C0 instead of all the centers of curvature as in fig. 8 is sufficient to evaluate the176

position of the focal spots. For the sake of simplicity only the centroids C0 will be considered177

in the following of the paper.178

In the case of the circular shell, the two centroids C0 corresponding to the two wavefronts179

in opposite directions are symmetric with respect to the horizontal ~x axis. Applying the time180

reversal process in this case lead to two focal spots close to the medium axis of the shell, that181

is at x = 0, referred to as the x0-axis in the following. Here, it is important to note that the182

method introduced in [12, 13] assumed that time-reversed signals of radiated circumferential183

waves focus on the x0-axis, which is consistent with the results of figure 9-a. On the contrary,184
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Figure 9: Focal spots obtained by the back-propagation of the wavefronts for a circumferen-

tial wave with c0/cϕ=0.6, at f0=1MHz. The white stars indicates the maxima of the focused

field, , the position of the C± are presented in light gray line and the centroids C0 are in

white circles.

for an elliptic shell as in fig. 9-b the two focal spots are no longer on x0. Moreover in a general185

case of fig. 9-c or with a shell of arbitrary cross section, the focal spots are also no longer186

symmetric with respect to the horizontal axis.187

VI PROPOSED METHOD TO DETERMINE CIRCUMFERENTIAL WAVES188

PHASE VELOCITIES189

Figure 10: C0-curves for various shells with cϕ varying from 1000 to 9000m.s−1.
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Figure 11: Details of the location of the C0 points with their relative phase velocities cϕ for

the counterclockwise circumferential wave, in the case of an elliptic shell with major axis

parallel to the transducer array.

The previous section has shown that a given phase velocity cϕ of the circumferential190

wave leads to two particular positions of C0 related to the counterclockwise and clockwise191

directions of the wave. Varying the phase velocity provides a set of spatial points C0 which192

constitutes a parametric curve with parameter cϕ referred to as the C0-curve (fig. 10) in the193

following.194

Figure 11 presents the details of the phase velocity values on a counterclockwise C0-curve.195

The points of the curve located outside the shell correspond to cϕ lower than the velocity c0196

in the surrounding fluid. This is similar to the case d > D in eq. (1). Also, when c0 = cϕ197

(here 1500m.s−1) the point C0 is located exactly on the surface of the shell. The part of198

the C0-curve outside the shell can account for generalized Stoneley waves and Franz waves199

(creeping waves).200

Figure 11 shows that the points of the C0-curve towards the center of the object, corre-201

sponding to the highest values of cϕ, are closer one to the others than the points corresponding202

to the lowest values of cϕ. In other words, the distribution of cϕ along the curve is denser203

as the velocity increases. This is illustrated, for example, by the ’short’ distance between204

the points corresponding to cϕ = 5 and 9 km.s−1, compared to the relatively ’long’ distance205

between cϕ = 2 and 3 km.s−1.206

The principle of the proposed method to measure phase velocities of circumferential waves207

is to use a predefined C0-curve. Such a curve can be calculated knowing only the position208

and external geometrical shape of the shell. Note that there is no hypothesis made over the209
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thickness of the shell nor on the material properties: only the propagation of a circumferential210

wave with a given phase velocity is assumed. The proposed method is outlined below:211

1. Calculate with eq. (11) the C0-curve corresponding to the measured object (position,212

external geometry and range of expected phase velocities), given the relative positions213

and size of the object and the transducer ;214

2. Excite circumferential waves in the shell and record the waves radiated in the sur-215

rounding medium with a transducer array;216

3. Fourier-transform the recorded signals;217

4. In cases where time-domain signals of several circumferential modes overlap, the DORT218

method can be used to separate the contribution of each mode and eliminate the non219

significant contributions along with noise;220

5. Calculate, for each frequency, the amplitude of the back-propagated wavefield along221

the predefined C0-curve. The phase velocity of the circumferential wave (or of the222

mode selected at step ]4 in cases where several guided modes exist) corresponds to223

the point of the C0-curve where the wavefield is maximum, that is, in practice, at the224

intersection between the C0-curve and a focal spot.225

The method involving the use of eq. (1) and (2) can also be used but only in the case226

