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Abstract. Because of its sensitivity to unfavorable weather

patterns, air pollution is sensitive to climate change so that,

in the future, a climate penalty could jeopardize the expected

efficiency of air pollution mitigation measures. A common

method to assess the impact of climate on air quality consists

in implementing chemistry-transport models forced by cli-

mate projections. However, the computing cost of such meth-

ods requires optimizing ensemble exploration techniques.

By using a training data set from a deterministic pro-

jection of climate and air quality over Europe, we iden-

tified the main meteorological drivers of air quality for

eight regions in Europe and developed statistical models

that could be used to predict air pollutant concentrations.

The evolution of the key climate variables driving either

particulate or gaseous pollution allows selecting the mem-

bers of the EuroCordex ensemble of regional climate pro-

jections that should be used in priority for future air qual-

ity projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4

and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM fol-

lowing the EuroCordex terminology).

After having tested the validity of the statistical model

in predictive mode, we can provide ranges of uncertainty

attributed to the spread of the regional climate projection

ensemble by the end of the century (2071–2100) for the

RCP8.5.

In the three regions where the statistical model of the im-

pact of climate change on PM2.5 offers satisfactory perfor-

mances, we find a climate benefit (a decrease of PM2.5 con-

centrations under future climate) of −1.08 (±0.21), −1.03

(±0.32),−0.83 (±0.14) µg m−3, for respectively Eastern Eu-

rope, Mid-Europe and Northern Italy. In the British-Irish

Isles, Scandinavia, France, the Iberian Peninsula and the

Mediterranean, the statistical model is not considered skillful

enough to draw any conclusion for PM2.5.

In Eastern Europe, France, the Iberian Peninsula, Mid-

Europe and Northern Italy, the statistical model of the im-

pact of climate change on ozone was considered satisfactory

and it confirms the climate penalty bearing upon ozone of

10.51 (±3.06), 11.70 (±3.63), 11.53 (±1.55), 9.86 (±4.41),

4.82 (±1.79) µg m−3, respectively. In the British-Irish Isles,

Scandinavia and the Mediterranean, the skill of the statistical

model was not considered robust enough to draw any conclu-

sion for ozone pollution.

1 Introduction

The main drivers of air pollution are (i) emission of primary

pollutants and precursors of secondary pollutants, (ii) long-

range transport, (iii) atmospheric chemistry and (iv) meteo-

rology (Jacob and Winner, 2009). We can thus anticipate that

air quality is sensitive to climate change taking as example

the link between heat waves and large-scale ozone episodes

(Vautard et al., 2005). But in addition to the direct impact

of climate change on air pollution through the change in fre-

quency and severity of synoptic conditions conducive to the

accumulation of air pollutants we must also note that climate

can have an impact on anthropogenic and biogenic emission

of pollutants and precursors (Langner et al., 2012b) as well as

on changes in the global background of pollution, and there-

fore long-range transport (Young et al., 2013). There is there-

fore a concern that in the future, climate change could jeopar-
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dize the expected efficiency of pollution mitigation measures,

even if the available studies indicate that if projected emis-

sion reductions are achieved they should exceed the magni-

tude of the climate penalty (Colette et al., 2013; Hedegaard

et al., 2013).

The most widespread technique used to assess the impact

of climate change on air quality consists in implementing

regional climate projections in Chemistry Transport Mod-

els (CTM) (Jacob and Winner, 2009). The computational

cost of such technique is substantial given that it involves

multi-annual global climate simulations, dynamical down-

scaling through regional climate simulations and ultimately

CTM simulations. Besides the computational cost, it also

raises technical difficulties in collecting, transferring, and

managing large amounts of model data. Unlike many cli-

mate impact studies, CTM projections require Regional Cli-

mate Model fields in three dimensions and at high tem-

poral frequency, whereas many regional climate modelling

groups only store a few vertical levels in compliance with the

CORDEX data archiving protocols. Altogether, these diffi-

culties led to the use of a single source of climate projections

in the majority of future air quality projections (Meleux et al.,

2007; Katragkou et al., 2011; Jiménez-Guerrero et al., 2012;

Langner et al., 2012b; Colette et al., 2013, 2015; Hedegaard

et al., 2013; Varotsos et al., 2013) or two at most in pub-

lished studies (Huszar et al., 2011; Juda-Rezler et al., 2012;

Langner et al., 2012a; Manders et al., 2012). There are ex-

amples where more than two climate forcings are used, but

then they are implemented with different CTMs, so that the

uncertainties in the spread of RCM and CTMs is aggregated,

thereby offering a poor understanding of the climate uncer-

tainty. In addition, it should be noted that the choice of the

climate driver is generally a matter of opportunity rather than

an informed choice. These studies capture trends and vari-

ability but their coverage of uncertainty is not satisfactory in

the climate change context. This unsatisfactory handling of

uncertainties is well illustrated by the divergence in the very

sign of the impact of climate change on particulate matter

(e.g. Lecœur et al., 2014, find a climate benefit for PM2.5

in Europe while Manders et al., 2012, suggest the opposite).

Thus the lack of multi-model approach in air quality projec-

tions is a serious caveat that needs to be tackled in order to

comply with best practices in the field of climate impact re-

search, where ensemble approaches is state of the art.

Hence, in order to assess the climate uncertainties on sur-

face ozone and particulate matter over Europe in a changing

climate, we developed an alternative method which does not

require forcing a CTM with an ensemble of climate models.

It consists in developing a statistical model fitted to a deter-

ministic CTM simulation forced by a single RCM that can

be subsequently applied to a larger ensemble of regional cli-

mate projections. This method allows selecting the members

of the RCM ensemble that offer the widest range in terms of

air quality response, somehow the “air quality sensitivity to

climate change projections”. These selected members should

be used in priority in future air quality projections. A byprod-

uct of our statistical air quality projections is that we explore

an unprecedented range of climate uncertainty compared to

the published literature that relies, at best, on two distinct cli-

mate forcings. The confidence we can have in these statistical

projections is of course limited by the skill of the statistical

model. Our approach of using a simplified air quality impact

model but with a larger range of climate forcing can there-

fore be considered complementary with the more complex

CTMs used with a limited number of climate forcings. The

use of such a methodology is inspired from earlier work in

the field of hydrology, where Vano and Lettenmaier (2014)

estimated future stream-flow by using a sensitivity-based ap-

proach which could be applied to generate ensemble simu-

lations. Such a hybrid statistical and deterministic approach

has also been used in the past in the field of air quality, but

mostly for near-term and local forecasting, relying on statisti-

cal models of various complexity (i.e. Land Use Regression,

Neural Network, Nonlinear regression, Generalized Additive

Models etc.) (Prybutok et al., 2000; Schlink et al., 2006; Slini

et al., 2006). The most relevant example in the context of fu-

ture air quality projection is that of Lecœur et al. (2014), who

used the technique of wind regime analogues, although they

did not apply their approach to an ensemble of climate pro-

jections.

