
HAL Id: hal-01305461
https://hal.sorbonne-universite.fr/hal-01305461v1

Submitted on 21 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Urolithiasis: What can we learn from a Nature which
dysfunctions?

Dominique Bazin, David Portehault, Frederik Tielens, Jacques Livage,
Christian Bonhomme, Laure Bonhomme, Jean-Philippe Haymann, Ali

Abou-Hassan, Guillaume Laffite, Vincent Frochot, et al.

To cite this version:
Dominique Bazin, David Portehault, Frederik Tielens, Jacques Livage, Christian Bonhomme, et al..
Urolithiasis: What can we learn from a Nature which dysfunctions?. Comptes Rendus. Chimie, 2016,
19 (11-12), pp.1558-1564. �10.1016/j.crci.2016.01.019�. �hal-01305461�

https://hal.sorbonne-universite.fr/hal-01305461v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


lable at ScienceDirect

C. R. Chimie xxx (2016) 1e7
Contents lists avai
Comptes Rendus Chimie

www.sciencedirect.com
Full paper/M�emoire
Urolithiasis: What can we learn from a Nature which
dysfunctions?

Dominique Bazin a, b, *, David Portehault b, Frederik Tielens a, Jacques Livage a,
Christian Bonhomme a, Laure Bonhomme a, Jean-Philippe Haymann c, d,
Ali Abou-Hassan e, Guillaume Laffite a, e, Vincent Frochot c, d,
Emmanuel Letavernier c, d, Michel Daudon c, d

a Sorbonne Universit�es, UPMC Univ Paris 06, CNRS, Coll�ege de France, Laboratoire de Chimie de la Mati�ere Condens�ee de Paris, 11, place
Marcelin-Berthelot, 75005 Paris, France
b CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
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Learning from Mother Nature constitutes a major intellectual movement encompassing
music, architecture and chemistry. In this contribution, we would like to assess the sym-
metry and the interface present in pathological calcifications in order to propose a bio-
inspired approach. We present an overview on the observations made on kidney stone
growth at the macroscopic scale. The results are discussed at the molecular scale and
examples are proposed to implement the biological asymmetrical growth in pathological
calcifications in biomimetic strategies such as in in vitro microfluidic experiments.
© 2016 Acad�emie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
1. Introduction

Learning from Mother Nature is not a specificity of
materials science [1e3]. In the music of Olivier Messiaen
(1908e1992), one of the most important composers of the
twentieth century, birdsongs are considered as a section of
music. A birdsong can be short with repetitive features but,
more commonly, it is melodic and more elaborate than a
simple call [4]. Another example can be related to the work
of an architect, Otto Frei (1925e2015) who passed away
recently. He wanted his buildings to contribute to improve
everyone's living conditions. He tried to make as little
impact as possible on nature and to learn from natural
azin).
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design, i.e. from the structures of crab shells, birds’ skulls or
spider webs [5,6].

Biomineralisation processes constitute an exciting
research field in which we have already learned a lot from
Mother Nature [7e9]. In this contribution, we review a
range of research outputs we have obtained regarding
pathological calcifications [10e14], in order to show that it
is possible to propose at least one example of a bioinspired
approach to the field based on kidney physiology. Because
the chemistry of the kidney is quite a wide subject, and one
hundred chemical phases have been identified in kidney
stones (KSs), here we decided to focus on biological en-
tities, which can be considered as Janus particles. The
concept of Janus particles was first proposed by De Gennes
[15] 20 years ago in his Nobel Prize lecture, following the
results obtained by C. Casagrande andM. Veyssi�e [16,17]. As
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defined by M.D. McConnell et al. [18], Janus particles are
traditionally composed of two chemically distinct regions,
making them suitable for applications as biological sensors,
nanomotors, antireflection coatings, optical sensing de-
vices, and two-phase stabilizers, as well as for fundamental
studies in asymmetric particle assembly. As an illustration
of Janus particles, a schematic representation of such en-
tities has been provided in Fig. 1. For the sake of clarity, we
only consider here metallic Janus particles [18e20]. As can
be seen in the following figures (Fig. 1AeC), Janus particles
may display distinct morphologies. In the case of nano-
tubes (Fig.1D1 and D2), peculiar distributions of the second
metal (in black) can lead to the construction of two enan-
tiomers, leading to helimagnetism (in the case where the
first metal is Pt and the second Co, for example) or enan-
tiocatalysis [21].

