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Multivariate pattern analysis (MVPA) has been applied successfully to task-based and resting-based fMRI record-
ings to investigate which neural markers distinguish individuals with autistic spectrum disorders (ASD) from
controls. While most studies have focused on brain connectivity during resting state episodes and regions of in-
terest approaches (ROI), a wealth of task-based fMRI datasets have been acquired in these populations in the last
decade. This calls for techniques that can leverage information not only from a single dataset, but from several
existing datasets that might share some common features and biomarkers. We propose a fully data-driven
(voxel-based) approach that we apply to two different fMRI experiments with social stimuli (faces and bodies).
The method, based on Support Vector Machines (SVMs) and Recursive Feature Elimination (RFE), is first trained
for each experiment independently and each output is then combined to obtain a final classification output. Sec-
ond, this RFE output is used to determinewhich voxels aremost often selected for classification to generatemaps
of significant discriminative activity. Finally, to further explore the clinical validity of the approach, we correlate
phenotypic information with obtained classifier scores. The results reveal good classification accuracy (range be-
tween 69% and 92.3%).Moreover, wewere able to identify discriminative activity patterns pertaining to the social
brain without relying on a priori ROI definitions. Finally, social motivation was the only dimension which corre-
lated with classifier scores, suggesting that it is the main dimension captured by the classifiers. Altogether, we
believe that the present RFE method proves to be efficient and may help identifying relevant biomarkers by tak-
ing advantage of acquired task-based fMRI datasets in psychiatric populations.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Identifying biomarkers in psychiatry is a challenge that has been the
focus of intense research in the past decade. Multiple approaches have
been used to overcome this challenge, including attempts to identify
biomarkers in genetics, metabolism or neuroimaging (Goldani et al.,
2014). As far as functional neuroimaging (fMRI) is concerned, the recent
development of multivariate pattern classification (MVPA) methods to
brain imaging data appears to be a promising approach (Ecker and
Murphy, 2014). One of themain advantages of thesemethods is that in-
formation sensitivity is much higher compared to the standard
rsity of Geneva, Case Postale 60,
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univariate approaches routinely used in neuroscience. Specifically, ma-
chine learning makes it possible to retrieve patterns of information
within populations of voxels, that univariate analyses may fail to reveal
(Haxby et al., 2001, 2014). Applied to psychiatry, MVPA is a promising
method to detect brain states that discriminate patients from controls
and thus constitutes a valuable tool to identify potential biomarkers
(Mourão-Miranda et al., 2005; Pereira et al., 2009). In recent years,
MVPA has indeed successfully been used on fMRI data to classify pa-
tients with major depression (Fu et al., 2008) or drug addiction
(Zhang et al., 2011) with accuracy rates ranging from 70% to 80%.

However, given thewealth of existing fMRI datasets collected in psy-
chiatry research, there is a need for techniques that can go beyond the
analysis of single datasets and that allow researchers to leverage infor-
mation from multiple datasets at once. Such methods would increase
biomarker sensitivity and allow us to make the most of existing data.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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While there are obvious benefits in reanalyzing large datasets, the ab-
sence of efficient methods to merge information across datasets
makes the process quite labor-intensive. Existing methods such as
non-parametric permutation tests (Nichols and Holmes, 2001) and
searchlight methods (Kriegeskorte et al., 2006) cannot be directly ap-
plied to mine information from several experiments, or when the as-
sumption of sample independence does not hold.

This rationale applies particularly well to Autism Spectrum Disor-
ders (ASD), where large corpuses of brain data have been collected
and, for a good fraction of them, made publicly available. Autism is a
neurodevelopmental disorder characterized by a unique profile of im-
paired social interaction and communication which takes the form of
an inadequate appreciation and modulation of behavior according to
socio-emotional information (World Health Organization, 1992). ASD
individuals display hypo-connectivity in brain networks engaged dur-
ing rest (Kennedy et al., 2006) and aberrant activity in several nodes
of the “social brain” (i.e. fusiform gyrus, superior temporal sulcus and
amygdala) while they process social or emotional information
(Dichter, 2012; Pelphrey et al., 2004).