This paper deals with all the steps needed to build the

proxy of ensemble. First (Sect. 2) we present the methods and

input data: the design of the statistical model of the air qual-

ity response to meteorological drivers is presented as well

as the deterministic modelling framework used to create our

training data set. Section 3 focuses on results. The determin-

istic air quality projections are presented for ozone peaks and

PM2.5 in Sect. 3.1. The selected statistical models for each

region are evaluated in Sect. 3.2 for ozone, PM2.5 and each

sub-constituent of the particulate matter mix. The relevance

of the statistical method to evaluate climate uncertainties and

optimize the exploration of the ensemble of climate projec-

tions is discussed in Sect. 4.

2 Methodology

2.1 Design

We consider ozone and PM2.5 as the main pollutants of in-

terest for both purposes: public health (Dockery and Pope,

1994; Jerrett et al., 2009) and climate interactions (IPCC,

2013). For both of them, we investigated the best correla-

tion that can be found for various European subregions us-

ing the following meteorological variables as predictants:

near-surface temperature (T2m), daily precipitation, incom-

ing short-wave radiation, planetary boundary layer (PBL)

depth, surface wind (U10m) and specific humidity.

Atmos. Chem. Phys., 16, 2559–2574, 2016 www.atmos-chem-phys.net/16/2559/2016/
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The choice of these meteorological variables is based on

an analysis of the literature on the chemical and physical

processes linking air pollution and meteorology. For PM2.5,

turbulent mixing, often related to the depth of the planetary

boundary layer, dominates (McGrath-Spangler et al., 2015).

A decrease of the PBL depth lead to either (i) an increase

of the concentration of pollutants because of the lower mix-

ing volume (Jiménez-Guerrero et al., 2012) or (ii) a decrease

of their concentrations because of their faster dry deposi-

tion to surface receptors (Bessagnet et al., 2010). The wind

plays also multiple roles for PM2.5. High wind speed favours

the dilution of particulate matter (Jacob and Winner, 2009)

but enhances sea-salt and dust mobilization (Lecœur and

Seigneur, 2013). Precipitation is often reported as a major

sink of PM2.5 through wet scavenging (Jacob and Winner,

2009). Water vapour participates in aerosol formation dur-

ing nucleation processes. Moreover, it can have an impact on

the rates of certain chemical reactions, similarly to temper-

ature. The overall impact of temperature on PM2.5 is diffi-

cult to isolate because of the mix of components contribut-

ing to PM2.5 (organic, inorganic, dust, sea-salt. . . ) and pos-

sible compensating effects. For instance, according to Jacob

and Winner (2009), a temperature rise has opposite effects

for sulphate and nitrate (respectively an increase and a de-

crease of concentrations). But for the overall PM2.5 mass, an

increase in temperature will decrease the concentration as a

result of higher volatility and subsequent higher aerosol to

gas phase conversion (Megaritis et al., 2014).

As far as ozone is concerned, temperature is expected to

play a major role as it catalyses atmospheric chemistry (Do-

herty et al., 2013). Moreover increasing temperature and so-

lar radiation enhance isoprene emission which is a biogenic

precursor of ozone (Langner et al., 2012b; Colette et al.,

2013). Finally changing the amount of incoming short-wave

radiation will play a role on ozone photochemistry, either

by enhancing its photolysis by the hydroxyl radical in the

presence of water vapour and short-wave radiation or by en-

hancing its production in the presence of photolysed nitrogen

dioxide (Doherty et al., 2013). The impact of the PBL depth

on ozone varies with the meteorological conditions. Increas-

ing the depth of the PBL dilutes ozone concentrations, but it

may also favour the dilution of nitrogen oxides close to the

sources, therefore leading to an increase in ozone concentra-

tions in NOx saturated areas (Jacob and Winner, 2009). The

amount of water vapour in the atmosphere mostly drives the

abundance of the hydroxyl radical (OH). OH is involved in

ozone destruction through several processes (i.e. photolysis,

HNO3 production) (Varotsos et al., 2013). It is also involved

in ozone production via the formation of NO2 and radicals

(Seinfeld and Pandis, 2008).

Starting from the above list of meteorological predictants,

we aim to develop a statistical model of ozone and par-

ticulate matter for each of the eight European climatic re-

gions defined in the PRUDENCE project (Christensen and

Christensen, 2007). These regions are: British-Irish Isles

(BI), Iberian Peninsula (IP), France (FR), Mid-Europe (ME),

Scandinavia (SC), Northern Italy (NI – referred to as the Alps

in Climate studies but chiefly influenced by the polluted Po-

Valley in the air quality context), Mediterranean (MD) and

Eastern Europe (EA). For each of these regions, a spatial av-

erage of predictants (meteorological variables) and pollutant

concentrations values is taken. The statistical model is based

on daily averages for all meteorological and air pollutant con-

centrations except ozone for which the daily maximum of 8 h

running means is used. The seasonality is removed by sub-

tracting the average seasonal cycle over the historical period.

It should be noted that focusing on aggregated quantities

greatly improves the skill of the statistical model that would

struggle in capture higher temporal frequency and spatial res-

olution. An analogy is presented in Thunis et al. (2015) who

demonstrated that annual mean ozone and particulate matter

responses to incremental emission changes were much more

linear than previously thought.

For each region and each pollutant, we first select the two

most discriminating predictants by testing all the possible

couple of meteorological variable and selecting those that

reach the highest correlation. In a second stage we design the

actual statistical model that consists of a Generalized Addi-

tive Model based on the two most discriminating perdictants

(Wood, 2006).

It is to facilitate the geophysical interpretation that we use

two meteorological variables instead of a linear combination

of multiple variables (i.e. prior principal component analysis

axes). Limiting their number to two also allows remaining in

a 2-D physical parameter space that supports the discussion

as will be illustrated below.