Following the definition provided by M.D. McConnell
et al. [18], we start this contribution with a description of
KSs at themacroscopic scale, inwhich at least two chemical
phases have been identified. Details at themesoscopic scale
are then provided through observations performed using a
latest generation scanning electron microscope (Field
Emission Scanning Electron Microscope, or F.E.-S.E.M.). We
will see that pathological calcifications exhibit peculiar
mineral/organic ratios as well as crystal/amorphous in-
terfaces. To the best of our knowledge, such a kind of
interface is not used to generate Janus particles. Finally, we
would like to propose that a chemical process based on the
pathogenesis of Randall's plaque (RP) generates a deposit
made of calcium phosphate apatite (CA) at the origin of a
calcium oxalate KS.
2. Observations at the macroscopic scale

Regarding most of the KS samples, several chemical
phases are identified. In the case of the KS made of calcium
Fig. 1. Schematic representation of metallic Janus particles. The lack of centrosymm
the structure (B and C). In some cases, peculiar Janus particles may be related to e
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oxalate monohydrate (COM), (Fig. 2A), the presence of a
whitish deposit termed RP [22e27], generally made of CA
in a local hollow point on the surface of COMKS induces the
dissymmetry. Actually, RP serves as a nucleus of the kidney
stone and constitutes today a major public health problem
in western countries. More complex structures exist,
however, and the presence of more than one hundred
chemical compounds has been identified in KSs. Fig. 2B
shows a typical KS made of COM and calcium oxalate
dihydrate (COD) on which a RP made of CA is present.

3. Dissymmetry at the mesoscopic scale

Observations through FE-SEM underline that the
complexity of pathological calcifications (Fig. 3A) exists
also at the mesoscopic scales (Fig. 3B). For example, in the
case of RP, observations (Fig. 3B) show that these calcifi-
cations are composed of a mixture of tubules with calcified
walls and tubules obstructed by calcium phosphate plugs.
Thus, the lack of centrosymmetry can be induced by the
chemistry and the structure at the macroscopic and
mesoscopic scales. In some cases, RP is made of sodium
hydrogen urate monohydrate (UrNa) mixed with plates of
COM (Fig. 2C).

The final illustration is crystals present in urine [28,29].
For these biological entities, the lack of centrosymmetry
may be due to the morphology as well as the chemistry. In
Fig. 4A we can see calcite crystals at the corners of a crystal
made of COD, whereas in Fig. 4B the photograph shows
weddellite crystals deposited on the surface of anhydrous
uric acid.

4. Chemistry at the interface

A precise understanding of the pathogenesis of calcifi-
cations lies in the description of the interface. The
etry may come from the chemistry (A) but also from both the chemistry and
nantiomers (D1 and D2).

t can we learn from a Nature which dysfunctions?, Comptes



Fig. 2. Different KSs observed at the macroscopic scale. (A) Classic KS made of COM. The white deposit on the surface of this COM is made of CA and is named RP.
(B) Two calcium oxalate, COM and COD are clearly visible for this kidney stone. Again, a RP is present on the surface of COM.
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observation that the nucleus of a kidney stone is often
chemically different from the material on the surface led K.
Lonsdale [30] to suggest that epitaxial relationships be-
tween crystalline phases may be an important factor
contributing to their formation. The word epitaxy comes
from Greek words taxis meaning in an orderly manner and
epimeaning above. In the case assessed by K. Lonsdale [30],
the term heteroepitaxy is therefore more appropriate. In
heteroepitaxial growth, atoms of different species are
deposited onto a substrate of different type (which may
also be composed of various atomistic species).

Modelling heteroepitaxial growth is not an easy task.
Such formalism has to take into account not only a match
between interatomic distances, but also relaxation pro-
cesses as well as interdiffusion phenomena. However, the
study of interfaces in the presence of solvents at the ab
initio level is becoming state-of-the-art in the field of ma-
terial modelling; the study of adsorption of small bio-
molecules having been studied extensively [31]. Ab initio
molecular dynamics has already been used successfully in
several studies, even for very complex amorphous systems
in water [32]. Modelling the interface e amorphous solid/
(amorphous) liquid e implies that several difficulties have
to be overcome. The special case of silica can be generalized
to other interfaces showing water molecules or hydroxyl
groups on their surface, the orientation of these groups
depends on the local surface topology. However, in the
presence of liquid water, only the strong inter-OH bonds
are maintained in the case of silica, whereas the weaker
ones are replaced by H-bonds formedwith interfacial water
molecules. Some other surface OH groups are simulta-
neously found to be H-bond acceptors or donors to water.
Interestingly, we have found that the first water layer above
the silica surface is overall rather disorderly and strongly
adsorbed. This result was confirmed in another application,
using amorphous silica [33,34].