To date, most ASD fMRI classification studies have used resting-state
functional connectivity patterns (Anderson et al., 2011; Deshpande
et al., 2013; Iidaka, 2014; Murdaugh et al., 2012; Zhou et al., 2014) and
only two have applied task-based paradigms that tap into ASD core social
and emotional deficits (Coutanche et al., 2011; Deshpande et al., 2013).
Using a limited set of a priori regions of interest (ROI) pertaining to the so-
cial brain, both studies showed hypo-connectivity and hypo-activation in
regions involved in face processing or theory of mind, functions that are
indeed atypical in ASD participants. While restricting classification to a
limited set of ROI is a laudable conservative approach, combining infor-
mation from multiple fMRI datasets may help to improve the detection
reliability of relevant biomarkers, in particular those having a small spatial
extent. This goal requires a data-driven approach that can mine informa-
tion from the entire brain at the voxel-wise level.

The goal of this paper is to propose a multivariate method that can
combine information from several studies to detect activity patterns at
the voxel-wise level which are significantly predictive of autism. We
used data from two distinct experiments acquired in the same group
of ASD and control participants. As in Coutanche et al.'s study
(Coutanche et al., 2011), the tasks we used were initially designed for
univariate analysis and were not planned with MVPA in mind. Both
tasks required to process emotional stimuli under different conditions
of social relevance or feature-based attention: the first experiment in-
vestigated the perception of angry or neutral faces with direct or
averted gaze (adapted from Conty et al., 2012); the second experiment
required participants to direct attention to or away from angry and neu-
tral body expressions (adapted from Pichon et al., 2012).We report two
analyses on these datasets. In Analysis 1, we estimated the classifier's
ability to discriminate patients from controls after training the classifier
on both studies. In Analysis 2, we extended this diagnosis-based ap-
proach to assess whether this classifier is correlated with individual dif-
ferences in social motivation, a dimension of behavior that likely plays
an important role in social deficits observed in ASD. Moreover, given
that recent studies have raised the concern that headmotionmay intro-
duce spurious biases in classification problems (Deen and Pelphrey,
2012; Power et al., 2012), we compared the results of our classifiers
after regressing out 6 motion parameters (x, y, z, pitch, yaw, roll),
which is still one standard practice in the field of BOLD imaging, with
a more stringent method which includes 24 motion parameters that
has been used elsewhere (Power et al., 2014; Satterthwaite et al., 2013).

2. General method

2.1. Participants

All participants gave their informed written consent and the study
was conducted in accordance with the Declaration of Helsinki and the
local Ethics Committee. The sample comprised 29 adults, 15 with ASD
and 14 Typically Developing (TD) subjects. All ASD participants had re-
ceived a formal diagnosis of an ASD by licensed psychologists or psychi-
atrists according to standard diagnostic criteria (American Psychiatric
Association, 2000) and using module 4 from the Autism Diagnostic Ob-
servational Schedule (ADOS, Lord et al., 2000). Participants were
matched on age and IQ (Table 1). As it is often the case, participants in
the ASD group had higher trait anxiety scores than controls. This poten-
tial confound was taken into account in our analyses by ensuring that
classification scores were uncorrelated to anxiety scores.

2.2. Experimental procedures

2.2.1. The static faces task (Experiment 1)
This experiment aimed at addressing whether ASD participants au-

tomatically process anger expressions directed at themselves (com-
pared to averted expressions) as self-relevant communicative signals.
It was adapted from a previous study (Conty et al., 2012) and crossed
two factors: gaze direction and emotion (see below). Participant's task
was to press a button whenever a face was presented upside down.
This oddball paradigm has the advantage of leaving the trials of interest
uncontaminated by motor responses.