2.2 Training and validation data sets

The data sets used to fit and test the statistical models are

produced by the regional climate and air quality modelling

framework presented in Colette et al. (2013). By using deter-

ministic climate and chemistry models from the global to the

regional scale, they could produce long-term air quality pro-

jections over Europe. The Earth System Model (ESM) which

drives these simulations is the IPSL-CM5A-MR (Dufresne et

al., 2013). The global data used in this study were produced

for the Coupled Model Intercomparison Project Phase 5 ini-

tiative (CMIP5) (Taylor et al., 2012; Young et al., 2013).

Then the climate data obtained by the ESM are dynam-

ically downscaled with the regional climate model WRF

(Skamarock et al., 2008). The spatial resolution is 0.44◦

over Europe (Colette et al., 2013). These simulations were

part of the low-resolution simulations performed within the

framework of the European-Coordinated Regional Climate

Downscaling Experiment program (EURO-CORDEX) (Ja-

cob et al., 2014). Whereas higher spatial resolution simu-

lations are available in the EuroCordex ensemble, the 0.44

resolution was considered appropriate for air quality projec-

tions in agreement with other publications (Meleux et al.,

www.atmos-chem-phys.net/16/2559/2016/ Atmos. Chem. Phys., 16, 2559–2574, 2016
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2007; Langner et al., 2012a, b; Manders et al., 2012; Colette

et al., 2013; Hedegaard et al., 2013; Watson et al., 2015),

and also because higher RCM resolution are not specifi-

cally performed to improve the climate features that are most

sensitive for air quality purposes (temperature, solar radia-

tion, stagnation events, triggering of low-intensity precipita-

tion events etc.). Finally the regional climate fields are used

to drive the CTM CHIMERE (Menut et al., 2013), for the

projection of air quality under changing climate. Since we

are only interested in the effect of climate change, pollu-

tant emissions remain constant at their level of 2010, as pre-

scribed in the ECLIPSE-V4a data set (Klimont et al., 2013).

Similarly, chemical boundary conditions prescribed with the

INCA model (Hauglustaine et al., 2014) as well as the land-

use are also kept constant.

The Chemistry and Transport Model CHIMERE has been

used in numerous studies: daily operational forecast (Rouïl

et al., 2009), emission scenario evaluation (Cuvelier et al.,

2007), evaluation in extreme events (Vautard et al., 2007),

long-term studies (Colette et al., 2011, 2013; Wilson et al.,

2012) and inter-comparisons models and ensembles (Solazzo

et al., 2012a, b).

The model performances depend on the setup but general

features include a good representation of ozone daily maxima

and an overestimation of night-time concentrations, leading

to a small positive bias in average ozone (van Loon et al.,

2007). Concerning particulate matter, similarly to most state-

of-the-art CTMs, the CHIMERE model presents a system-

atic negative bias (Bessagnet et al., 2014). Regarding more

specifically its implementation in the context of a future cli-

mate, evaluations of the CHIMERE model are presented in

Colette et al. (2013, 2015) and also Watson et al. (2015) and

Lacressonniere et al. (2016).

The training data set used to build the statistical mod-

els consists of the historical air quality simulations (1976 to

2005), while projections of air quality under a future climate

(RCP8.5 2071–2100) will be used for testing purposes.

In order to evaluate the uncertainty related to climate

change, the statistical models should be skillful for both pol-

lutant concentrations over the historical period (training pe-

riod) and in predictive mode. Alternative RCM forcing of the

CHIMERE CTM could be used to test the approach. Unfor-

tunately, such alternatives are not available at this stage. The

statistical ensemble exploration technique presented here

will ultimately allow selecting the RCM that should be used

in priority to cover the range of uncertainties in air qual-

ity and climate projections. When such simulations become

available, we will be able to further test the skill of the sta-

tistical model. However, so far, the only validation that could

be included here was to rely on a future time period as a

validation data set. The underlying hypothesis is that the his-

torical range of meteorological parameters used to train the

model will be exceeded in the future, therefore offering an

appropriate testing data set. The results of this validation are

presented in Sect. 3.2.

2.3 Projection data set

To evaluate the uncertainty related to the climate forcing, and

identify the RCM that should be used in priority for future

air quality projections, the statistical model of air quality is

used in predictive mode using the regional climate projec-

tions performed in the framework of the EURO-CORDEX

experiment (Jacob et al., 2014). The combinations of global

and regional climate models used here are the following:

CanESM2/RCA4; CSIRO-Mk3-6-0/RCA4; CNRM-CM5-

LR/RCA4; EC-EARTH/RACMO2; EC-EARTH/RC4;

GFDL-ESM2M/RCA4; IPSL-CM5A-MR/RCA4; IPSL-

CM5A-MR/WRF; MIROC5/RCA4; MPI-ESM-LR/RCA4;

MPI-ESM-LR/CCLM; NorESM1-M/RCA4 (see Jacob et

al., 2014, for details on the model nomenclature).

The performances of the global models used to drive the

regional projections have been evaluated in Jury (2012) and

Cattiaux et al. (2013). In the general EuroCordex evaluation,

Kotlarski et al. (2014) finds a good reproduction of the spatial

temperature variability even if the models exhibit an under-

estimation of temperature during the winter in the north East-

ern Europe. In addition to this general feature, the specificity

of the WRF-IPSL-INERIS member is an overestimation of

winter temperatures in the southeast. In terms of precipita-

tions, most of the models exhibit a pronounced wet bias over

most subdomains.

When focusing on WRF members of the EuroCordex en-

semble, Katragkou et al. (2015) points out that the IPSL-

INERIS member offers one of the best balance between pre-

cipitation and temperature skills. Both studies are limited to

the evaluation of RCM used with perfect boundary condi-

tions (ERA-Interim forcing) and no published study has yet

evaluated the various global and/or regional combinations. It

should also be noted that the ensemble is poorly balanced

in terms of GCM/RCM combinations (see the larger weight

of the RCA regional model which raise important question

regarding the representativeness of the ensemble).

3 Development and validation of the statistical model

In this part we studied the end (2071–2100) of the century,

for one scenario (RCP8.5) which is an energy-intensive sce-

nario (van Vuuren et al., 2011). This 30-year period is chosen

to be representative regardless of the inter-annual variability

(Langner et al., 2012a). We focus on the RCP8.5 and the end

of the century on purpose to reach a strong climate signal.