Regarding the different chemical compounds identified
in KSs, M.C. Frincu et al. [35] reported a comprehensive list
of different heterogeneous mineral interfaces that are
epitaxially matched. In our study, FE-SEM experiments
have been performed in order to gather information on
these biological interfaces. The first set of observations is
Please cite this article in press as: D. Bazin, et al., Urolithiasis: Wha
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performed on RP made of NaUr. At high magnification, we
can see through FE-SEM the presence of small spherical
entities at the extremity of NaUr needles (Fig. 5A). Com-
plementary information is given by EDS (Energy dispersive
spectroscopy) measurements regarding the elementary
composition of these spherical entities and needles
(Fig. 5B). The EDS spectrum indicates that spherical entities
are made of Ca, P and O, while needles are made of Na, C, O
and N, highlighting an interface between apatite and so-
dium urate. We have already shown that spherical apatite
entities are built from an agglomeration of apatite nano-
crystals [36e40]. As pointed out by C. Rey et al. [41,42], a
remarkable characteristic of apatite is the existence of a
hydrated poorly crystalline calcium phosphate region on
the surface of apatite nanocrystals, which is at the core of
protein/inorganic recognition and interaction. The case of
an “amorphous” interface has not been really discussed in
the paper of M. Crina Frincu et al. [35], although it is often
found in biological materials.

Moreover, in the case of KSs, the surface of the mineral
cannot be considered as a “free surface”. Regarding calcium
oxalate, which is the most common crystalline phase in
urinary calculi, different papers have discussed the pres-
ence of osteopontin as a critical inhibitor on the surface of
calcium oxalate crystals [42]. A. Okada et al. [44] identified
osteopontin in calcium oxalate crystals by immunohisto-
chemical staining. D.G. Reid et al. [45] used nuclear mag-
netic resonance spectroscopy for phosphatic stones to
provide evidence of the close coexistence of bio-
macromolecules, especially glycosaminoglycans, with
apatite. Very exciting results have been obtained also
through the investigations of precipitation of mineral
phases on organic monolayers [46,47], giving information
on the growing process of the mineral phase. First, R.
Backov et al. [46] demonstrated that domain boundaries
within the monolayer might act as nucleation sites. Second,
A. Uysal et al. [48] assessed the deformation of the COM
mineral crystals at the early stage of the growing process in
order to achieve a lattice match with the organic mono-
layer. Third, the final morphology of the crystal depends
intimately on the protein. For example, boat-shaped crys-
tals sometimes encountered in COM stones are observed in
t can we learn from a Nature which dysfunctions?, Comptes



Fig. 3. Optical (A) and scanning electron microscopy photographs (B) of
calcium oxalate calculi initiated from a RP. The plaque is made of tubules
with calcified walls and tubules obstructed by calcium phosphate plugs. (C)
RP is made of NaUr and plates of COM.

Fig. 4. Crystals present in urine as Janus particles. (A) Calcite crystals at the corners
anhydrous uric acid.
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the presence of mucoproteins [49]. If these observations
are not in line with approaches based on the similarity of
interatomic distances between chemical phases identified
in KSs, the complete set of data clearly underlines strong
mineral/organic interactions during the biomimetic crys-
tallization of COM.

In vitro experiments also provide valuable information
about the nature of the interaction between mineral and
organic phases [50e55]. Regarding the growth of hy-
droxyapatite on dipalmitoyl phosphatidyl choline mono-
layers, L.J. Zhang et al. [55] noticed that the hydroxyapatite
crystallization process is controlled predominantly by
electrostatic interactions between the template and hy-
droxyapatite. Other interactions may play a key role in the
growing process, including hydrogen bonding, stereo-
chemistry, and polarisation. For example, Z. Chen et al. [56]
indicated that hydrogen bonds between the tea extract and
calcium oxalate host crystals play a pivotal role in prohib-
iting COM formation and in the morphological control of
COD crystals. J.J. De Yoero et al. [57] investigated the in-
teractions of citrate with steps and faces on COM crystal
surfaces and have provided links between the stereo-
chemistry of interaction and binding energy levels. Such an
approach allows the authors to underline mechanisms of
growth modification and changes in the overall crystal
morphology.