We used color pictures of 10 actors (5males) for whichwemanipu-
lated two factors: 1) gaze direction (direct gaze condition: head, eye-
gaze directed toward the participant; averted gaze condition: head,
eye-gaze averted by 30°; and 2) emotional expression (angry or neu-
tral). An additional picture was taken of each actor, with a neutral ex-
pression, arms by their sides with an intermediate eye direction of
15°. This position is thereafter referred to as the “initial position”. The
full description of the stimuli can be found in Conty et al. (2012). In
the scanner, each trial began by a uniform gray screen (800 ms) follow-
ed by a fixation area (500 ms) consisting of a central red fixation point
and four red angles. We instructed participants to fixate the central
point and to keep their attention inside the fixation area at the level of
the central point. An apparent movement was then created by the con-
secutive presentation of two pictures. The first picture showed the actor
in the initial position during a random time (mean duration = 450 ms,
range 300–600 ms) and was immediately followed by a second picture
of the same actor in one of the 4 conditions of interest (Fig. 1A.). This
second stimulus remained on the screen for 1300ms. A total of 230 tri-
als were presented including, in addition to the 160 trials of interest (10
actors ∗ 4 conditions ∗ 2 directions ∗ 2 repetitions), 20 oddballs (the sec-
ond picture is upside-down) and 50 null events (mean duration =
3050 ms).

2.2.2. The dynamic bodies attention task (Experiment 2)
This experiment aimed at drawing attention toward or diverting at-

tention from the emotional meaning of movie-clips depicting angry,
fear and neutral body actions. It was adapted from a previous study
(Pichon et al., 2012) and crossed two factors: attention (to emotion
stimuli/to color dots) and emotion (anger/fear/neutral). Attention was
manipulated using instruction screens and alternated every six trials.
During the emotion-naming instruction, subjects were asked to judge
whether the action expressed anger, fear or was neutral. During the
color-naming instruction, subjects viewed the same video-clips but
were requested to detect the color of a small dot (red, green, blue, visual
angle = 0.3°) that was briefly flashed during 40 ms. To minimize shifts
in spatial attention between tasks, the location of the color dotwas care-
fully chosen so that it always fell on the actor's upper body. Colors were
randomized across emotional expressions and appeared in both tasks.
The experiment was divided into two successive scanning runs of
21 min each. Within each run, stimuli were blocked by task and blocks
alternated between series of attention to emotion or attention to color
conditions. Each block contained 6 trials (including 5-seconds null
events). A total of 36 blocks per attention condition was presented
(142 video-clips + 74 null events per task). At the beginning of each



Table 1
Participant variables employed for group-matching and ADOS data.

ASD (n = 15) Controls (n = 14) Group difference

Mean SEM Range Mean SEM Range t-test p-Value

Age 28.6 1.87 19–43 31.6 2.61 19–53 .94 0.35
IQ 108.06 4.5 77–150 116.78 4.6 84–141 1.35 0.18
Handedness⁎ 3L/12R 4L/10R .29 0.59
Gender⁎ 13M/2F 12M/2F .006 0.94
ADOS total 10.3 2.46 5–15
ADOS communication 3.23 1.73 0–7
ADOS social interaction 7.07 0.95 5–8

⁎ Pearson Khi-2; SEM: standard error of the mean.

80 G. Chanel et al. / NeuroImage: Clinical 10 (2016) 78–88
block, subjectswere instructed by a text on the screen lasting 2 swheth-
er they had to recognize emotions or detect colors. Stimuli and null
eventswere randomlymixedwithin blocks. After each stimulus presen-
tation, subjects were instructed by a response screen (fear/anger/neu-
tral or red/green/blue) to push the corresponding button using a
response pad placed in their right hand. Subjects had a delay of 2 s to
Fig. 1. The two paradigms and examples of stimuli. A) In Experiment 1 (static faces), par-
ticipants observed angry or neutral facial expressions with direct or averted gaze. Partici-
pants were instructed to observe each picture attentively and to press a button whenever
they perceived an upside-down oddball picture (Conty et al., 2012). B) In Experiment 2
(dynamic bodies), participants observed short video-clips showing angry or neutral
body expressions with a color-dot appearing briefly for 40 ms onto the actor's upper
body. Depending on the instruction, subjects categorized the emotion or the color of the
dot (Pichon et al., 2012).
give their answer. The order of response options on the screen was ran-
domized between trials to avoid motor anticipation related effects.