3.1 Air quality projections

3.1.1 Fine particulate matter

Figure 1a shows the 30 years average PM2.5 concentrations

over the historical period (1976 to 2005). Higher concen-

trations are modelled over European pollution hotspots: the

Benelux, the Po Valley, Eastern Europe and large cities. A

Atmos. Chem. Phys., 16, 2559–2574, 2016 www.atmos-chem-phys.net/16/2559/2016/
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Figure 1. The left column represents daily average PM2.5 concentrations for the historical (1976–2005) (a), the end of the century (RCP8.5

– 2071–2100) (b) and the difference between the future and the historical (c). The statistical significance of this difference is evaluated by a

t test and represented by a black point. The right column presents the same figure for daily maximum ozone projections. For both pollutants,

the CTM CHIMERE has been used to predict the concentration (Sect. 2.2).

similar pattern is found in the future (RCP8.5 – average

over the period 2071–2100) albeit with lower concentrations

(Fig. 1b). The difference (future minus historical) is given in

Fig. 1c where the statistical significance of the changes was

represented by black points at each grid points and evaluated

by a Student t-test with Welch variant at the 95 % confidence

level based on annual mean. The decrease is statistically sig-

nificant over most of the domain.

Overall, we identify a climate benefit on particulate mat-

ter pollution similarly to Colette et al. (2013) and Lecœur et

al. (2014) but in opposition to Manders et al. (2012). Hede-

gaard et al. (2013) find a decrease in high latitude and an

increase in low latitude. The role of future precipitation pro-

jections and more efficient wet scavenging has often been

pointed out to explain such a future evolution of particulate

matter (Jacob and Winner, 2009). However, the lack of ro-

bustness in precipitation evolution over major European par-

ticulate pollution hotspots in regional climate models (Jacob

et al., 2014) challenges the confidence we can have in single

www.atmos-chem-phys.net/16/2559/2016/ Atmos. Chem. Phys., 16, 2559–2574, 2016
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model air quality and climate projection, supporting again

the need for ensemble approaches.

3.1.2 Ozone peaks

Figure 1d represents the summer (JJA) average ozone daily

maximum concentrations over the historical period (1976

to 2005). A north–south gradient appears with lower con-

centration in the north and higher concentration fields over

the Mediterranean Sea. Figure 1e corresponds to the sum-

mer average ozone projection of the RCP8.5 at the end of

the century (2071–2100) predicted by the model suite pre-

sented in Sect. 2.2. A similar pattern is found, with higher

concentrations in the southern part of the domain (Fig. 1e).

The map of the difference (RCP8.5 – actual), Fig. 1f, indi-

cates an increase of ozone concentrations over Eastern Eu-

rope, Mediterranean land surfaces, and North Africa and a

decrease over British-Irish Isles and Scandinavia. Most of the

changes are statistically significant except over Western Eu-

rope. This concentration rise is frequently associated to an

increase of temperature in the literature (Meleux et al., 2007;

Katragkou et al., 2011), see Sect. 2.1 above for a review of

physical and chemical processes underlying this association.

Following Langner et al. (2012b), Manders et al. (2012),

Colette et al. (2013, 2015) these results confirm the fact that

climate change constitutes a penalty for surface ozone in Eu-

rope.

3.2 Statistical models

Here we introduce the statistical models trained over the his-

torical period and their evaluation over the future testing pe-

riod. First we discuss the impact of key meteorological pro-

cesses on pollutants concentration on the basis of the model

correlation and put our results in perspective with the key

driving factors reported in the literature. Then we evaluate

the performance of statistical models over the future period

in order to discard regions and pollutants where the skill of

the statistical model is too small to draw robust conclusions

on the uncertainties of projections.

3.2.1 Fine particulate matter

The skill and predictors for generalized additive models fit-

ted for each region are given in Table 1. The depth of the

planetary boundary layer is identified as the major meteo-

rological driver for PM2.5 which is a different finding com-

pared to Megaritis et al. (2014) who reported a smaller im-

pact for the PBL depth. Near-surface temperature is often

selected as second predictor. The wind is pointed out as a

relevant predictor twice but only for coastal regions (respec-

tively BI and MD) where sea-salt is important. Last, pre-

cipitation is selected only once and as 2nd variable for the

Iberian Peninsula (IP). It could be partly due to our choice

of statistical model whereas a logical regression would have

been more efficient given that PM correlations are sensitive

to the presence and/or absence of precipitation rather than

their intensity. It is difficult to assess objectively whether the

larger role of temperature than precipitation in our findings is

an artifact related to the design of the statistical model. The

importance of precipitation in the impact of climate change

on particulate pollution is often speculated in the literature,

with little quantitative evidence. The statistical model used

here offers an objective quantification of that role. It should

be added that the importance of temperature is well sup-

ported by the volatilization process for Secondary Inorganic

Aerosol and Secondary Organic Aerosol. Moreover in the

CTM CHIMERE, the volatile species in the gas and aerosol

phases are assumed to be in chemical equilibrium. This ther-

modynamic equilibrium, computed by ISORROPIA (Foun-

toukis and Nenes, 2007), is driven by temperature and hu-

midity and conditions the concentration of several aerosol

species (ammonium, sodium, sulphate, nitrate and so on).

This feature could explain the major role of temperature. It

is also supported by the pattern of projected PM2.5 change,

which is spatially correlated with present-day PM2.5 con-

centration. This spatial correlation suggests an impact of a

uniform driver which points towards temperature rather than

precipitation change that exhibits a strong north-south gradi-

ent in Europe.

Then the predictive skill of these models is tested over the

period 2071–2100 by computing the Normalized Root Mean

Squared Error (NRMSE) between the statistically predicted

PM2.5 (concentrations estimated with the statistical models),

and the results of the deterministic regional air quality and

climate modelling suite presented in Sect. 2.2 for 2071–2100.

The NRMSE is defined as the root mean square error be-

tween statistically predicted and deterministically modelled

concentrations changes aggregated by region and at daily

temporal frequency, normalized by the standard deviation of

the deterministic model. It allows describing the predictive

power of a model, if the NRMSE is lower or equal to 1 then

the model is a better predictor of the data than the data mean

(Thunis et al., 2012).

Figure 2 shows, for each region, the scatter between R2

over the historical period and the NRMSE in predictive mode

for the RCP8.5 at the end of the century. We expect regions

where the correlation over the historical period is low to be

poorly captured by the statistical model in the future. The fact

that the good correlation for EA and ME are associated with

an NRMSE around 0.6 in the future indicates either that the

main meteorological drivers in the future will remain within

their range of validity or that extrapolation is a viable ap-

proximation. This feature gives confidence in using statisti-

cal models for these regions in predictive mode. For the NI

region, the NRMSE is acceptable (below 0.8) even if the R2

is low.