(a) and (b) of figure 10, where the shell is symmetric relative to the x-axis. In this case it is227

sufficient to calculate the back-propagated wavefield on the x0-axis, measure the distance d228

between the two focal spots and apply the analytic equations to recover the phase velocities.229

This much simpler method will be referred as the “x0 method” in the following. In the case230

of a circular shell (fig 10-a), the C0 curve is very close to the medium axis of the shell x0. In231

this case the use of the x0 method may be sufficient to compute the dispersion curve. In the232

case of the elliptic shell with a major axis parallel to the transducer array (fig 10-b), as the233

C0 curve is rather different from the x0 curve, the x0 method may still be practicable but234

will provide different results. In the general case of shell with arbitrary cross section, the x0235

method is not practicable.236
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The heterogeneous distribution of cϕ values along the C0-curve discussed above has im-237

portant consequences as a better resolution will be obtained for the estimations of low cϕ238

than of high cϕ. In particular in the non symmetric case (here in fig 10-c) the C0 curve in239

the lower part corresponding to the centroids for the clockwise circumferential wave is quite240

short and all points are close one to another; it will be more difficult to distinguish different241

phase velocities as the focal spots will cover a large amount of these points. On the contrary242

the upper part presents points spreaded in space and then provide a better resolution on cϕ.243

VII NUMERICAL VALIDATION244

Numerical simulations have been used to validate our approach. Simulations were performed245

with a two-dimensional Time-Domain Finite Difference (FDTD) code SimSonic [21, 24].246

The configuration of the simulations is the same as described in section II.247

In order to perform the Singular Value Decomposition (SVD) needed by the DORT248

method [14, 13, 25], the response function of the transducer array was obtained with emissions249

from 32 elements evenly spaced along the array. The reception is performed with all the 128250

elements. The source signal emitted by each element of the array is a Ricker wavelet (or251

Mexican hat) with a central frequency f0=1MHz. The spatial step of the simulation grid252

is h=0.025mm and a preliminary study on homogeneous mediums has shown the numerical253

dispersion to be much less than 1% in that case.254

The dispersion curves of guided waves modes measured with the proposed method are255

compared to reference curves calculated for a plane plate loaded with water on one side and256

free on the other side [26].257

Figure 12 presents an example of snapshot recorded during the simulations. The presence258

of several modes of circumferential waves propagating around the shell is visible, along with259

the wavefronts radiated in water. The shape of these simulated wavefronts is similar to the260

geometrical shapes computed with equations (7) and (8).261

As there are several modes of propagation for the circumferential waves, each of them262

radiating in the fluid, several radiated wavefronts interfere. The use of the DORT method263

on the recorded signals at the receivers will allow to separate the major contributions of264

the radiated field. This is done by considering only a few high singular vectors of the time265
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Figure 12: Snapshot of the simulation of circumferential waves around an elliptic shell and

radiating in the surrounding medium.

reversal operator, discarding the others. Doing so eliminates all the components with a low266

signal-to-noise ratio. The highest singular vectors are used to calculate the retro-propagated267

wavefield on the C0-curve calculated as indicated in the previous sections. When possible268

(case of a circular shell or an elliptic shell with major axis parallel to the array), the x0269

method will also be performed as a way of comparison. As these two cases are symmetric270

with respect to the horizontal axis, only the counterclockwise wave i.e. the upper part of271

the shell will be considered.272

Figure 13: Dispersion curves for a circular shell of thickness e=1mm. The squares represents

the results obtained from the x0 method (eq. (1)), and the gray rounds represents the results

obtained with the C0 method.