Finally, we have investigated the interface between a KS
made of COM and a RP made of CA. Fig. 5C shows randomly
oriented large COM crystals trapped in a phase of carba-
patite crystals embedded in proteins acting as ‘glue.’ Such
an interaction between COM crystallites and apatite was
observed also in the case of KSs made of mixtures of COM
and apatite without any RP (Fig. 5D). For such an interface,
the hypothesis of heteroepitaxy between Ca phosphate
(RP) and Ca oxalate (KS) is not relevant. Of note, in the case
of ectopic calcifications present in cardiac valves, acicular
crystallites have been observed which can be inserted in
the tissue (Fig. 5E).
5. Bioinspired approach from pathological
calcifications

We would now like to compare a classic microfluidic
experimental set up with others, which can be inspired
from pathological calcifications. As an example, we have
selected the microfluidic device developed by R.A.L. Leon
of a crystal made of COD (B) weddellite crystals deposited on the surface of

t can we learn from a Nature which dysfunctions?, Comptes



Fig. 5. Specificity of the interface in the case of pathological calcifications. (A) RP made of NaUr. At the tip of the sodium urate needle, spherical entities made of
CA are present. (B) EDX spectrum confirms the elementary composition of these spherical entities, (C and D) Calcium oxalate crystallites are engaged in a mix of
proteins and Ca phosphate crystals in the case of RP (C) and a kidney stone made of Ca phosphate apatite (D). In the case of the cardiac valve (E and F), crystallites
may be inserted in the tissue.
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et al. [58]. These authors demonstrated the fabrication of
engineered pharmaceutical formulations of drug(s) and
excipient as monodisperse spherical micro-particles. More
precisely, they fabricated monodispersed micro-particles
(~200 mm size) containing crystals of a hydrophobic
model drug embedded within a hydrophilic matrix (here
sucrose), which in turn may also contain a hydrophilic
model drug (glycine). From an experimental point of view,
this set up consists of three syringe pumps and two side-
by-side capillaries placed in the centreline of an outlet
tubing (Fig. 6A). The dispersed phases are injected into a
continuous phase and biphasic droplets are generated at
the tip of the capillaries.

We have seen previously that whewellite kidney stones
on the surface of which a RP is present display a peculiar
interface. At this point, it is worth pointing out that the
Please cite this article in press as: D. Bazin, et al., Urolithiasis: Wha
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genesis of these ectopic calcifications takes place in the
interstitium of the kidney, in the deep medulla, close to the
papilla while other lithogenic processes involve calcium
oxalate and/or phosphate formation in the tubules of the
kidney, which have typical microfluidic dimensions. In
Fig. 6B, we distinguish different steps in the genesis. As it is
the case for the previous device (Fig. 6A), the two compo-
nents B1 (anisotropic particle which can be made of COM)
and B2 (spherical particle made of apatite and proteins) are
mixed. The first difference arises with the agglomeration of
spherical entities (B2) on thewalls of the capillaries (step 1)
and their agglomeration (step 2) to generate a pseudo RP.
Then, a second difference results from the interaction be-
tween the two components (B1 and B2), such an interac-
tion being similar to the ones described previously
(Fig. 5C,D). Finally, we noticed that particles detach. Not
t can we learn from a Nature which dysfunctions?, Comptes



Fig. 6. (A) Schematic representation of the microfluidic experimental set up
developed by R.A.L. Leon et al. [58] (B) Design of a microfluidic experimental
set up following the pathogenesis of a RP.
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only is this process (Fig. 5B) far more complex than a classic
example (Fig. 6A), but it is also clear that the peculiar
interaction between the two components B1 and B2 opens
up new opportunities in chemistry. The morphology of the
B1 component, which has to be associated with an acicular
morphology, is now a key parameter to successfully
generate particles that can be considered as Janus particles.

6. Conclusion

While physiological calcifications are often used to
design new material, we tried to show in this contribution
that it is possible to use the biological asymmetrical growth
in pathological calcifications as inspiration in biomimetic
strategies.
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