Considering that the model skill was satisfactory for the

EA, ME and NI regions, we decided to focus on these regions

for the uncertainty assessment in the remainder of this paper.

The fine particulate matter concentrations have been poorly
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Table 1. Statistical models per region that explain the average PM2.5 concentrations during 1976–2005.

PM2.5

Regions R2 Meteorological variable 1 Meteorological variable 2

BI 0.327 PBL-height Surface wind

IP 0.228 PBL-height Specific humidity

FR 0.343 PBL-height Near-surface temperature

ME 0.613 PBL-height Near-surface temperature

SC 0.206 Specific humidity Incoming short-wave radiation

NI 0.403 PBL-height Near-surface temperature

MD 0.194 PBL-height Surface wind

EA 0.595 PBL-height Near-surface temperature

Figure 2. Statistical model evaluation for PM2.5 (left) and ozone

(right). The x axis represents the Normalized Mean Square Error

applied to the delta (future minus historical) of the generalized ad-

ditive model and CHIMERE. The y axis represents the R2 of the

statistical model (training period).

captured for the region BI, SC, FR, IP and MD. The associ-

ated bad NRMSE are explained by the poor performances of

model over the historical. They are thus excluded from the

uncertainty assessment.

3.2.2 Particulate matter composition

Because total PM2.5 is constituted by a mix of various aerosol

species, there is a risk of compensation of opposite factors in

the statistical model. In order to assess that risk, we devel-

oped such models for each individual PM constituent in the

chemistry-transport model. The performances of these statis-

tical models in terms of correlation for the historical (train-

ing) period or in predictive mode for the future period (test-

ing) are presented in Fig. 3.

For all regions, the statistical models are not able to cap-

ture the variability of mineral dust. This is because the design

of the statistical model is exclusively local (i.e. average con-

centrations over a given region are related to average mete-

orological variables over the same region), whereas most of

the mineral dust over any European region is advected from

the boundaries of the domain, in North Africa. It should be

noted however, that except for the regions IP and MD, the

dust represents only a small fraction of the PM concentra-

tions (Fig. 4). That could explain why the statistical model

for PM2.5 performs poorly over IP and MD, but it will not

undermine the confidence we can have in concluding about

the robustness of the PM2.5 model for the region selected

above: ME, EA and NI.

All over Europe, primary particulate matter (PPM) is one

of the smallest particulate matter fractions. Their variability

is well captured by the statistical model for all regions ex-

cept SC. But because of their small abundance in that region,

they should have a limited impact on the PM2.5 model per-

formance.

The sea salts are well reproduced by the statistical model

for all regions except NI and EA. These two regions have

no maritime area, therefore sea-salt concentrations are lower

and exclusively due to advection which, as a non-local factor,

is not well captured by the statistical model.

Ammonium (NH+4 ) aerosols are satisfactorily captured by

the statistical models for five regions out of eight including

those selected for the overall PM2.5 model (ME, EA, and NI).

The organic aerosol fraction (ORG) is well reproduced

over the historical period and the predictive skill is satisfac-

tory (NRMSE around 0.7) for ME, EA, and NI.

The statistical models are efficient to reproduce the nitrate

(NO−3 ) concentrations over the historical period for ME, EA,

AL, MD, FR, and BI regions but the predictive skills are only

considered satisfactory for ME, EA, FR and NI, where nitrate

constitutes a large fraction of PM2.5.

Sulphate aerosols (SO2−
4 ) are well represented by the sta-

tistical models for BI, EA, and ME. The performances are

low in the NI region, but sulphates constitute one of the

smallest particulate matter fractions for that region.

This analysis of the skill of statistical models for each

compound of the particulate matter mix confirms that there is

no compensation of opposite factors in the selection of skill-

ful models for total PM2.5 proposed in Sect. 3.2.1. The only

cases were one of the particulate matter compound was not

well captured by a statistical model, could be attributed to a

low, and often non-local contribution of the relevant partic-

ulate matter constituent for the considered regions. We con-

clude that the selection of ME, EA, and NI as regions where
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Figure 3. Statistical model evaluation for each particulate matter constituent (from left to right: Dust, Primary Particulate Matter, Sea-salt,

Ammonium, Organic fraction, Nitrate, Sulphate). The x axis represents the Normalized Mean Square Error applied to the delta (future minus

historical) of either the generalized additive model or CHIMERE. The y axis represents the R2 of the statistical model (training period).

Figure 4. Average particulate matter composition for the historical

period per region.

it is possible to build a statistical model of PM2.5 variability

using Generalized Additive Models based on meteorological

predictants would hold if the model had been built for each

constituent of the particulate matter mix.

3.2.3 Ozone peaks

For summertime ozone peaks, as expected, near-surface tem-

perature and incoming short-wave radiation are identified as

the two main meteorological drivers for most regions (Ta-

ble 2). Concerning the region EA, the drivers which give

the best results are near-surface temperature and specific hu-

midity. Nevertheless, when using specific humidity as sec-

ond predictor, the statistical model is overfitted and has a

low predictive skill (NRMSE= 0.9). Thus the use of short-

wave radiation as second predictor appears much more ro-

bust (NRMSE= 0.6) even if the R2 is lower. The skill of the

statistical model is very low over the British-Irish Isles and

Scandinavia. This is because ozone pollution in these regions

is largely influenced by non-local contributions (long-range

transport of air pollution). The poor performances of the sta-

tistical model over the Mediterranean region are more sur-

prising. The lower variability of temperature and incoming

short-wave radiation in this region compared to other parts

of Europe (standard deviation of 12.5 ◦C and 150 W m−2 for

MD; from 15 to 20 ◦C and from 220 to 300 W m−2 for the

other regions) makes them less relevant as statistical predic-

tants of ozone concentrations.

We conclude that the generalized additive models that can

be considered efficient enough in terms of correlation to cap-

ture the ozone variability over the historical period are those

of the following regions: EA, FR, IP, ME and NI.

This selection is further supported by investigating the

predictive skill of the models assessed by computing their

NRMSE against deterministic CTM simulations available for

a future period. The regions mentioned above where the cor-

relation of the statistical model is low (BI, SC and MD) also

exhibit a large NRMSE (Fig. 2). So that, only the regions

EA, FR, IP, ME and NI are selected for the remainder of this

paper.
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Table 2. Statistical models per region that explain the daily maximum summer ozone levels during 1976–2005.