The results obtained on a circular shell are presented on figure 13. The classical x0 method273
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and the C0 method provide almost the same results, as expected from fig. 10-a where the274

C0-curve is very close to the x0-axis. The agreement with the theoretical dispersion curves is275

very good and allows to recover the branches identified as the S0 and the A1 Lamb modes.276

The lower branch with a velocity close to 1000m.s−1 corresponds to the generalized Stoneley277

wave at the interface with the shell. These excellent results on the circular shell validate our278

approach and approximations, along with the simulations tools used. In the following, only279

the external shape of the shell is changed.280

Figure 14 presents the results for an elliptic shell with its major axis parallel to the281

transducer array. Significant discrepancies are found between the results of the x0- and C0-282

methods, especially for the higher velocities (A1 mode). The results from the C0 method283

are closer to the reference theoretical curves than those of the x0 method. They are within284

10% of the reference values.285

For an elliptic shell with an arbitrary inclination the x0 method is not available (Fig. 15).286

Due to the non-symmetry of the shell related to the horizontal axis, the branches of the287

dispersion curves may be evaluated considering the counterclockwise circumferential waves288

(upper part of the shell) or the clockwise waves (lower part), leading to different results.289

Using counterclockwise waves, the agreement with the theoretical modes is excellent while290

it is less good using clockwise waves This may be partly explained considering the positions291

of the C0 points on fig. 10-c, where the points corresponding to the upper part are more292

spreaded in space leading to a better resolution of the method.293

VIII DISCUSSION AND CONCLUSION294

The paper presented a method to estimate the phase velocity of the circumferential waves295

around thin shells in a non contact way. It applies to shells of any shape, provided the296

external geometry is known, along with the position and size of the transducer array. As297

the computation of the C0 curves only depend on the external geometry of the shell, this298

method may also be suitable to study shells with varying thickness. In the same way, the299

mechanical properties of the shell may vary along the shell. In these cases the estimation300

of the phase velocities is only related to the part of the shell where the wavefronts recorded301

by the receivers were emitted. The computation of F±(t, θ) allows determining the origins302
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Figure 14: Dispersion curves for an elliptic shell (e=1mm) which major axis parallel to the

transducer array. The squares represents the results obtained from the x0 method (eq. (2)),

and the gray circles represents the results obtained with the C0 method.

Figure 15: Dispersion curves for an elliptic shell (e=1mm) with an inclination of 30◦.

of the wavefronts reaching the receivers (see for example fig. 8) and thus the portion of the303

shell investigated.304

However there are a few limitations to the technique. First the circumferential waves305

have to be generated in the shell by the incident wave from the transducer. Some modes of306

circumferential may not be excited and thus their associated branches in the dispersion curve307

will not be estimated. Second, the circumferential waves also have to propagate around the308

shell and radiate in the surrounding medium. This may induce an important attenuation: if309

the attenuation is too important the circumferential wave will not be able to circle around310

19



the shell and to radiate toward the receiver.311

When considering a geometry of shell, it is important to look at the shape of the C0-curve,312

and in particular at the distribution of the velocities along this curve. In practice, if the C0313

points corresponding to different phase velocities are too close, the focal spots of the time314

reversal process will not be able to distinguish between them. Therefore, the orientation of315

the shell relative to the position of the array is important : an orientation which leads to the316

C0 points the more spreaded in space as possible is preferred. In any cases, the resolution317

for lower velocities is much better than for the velocities greater than 3-4 km.s−1. Another318

limitation is that all the dimensions and the relative positions have to be known precisely, as319

a small error in the position of the C0-curve (<1mm) may lead to a difference greater than320

500m.s−1.321

For the non-circular cases, e.g. fig 14 and 15, the maximal error with the reference value322

is about 10% for high velocities. As the results obtained with the circular shell are excellent,323

this error cannot come from the simulation tool used, nor from the fact that the curvature324

of the shell is neglected in the reference value (Lamb waves in a plane plate). The origin of325

the error is still not fully explained and has to be investigated further.326

The method presented here can be useful in medical applications, for example to evaluate327

the mechanical properties of bones like femoral neck in vitro or in vivo where the cortical328

(compact) part of the bone can be considered as a shell of varying geometry, thickness and329

properties, immersed in a fluid. Some industrial application may also be found as the method330

is suitable for a non contact inspection and evaluation of any tubular component, like pipes331

for instance.332
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