We used 73 movie-clips (24 anger, 23 fear and 24 neutral) with a
length of 3 s for the present experiment. The full description and valida-
tion of this set of stimuli can be found in previous studies (Pichon et al.,
2008, 2009, 2012). Briefly, actions were performed by professional ac-
tors who were filmed opening a door while they enacted different sce-
narios corresponding to angry, fear or neutral situations. Actors were
facing the camera and facial expressions were blurred at the post-
processing stage such that only information from the body was avail-
able. In the present manuscript, we only focused our analyses on
anger and neutral stimuli, thus only the four conditions of interest of Ex-
periment 2 are presented in Fig. 1B.
2.3. fMRI data acquisition

For both experiments, gradient-echo T2*-weighted transverse echo-
planar images (EPI) with BOLD contrast and a high-resolution T1-
weighted anatomical image were acquired with a 3T. Each volume
contained 40 axial slices (TR/TE/Flip angle = 2000 ms/27 ms/78°,
resolution = 64 ∗ 64, voxels size 3 ∗ 3 mmwith 3 mm thickness, Par-
allel Acquisition Technique (PAT) factor 2). A shimming proceduremin-
imized inhomogeneity of the static magnetic field. Image acquisition
started after the recording of three dummy volumes to avoid T1 satura-
tion. For each subject and for each task, we collected 370 functional vol-
umes. In addition, we collected a high-resolution T1-weighted
anatomical image (TR/TI/TE/Flip angle = 2300 ms/ms/4.18 ms/9°,
resolution = 256 ∗ 256 ∗ 64, voxels size 1 × 1 mm with 1 mm thick-
ness, no IPAT acceleration, 176 sagittal slices).
2.3.1. Preprocessing of functional images
Image processing and analyses were carried out using SPM8

(Wellcome Dept. of Cognitive Neurology, London, UK). Functional im-
ages were realigned to the first volume by rigid body transformation,
corrected for time differences, spatially normalized to the standard
Montreal Neurological Institute (MNI) EPI template, resampled to an
isotropic voxel size of 2 mm, and spatially smoothed with an isotropic
8 mm full-width at half-maximum (FWHM) Gaussian kernel.
2.3.2. Subject-wise fMRI analysis
At the individual level, we performed standard analyses using the

general linear model (GLM) in SPM8. Each taskwasmodeled separately
and included 4 conditions of interest as described above (exp. 1 crossed
gaze orientation ∗ emotion and exp. 2 crossed attention ∗ emotion).
For each condition, a covariate was calculated by convolving stick func-
tions at the onset of stimulus presentation with the canonical hemody-
namic response function (HRF). The length of each event encompassed
the stimulation and the fixed response period (exp. 2 only). Estimation
of models resulted in the calculation of a beta map for each experimen-
tal condition (i.e. a total of 8 beta maps/conditions per participant) that
was used for classification.
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2.3.3. Regression of motion parameters
We gave careful consideration to the issue of residual head motion-

related artifacts which may contaminate results even after volume re-
alignment and lead to spurious patterns biasing the classification. We
regressed out the effect of head motion by including the realignment
parameters estimated at the preprocessing stage in all GLM models.
We compared the results of our classification using models which in-
cluded two flavors of motion parameters. In a first set of models, we
followed a standard procedure and included the 6 raw realignment pa-
rameters (referred here as Rawrp6 models). In a second set of models
(referred here as Friston24 models), we applied a more conservative
method proposed by (Friston et al., 1996), which takes into account
the participant's movement in the current but also in the previous
scan and that has been used elsewhere (Power et al., 2014;
Satterthwaite et al., 2013). The later method takes 24motion regressors
into consideration: the 6 raw realignment parameters, the same 6 re-
gressors shifted-back by one time point to take into account the move-
ment during the preceding scan (to capture a “memory” effect as in
Volterra expansions), and each of the 12 regressors squared. We could
have used other regression method, yet our goal was more to ensure
that classification results remained high despite a more stringent con-
trol of motion artifact, rather than investigating the influence of differ-
ent motion correction methods on classification per se.