Ozone max

Regions R2 Meteorological variable 1 Meteorological variable 2

BI 0.402 Incoming short-wave radiation Specific humidity

IP 0.543 Near-surface temperature Incoming short-wave radiation

FR 0.579 Near-surface temperature Incoming short-wave radiation

ME 0.709 Near-surface temperature Incoming short-wave radiation

SC 0.228 Near-surface temperature PBL-height

NI 0.603 Incoming short-wave radiation Near-surface temperature

MD 0.343 Near-surface temperature Surface wind

EA 0.671 Near-surface temperature Incoming short-wave radiation

4 Exploring the ensemble of climate projections with

the statistical model

The statistical models introduced in Sect. 2, developed in

Sect. 3 and tested in Sect. 3.2 are applied here to the en-

semble of regional climate projections presented in Sect. 2.3

to develop a proxy of ensemble of air quality and climate

projections for each selected region. This proxy of ensemble

will be used to identify the subset of regional climate pro-

jections that should be used in priority in the deterministic

modelling suite, but it can also give an indication on the ro-

bustness of the climate impact on air quality where the skill

of the statistical model is considered satisfactory.

4.1 Fine particulate matter

In order to assess qualitatively the robustness of the evolution

of regional climate variables having an impact on air quality,

we first design a 2-D parameter space where the isopleths of

statistically predicted pollutant concentrations are displayed

(background of Fig. 5). Then the distributions of historical

and future meteorological variables as extracted from the re-

gional climate projections are added to this parameter space.

For each Regional Climate Projection, we show the average

of the two driving meteorological variables as well as the

70th percentile of their 2-D-density plot, i.e. the truncation

at the 70th quantile of their bi-histogram which means that

70 % of the simulated days lies within the contour. Both his-

torical and future climate projections (here for the RCP8.5

scenario and the 2071–2100 period) are displayed on the pa-

rameter space. The climate projections are all centred on the

IPSL-CM5A-MR/WRF member so that only the distribution

of the latter is shown for the historical period.

As pointed out in Table 1, the main meteorological drivers

are the depth of the PBL and near-surface temperature for the

example of PM2.5 over Eastern Europe region displayed in

Fig. 5. The statistically modelled isopleths in the background

of the figure show that PM2.5 concentration decrease when

the depth of the PBL increases (x axis), or when temperatures

increase (y axis). The interactions captured by the GAM

exhibit the strong influence of high vertical stability events

(with low surface temperature and PBL depth) in increasing

PM2.5 concentrations. On the contrary, for high temperature

ranges, the depth of the PBL becomes a less discriminating

factor. The comparison of historical and future distributions

shows that both meteorological drivers evolve significantly

in statistical terms (Student t test with Welch variant at the

95 % confidence level based on annual mean). However, even

though the PBL depth constitutes the most important mete-

orological driver for PM2.5, it does not evolve notably com-

pared to the surface temperature in the future (Fig. 5). Thus

the largest increase of the secondary driver (surface tempera-

ture) leads to a decrease of PM2.5 concentrations. The largest

and the smallest PM2.5 concentrations decrease are found for

CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM, respec-

tively. But the overall spread of RCMs in terms of both the

evolution of PBL depth and temperature is limited, suggest-

ing that this climate benefit on particulate pollution is a ro-

bust feature. Those isopleths present the same characteristics

for ME and NI regions (Figs. S1, S4 in the Supplement). The

qualitative evolution represented in Fig. 5 is further quan-

tified by applying the GAM to the future meteorological

variables in the regional climate projections. These results

are represented by the probability density functions of the

predicted concentrations of each GCM/RCM couple minus

the estimated values for the historical simulation (e.g. 2071–

2100 vs. 1976–2005, Fig. 6). For EA and ME, the longer tail

of the probability density function of MPI-ESM-LR/CCLM

compared to the average of the models reflects that stronger

pollution episodes will occur in the future even if the mean of

the concentrations is lower than the average of the ensemble

(Fig. 6 for EA and Fig. S2 for ME).

Besides the distribution, the ensemble mean and standard

deviation of the estimated projected change in PM2.5 con-

centrations has been quantified (Table 3). All the selected

regions depict a significant decrease of the PM2.5 concen-

trations across the multi-model proxy ensemble indicating

that according to the GAM model, the climate benefit on

particulate matter is a robust feature in these regions. The

magnitude of the decrease depends on the region, its ensem-

ble mean (± standard deviation) is −1.08 (±0.21), −1.03
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Table 3. Predicted concentrations evolution of summertime ozone and PM2.5 (expressed in µg m−3) per selected regions and per model. The

ensemble mean and standard deviation are also calculated.

RCP8.5 2071–2100 Delta (future – historical)

Ozone max PM2.5

GCM/RCM\Regions EA FR IP ME NI EA ME NI

CNRM-CM5-LR/RCA4 8.00 6.96 9.75 4.82 3.69 −0.77 −0.82 −0.71

CSIRO-Mk3-6−0/RCA4 11.26 16.03 13.30 14.15 5.81 −1.39 −1.72 −1.06

CanESM2/RCA4 17.97 19.03 15.07 21.20 7.46 −1.29 −1.56 −1.03

EC-EARTH/RACMO2 7.77 11.37 10.79 8.55 6.77 −1.16 −0.98 −0.77

EC-EARTH/RCA4 10.88 14.43 11.45 12.11 5.15 −0.92 −0.92 −0.75

GFDL-ESM2M/RCA4 7.26 7.79 10.28 5.85 4.54 −1.04 −0.90 −0.70

IPSL-CM5A-MR/RCA4 13.76 13.46 12.88 11.02 4.43 −1.28 −1.12 −1.04

IPSL-CM5A-MR/WRF 10.11 6.05 9.08 5.19 0.01 −1.32 −1.30 −0.86

MIROC5/RCA4 12.30 11.29 11.61 9.62 3.85 −1.16 −0.86 −0.85

MPI-ESM-LR/CCLM 6.40 9.63 11.03 6.01 5.58 −0.81 −0.58 −0.62

MPI-ESM-LR/RCA4 9.56 11.75 11.51 9.64 5.54 −1.02 −0.79 −0.83

NorESM1-M/RCA4 10.88 12.60 11.58 10.12 5.02 −0.79 −0.88 −0.76

Ensemble Mean 10.51 11.70 11.53 9.86 4.82 −1.08 −1.03 −0.83

Ensemble Standard Deviation 3.06 3.63 1.55 4.41 1.79 0.21 0.32 0.14

Figure 5. The left figure presents the proxy of ensemble projections for daily average de-seasonalized PM2.5 concentrations in Eastern

Europe. The right figure represents the proxy for daily maximum de-seasonalized summer ozone for Eastern Europe. For both figures, the

shaded background represents the evolution of pollutants estimated by the statistical models. The contours are representing the regional

climate projections and the triangles their mean. The black dashed contour represents the historical – IPSL-CM5A-MR/WRF – and the

square its mean.

(±0.32), −0.83± (0.14) µg m−3, for respectively EA, ME

and NI (Table 3).

In order to explain the differences in the response of in-

dividual RCM in the ensemble, we need to explore the his-

torical meteorological variables probability density functions

(PDF, Fig. 7) and to compare them with the evolution of

IPSL-CM5A-MR/WRF (Fig. 7). The comparison of the his-

torical distribution for the temperature reflects the stronger

extremes of IPSL-CM5A-MR/WRF (e.g. colder than the oth-

ers when it is cold). It is only for the NI region that IPSL-

CM5A-MR/WRF lies in the mean of the ensemble. Con-

cerning the PBL depth, the values are similar to the aver-
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Figure 6. The left figure represents, for each regional climate model the probability density function (PDF) of the concentrations estimated

with the generalized additive model at the end of the century minus the estimated concentrations of the historical period for daily average

de-seasonalized PM2.5 concentrations in Eastern Europe. The right figure presents the results for daily maximum de-seasonalized summer

ozone for Eastern Europe.

age of the ensemble for ME even if MPI-ESM-LR/RCA4

and EC-EARTH/RACMO2 present the largest values. IPSL-

CM5A-MR/WRF has a thinner boundary layer for NI and a

deeper than the average for EA but the differences are limited

Fig. 7).

It is for CSIRO-Mk3-6-0/RCA4 that we find the most im-

portant decrease of PM2.5 for the selected regions (Table 3).

This is related to a larger temperature rise compared to the

other models and a larger boundary layer height increase

compared to the other member of the ensemble for these re-

gions Fig. 5). CanESM2/RCA4 and CSIRO-Mk3-6-0/RCA4

exhibit the same features for the ME region.

MPI-ESM-LR/CCLM presents the smallest decrease of

PM2.5 for each of the selected regions (e.g. over ME is al-

most 3 times smaller than the largest decrease) except EA

where CNRM-CM5-LR/RCA4 presents a smaller decrease

(−0.77 µg m−3 vs. −0.81 µg m−3). As already mentioned

above, the particular tails of the statistically modelled PM2.5

distributions for EA and ME indicate a larger contribution of

large pollution episodes in the future for that RCM. But the

historical distributions exhibit a larger boundary layer than

the average models of the ensemble and a similar tempera-

ture. Thus, the low PM2.5 concentration decrease is explained

by the limited average evolution of the meteorological drivers

as shown in Fig. 5.

Overall we conclude that a climate benefit is identified

for the PM2.5 for each of the selected regions. To the ex-

tent that the statistical model is skillful, as demonstrated in

Sect. 3.2.1, this result is robust across the range of avail-

able climate forcings since the whole ensemble of regional

climate projection present consistent features. The regional

climate models that exhibit the largest and smallest re-

sponses are CanESM2/RCA4; CSIRO-Mk3-6-0/RCA4 and

MPI-ESM-LR/CCLM, which should therefore be considered

a priority for further evaluation using explicit deterministic

projections involving full-frame regional climate and chem-

istry models.

4.2 Ozone peaks

For most of the selected regions (FR, IP, ME and NI), the

main drivers are the same (i.e. near-surface temperature and

short-wave radiation). The isopleth in the background of

Fig. 5 show that temperature and short-wave radiation have

a similar impact on ozone peaks, except in the larger range

of short-wave radiation anomalies, where temperature be-

comes less discriminating. All the isopleths (Fig. 5 for EA

and Figs. S1, S4 and S7 for ME, NI, FR and IP) exhibit an

increase in the distribution of temperatures because the pro-

jected future is warmer than the historical period. Accord-

ing to the ozone peak concentrations predicted by the GAM

(displayed in the background of Fig. 5) these increases will

lead to more ozone episodes. This trend appears for the en-

tire models ensemble so that we can conclude with confi-

dence that the climate penalty bearing upon ozone is a robust

feature even if the specific distribution of some of the mod-

els stand out (CanESM2/RCA4; CNRM-CM5-LR/RCA4;

CSIRO-Mk3-6-0/RCA4; IPSL-CM5A-MR/WRF).

The ozone increase of the ensemble reaches +10.51

(±3.06), +11.70 (±3.63), +11.53 (±1.55), +9.86 (±4.41),

+4.82 (±1.79) µg m−3 for EA, FR, IP, ME and NI (Ta-

ble 3). These values confirm the statistically significant cli-

mate penalty (the mean is at least two times larger than

the standard deviation). However, as already mentioned for

Fig. 5, we find minor differences among the models. The me-

teorological distributions are marginally different between
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Figure 7. The first column of the panel represents the historical distribution of the meteorological variables identified by our statistical

models as the two major drivers (a PBL Height; b near-surface temperature) for PM2.5 in Eastern Europe. The second column represents the

historical JJA distribution of the two main drivers for summer ozone (a near-surface temperature; b incoming short-wave radiation).

the models of the ensemble: the summertime temperature

predicted by IPSL-CM5A-MR/WRF has stronger extremes

than the other models. Moreover, it is warmer than the en-

semble in EA. Concerning incoming short-wave radiation,

IPSL-CM5A-MR/WRF lies in the average (Figs. S3, S6, S9)

except for the region EA where the amount of incoming ra-

diation is the highest among the ensemble (Fig. 7). Note that,

only EC-EARTH/RACMO2 and MPI-ESM-LR/RCA4 ex-

hibits lower values (around half of the average for MPI-ESM-

LR/CCLM). The lower amount of summertime incoming

short-wave radiation for the couple MPI-ESM-LR/CCLM is

relevant for all the selected regions.