3. Analysis 1 — classification of autistic individuals and controls

3.1. Method

Our first goal was to train classifiers to discriminate patients from
controls and to evaluate the classifier's performance. The proposed clas-
sification method took into account the specificity of our dataset, which
consists of non-uniformly distributed beta maps generated from differ-
ent tasks and experiments. Secondly, feature selection was applied to
improve classification performance and to identify themost discrimina-
tive voxels across the two experiments.

We used the betamaps of each condition estimated at the individual
step level as inputs for the classification to verify the hypothesis that
fMRI brain activity discriminates ASD individuals from the controls.
The space formed by the beta map voxels was directly used as the fea-
ture space for classification, without including any prior information
such as a priori ROIs. Hence, our classification method was fully data-
driven and aimed to find the most discriminative voxels. Indeed, using
the information of the entire brain in an explorative approach may
allow for: A) more accurate classification than restricting classification
to a limited set of a priori regions; and B) identifying brain activity pat-
terns which may not have been identified using a ROI approach, for in-
stance because the discriminative activity would lie at the boundary of
two ROIs.

Voxels that were not available due to brain volume differences be-
tween participants were rejected, still leading to a high dimensional
space represented by N = 186217 features (i.e. beta map voxels).
Many machine learning algorithms are available and applicable to
fMRI data (Pereira et al., 2009). We opted for a Support Vector Machine
(SVM), as implemented in Matlab 2014a (The MathWorks Inc.), given
its ability to perform well in high dimensional spaces (Bishop, 2006).
Since the number of samples employed for training the SVM is rather
low compared to the dimension of the feature space, the two classes
are always separable by a linear hyperplane and employing non-linear
decision boundaries is of limited interest. We used a linear SVM with a
model of the form:

f xið Þ ¼ wTxi þ b

where xi represent a feature vector (i.e. a 3D beta map flattened into a
vector). When minimizing its cost function to obtain the weights w,
the SVM relies on the parameter C that adjusts the tradeoff between
misclassification and regularization. Following the advices in Laconte
et al. (2005), regularization was achieved by setting the C parameter
to 1. The class yi associated to a given feature vector xi is determined
by the nature of the corresponding participant with:

yi ¼ −1
1

�
if the participant is a control

if the participant is diagnosed with ASD:

It follows that f(xi) will be negative (respectively positive) for sam-
ples classified as controls (respectively ASD).

As for most classification methods, SVMs make the assumption that
the input data is identically and independently distributed. In our case,
the assumption of identically distributed data is violated since beta
maps come from several experimental conditions which can activate
different brain regions. For this reason a classifier was trained on the
data of each condition independently (2 experiments ∗ 4 conditions
per experiment = 8 conditions) and the decisions of these classifiers
were subsequently combined to obtain a final decision for each partici-
pant. This fusion of classifiers decisions was achieved by averaging the
outputs f(xi) of each condition i belonging to a given participant j,

which gives a final decision score f ð jÞ. For one participant where an ex-
perimentwasmissing, the decisionwas taken using the available condi-
tions. The sign of f ð jÞ then determined the class assigned to the
participant j.

3.1.1. SVM training and leave-one-participant out cross-validation method
This methodwas employed to test the performance of the classifica-

tion method on unseen data. For each participant and each condition, a
classifier was trained using the data of all other participants (on the
same condition); the obtained model was then applied on the beta
map of the tested participant. As described above average fusion was
performed to combine the models of both experiments and obtain a
final decision per participant. Finally performance was computed. Two
types of fusion were employed by combining different conditions to-
gether to assess:

1. whether the combination of all models (i.e. both experiments) im-
proved the classification accuracy; the performance obtained from
combining the conditions of all experiments (i.e. 8 conditions in
total)was comparedwith the performance obtained from combining
the conditions separately for each experiment (i.e. 4 conditions per
experiment);

2. whether models trained on emotional versus neutral information
improved classification accuracy; the performance obtained from
combining the conditions corresponding to angry expressions was
comparedwith theperformance obtainedwith combining the condi-
tions corresponding to neutral expressions (independently of the ex-
periment, 4 conditions in both cases).