The magnitude of the ozone rise differs between the mod-

els and the regions. Note that CanESM2/RCA4 exhibits the

largest difference (i.e. around 1.5 times the ensemble mean)

followed by CSIRO-Mk3-6-0/RCA4 for each selected re-

gions. This is explained by the larger temperature increase

during summertime which is the major driver, as identified by

the statistical models, of ozone concentration. Note that the

value is skyrocketing for the region ME, 5 times the value

of IPSL-CM5A-MR/WRF which shows one of the lowest

increases. CNRM-CM5-LR/RCA4 presents the lowest in-

crease.

On the contrary, the lower increase of the summer tem-

perature and sometimes a decrease of the incoming short-

wave radiation amount (e.g. IPSL-CM5A-MR/WRF in NI)

lead to lower ozone concentration changes for IPSL-CM5A-

MR/WRF and CNRM-CM5-LR/RCA4 for FR, IP, ME and

NI (Table 3). Note the specific evolution for the region NI,

where the IPSL-CM5A-MR/WRF model yields almost no

increase of the ozone concentration compared to the other

models while on the map of the differences in the determin-

istic model (Fig. 1f), the evolution was statistically signifi-

cant. This absence of evolution reflects the limitation of the

statistical models.

In Fig. S5, we can point out an outstanding pattern of

the MPI-ESM-LR/CCLM distribution for the NI region with

particularly large tails. The ozone rise would be more pro-

nounced for the upper quantile which depicts more extreme

ozone pollution episodes (note that this was also the case for

that model in terms of PM2.5 pollution).

Overall the climate penalty is confirmed even if some re-

gional climate models stand out of the distribution, such

as CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-

Mk3-6-0/RCA4 which should therefore be considered for

further deterministic projections.
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5 Conclusions

An alternative technique to assess the robustness of projec-

tions of the impact of climate change on air quality has been

introduced. Using a training data set consisting of long-term

deterministic regional climate and air quality projections, we

could build statistical models of the response of ozone and

particulate pollution to the main meteorological drivers for

several regions of Europe. Applying such statistical models

to an ensemble of regional climate projections leads to the

development of an ensemble of proxy projections of air qual-

ity under various future climate forcings. The assessment of

the spread of the ensemble of proxy projections allows infer-

ring the robustness of the impact of climate change, as well

as selecting a subset of climate models to be used in priority

for future explicit air quality projections, therefore proposing

an optimized exploration of the ensemble.

The main meteorological drivers that were identified are

(i) for PM2.5: the boundary layer depth and the near-surface

temperature and (ii) for ozone: the near-surface temperature

and the incoming short-wave radiation. The skill of the sta-

tistical models depends on the regions of Europe and the pol-

lutant.

For PM2.5 and the regions Eastern Europe (EA) and Mid-

Europe (ME), a generalized additive model captures about

60 % of the variance and 40 % for Northern Italy. But for the

British-Irish Isles (BI) and Scandinavia (SC), where air pol-

lution is largely driven by long-range transport, such a local

approach is not able to reproduce the variability of pollutant

concentrations.

The ozone concentrations are well reproduced by the sta-

tistical model for the following regions: Eastern Europe

(EA), France (FR), Iberian Peninsula (IP), Mid-Europe (ME)

and Northern Italy (NI). The meteorological variables are

not discriminating enough for the Mediterranean region. For

the regions where the performances of the statistical model

were considered satisfactory, a proxy of the future pollutant

concentrations could be estimated (i.e. (i). EA, ME, and NI;

(ii). EA, FR, IP, ME and NI).

An overall climate benefit for PM2.5 was found in the

proxy ensemble of climate and air quality projections. The

ensemble mean change is −1.08 (±0.21), −1.03 (±0.32),

−0.83± (0.14) µg m−3, for EA, ME and NI, respectively.

This beneficial impact of climate change for particulate mat-

ter pollution is in agreement with the deterministic pro-

jections of Huszar et al. (2011), Juda-Rezler et al. (2012)

and Colette et al. (2013) but in opposition to Manders et

al. (2012). These differences could be partly explained by

the different time windows (i.e. 2060–2041 vs. 2100–2071),

climate scenario (i.e. A1B which is similar to RCP6.0 vs.

RCP8.5), and pollutant (i.e. PM10 vs. PM2.5). This impact of

climate change on particulate pollution should be put in per-

spective with the magnitude of the change that is expected

from the current air quality legislation. Such a comparison

was performed by Colette et al. (2013) who found (on av-

erage over Europe) a climate benefit by the middle of the

century of the order of 0–1 µg m−3, therefore in line with our

estimate but also much lower than the expected reduction of

7–8 µg m−3 that they attributed to air quality policies.

For all the selected regions a robust climate penalty on

ozone was identified: +10.51 (±3.06), +11.70 (±3.63),

+11.53 (±1.55), +9.86 (±4.41), +4.82 (±1.79) µg m−3 for

EA, FR, IP, ME, and NI, respectively. This finding is in line

with previous studies (Meleux et al., 2007; Huszar et al.,

2011; Katragkou et al., 2011; Jiménez-Guerrero et al., 2012;

Juda-Rezler et al., 2012; Langner et al., 2012a, b; Colette

et al., 2013, 2015; Hedegaard et al., 2013; Varotsos et al.,

2013). It should be noted that when comparing the impact of

climate change and emission reduction strategies, Colette et

al. (2013) found a climate penalty of the order of 2–3 µg m−3

(which is broadly consistent with our results given that they

focused on the middle of the century) that could be com-

pensated with the expected magnitude of the reduction of 5–

10 µg m−3 brought about by air quality policies.

The major strength of our approach is to account for the

climate uncertainty in the recent EuroCordex ensemble of

regional climate projections, whereas all the published liter-

ature relied on a very limited subset of RCM forcing (at best

two for a given chemistry-transport modelling study). We

therefore propose an unprecedented view in the robustness of

the impact of climate change on air quality across an ensem-

ble of climate forcing. However, this achievement is limited

by the quality of the underlying statistical model that does not

capture all the variance of the air quality response to climate

change. These results should thus be ultimately compared

with further deterministic projections using a range of cli-

mate forcings. Then, our approach can yield precious infor-

mation in pointing out which regional climate models should

be investigated in priority, therefore proposing a smart explo-

ration of the ensemble of projections. The following mod-

els: CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-

Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM, have been iden-

tified as the climate models that should be used in priority for

future air quality.

Finally, we should add that the method applied here for air

quality projection also opens the way for other climate im-

pact studies, where quantifying uncertainties using low com-

putational demand is desirable.

The Supplement related to this article is available online

at doi:10.5194/acp-16-2559-2016-supplement.
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