The complete classification framework, in the case data from the two
experiments was used, is depicted in Fig. 2. Using this method, 8 classi-
fiers were trained (4 conditions per experiment ∗ 2 experiments) at
each cross validation loop. Given the high accuracy variance of the
leave-one-out cross-validation method, a leave-pair-out cross-
validation was also employed. As results from both methods were
very similar, only the leave-one-out results are reported here.

3.1.2. Classification using SVM Recursive Feature Elimination
Although SVMs achieve good performance in high dimensional

spaces, they can still benefit from feature selection methods. Therefore
we employed amodified version of the SVMRecursive Feature Elimina-
tion (SVM RFE) algorithm (Guyon et al., 2002) to restrain the classifica-
tion to a subset of discriminant voxels. In SVM RFE the classification is
first achieved on the whole set of features using a linear SVM classifier.
The featurewith the lowestweightwi is eliminated and the procedure is
iterated on the remaining features up to the point where no feature



Fig. 2.Classification and feature selection frameworks. Left) For each participant and each condition a classifierwas trained using thedata of the other participants (on the same condition).
Next, the outputs of the classifiers were averaged across conditions and a final decision was taken for each participant based on the sign of the average classification score. Right) Cross-
validated feature selection was applied to select the most discriminative features and to find discriminative patterns of brain activity.
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remains. The features are then ranked according to their order of elim-
ination, the first eliminated feature being the worse. Because the num-
ber of features is very high, we chose to speed up the RFE algorithm
by removing 10% of the remaining features at each iteration. Hence,
many features are rejected at thefirst iterationwhile during subsequent
iterations, the algorithm rejects fewer and fewer features and becomes
more andmore specific in feature ranking. The value of 10% was chosen
to obtain a reasonable processing time while trying to keep the number
of rejected features low. Once features are ranked, it is possible to select
the best (b⁎) features on the training set to perform the classification.
The number b⁎ was chosen by nested cross-validation (Fig. 2) among
several possible bi values. For computational speed, the bi numbers
were following the geometric progression defined below:

b0 ¼ N
2

bi ¼
bi−1

2

8><
>: i∈ 0;11½ �:

The bi's were rounded to select an exact number of features. Using
this method the number of selected features ranged from b11 = 45 to
b0 = 93109.

3.1.3. Classification performance
The classification performance was measured using accuracy (per-

centage of correctly classified participants), sensitivity (i.e. recall) and
specificity. The significance of the classification accuracy was tested
using a binomial test with the null hypothesis that the class labels are
estimated randomly and equiprobably. Given that Binomial tests can
be too lenient when applied on small datasets (Noirhomme et al.,
2014), we also performed permutation tests. The two tests were
found to be very similar and only the Binomial tests are presented.

3.1.4. Visualization of the most discriminative voxels
After testing the classification performance, we sought to identify

the most discriminative voxels across experiments to render them on
a whole-brain anatomical volume. A possibility is to employ permuta-
tion tests to find which of the classifier weights w are significantly
high or low. However this method is suboptimal because spatial corre-
lation drives the weights of correlated (but discriminative) voxels to-
ward zero (Pereira et al., 2009). This is particularly problematic for our
data-driven approach considering all voxels of the brain volume.
Another solution could be to combine correlated voxels together
using, for instance, a searchlight algorithm (Kriegeskorte et al., 2006).
Here, we propose to perform the voxel analysis using the output of
the previously described SVM RFE algorithm. The basic idea is that
voxels which are often well ranked by SVM RFE are significantly dis-
criminative, while those which are not well ranked or only occasionally
well ranked are not very discriminative. As proposed in Breitling et al
(2004), the rank product test can be used to determine which features
(i.e. voxels) are better ranked than chance. When the number of fea-
tures and the rank products are high, it is possible to use an accurate
and cost effective approximation (gamma distribution based) of the
rank product test (Eisinga et al., 2013; Koziol, 2010). Since we are deal-
ingwithN=186217 voxels, this Gamma testwas employed. As defined
in Koziol (Koziol, 2010), the test consists of computing the z statistic
from k rankings. The z statistic follows a Gamma distribution under
the null hypothesis that the features are ranked equiprobably with:

z ¼ −
Xk
i¼1

log
ri

N þ 1
Z � Γ k;1ð Þ

ð2Þ

where ri is the rank of the tested feature for ranking i. It is necessary to
generate k independent rankings of voxels to apply the test. This was
achieved by building amodel for each condition. As described previous-
ly, the SVMRFE algorithmwas applied 8 times (one time per condition),
each iteration generating a unique ranking of voxels. The Gamma test
was then applied to sets of rankings to find the most discriminative
voxels. More precisely, this test was applied on the conditions of each
experiment independently (k = 4) and on both experiments (k = 8)
leading to the generation of 3 maps representing discriminative brain
activities for Experiment 1, Experiment 2 and the fusion of the two ex-
periments. Since the number k of rankings can be different (4 or 8),
we adjusted the Gamma test so that the z statistics are comparable by
replacing the sum in Eq. (2) by an average:

z0 ¼ −

Xk

i¼1
log

ri
N þ 1

k

Z0 � Γ k;
1
k

� �
:



Fig. 3. Visualization of the most discriminative voxels. These voxels were found in regions related to social cognition and consistently showed reduced contribution in ASD participants
compared to controls. Overall, the fusion of both experiments increased the size of the largest significant clusters while smaller clusters disappeared. Results were corrected for multiple
comparisons (FWE p b 0.05).
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This method allows finding voxels which are discriminative among
all conditions and experiments by selecting voxels where pðZ0≥z0Þb α

N.
In our study α was set to 0.05. Note that the proposed modification
does not change the statistical significance of the test since
p(Z′ ≥ z ') = p(Z ≥ z).

However, the proposed test is not informative of the direction of the
effect. To circumvent this issue, we retrieved voxels' weight signs by
training a unique SVM model on the full dataset and we displayed in
Fig. 3 the z statistics (which are always positive) multiplied by the
sign of the associated weights to visualize the main direction of the ef-
fect. Anatomical labeling was performed with reference to the anatomy
toolbox (Eickhoff et al., 2005). Coordinates of homologue regions in
both hemispheres were pooled together in Table 4 when distance was
less than 10 mm. Rendering was made using MRIcron (Rorden et al.,
2007) and the standard Colin brain available in SPM8.
3.2. Results

3.2.1. Classification accuracy
The accuracy, sensitivity and specificity of the different classification

methods and movement correction are reported in Table 2. For better
readability, sensitivity and specificity are reported only for the SVM
RFE feature selection algorithm, which performed best in most cases.

When both experiments were considered together for classification,
and no feature selection was applied, the Friston24 motion correction
method reached a better performance than the Rawrp6 method
(Friston24: 82.8%, Rawrp6: 72.4%). This suggests that regressing out re-
sidualmotionhelps improving the classification.When applying feature
selection (RFE), the accuracy remained relatively unchanged for the
Friston24 method but improved considerably for the Rawrp6 method
(Friston24: 79.3%, Rawrp6: 89.7%). While specificity (true negative



Table 2
Classification performance for the fusion of conditions belonging to each or both
experiments.

Fusion/experiment Motion
correction

Accuracy (%) Sensitivity
(%)

Specificity (%)

SVMnoFS SVM
RFEFS

SVM RFEFS SVM RFEFS

Both experiments Rawrp6 72.4⁎ 89.7⁎⁎⁎ 100 80
Friston24 82.8⁎⁎⁎ 79.3⁎⁎ 78.6 80

Exp. 1 (faces) Rawrp6 62.1 69.0⁎ 71.4 66.7
Friston24 65.5† 69.0⁎ 57.2 80

Exp. 2 (bodies) Rawrp6 76.9⁎⁎ 92.3⁎⁎⁎ 92.3 92.3
Friston24 80.8⁎⁎ 80.8⁎⁎ 92.3 69.2

Significance values assessing that the classification achieved best than chance are indicated
only for the accuracy columns (FS: features selection, †: p b 0.1, *: p b 0.05, **: p b 0.01,
***: p b 0.001). Exp. 1 stands for the experiment where static faces were used. Exp. 2 stands
for the experiment where dynamic bodies were used.
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rate) was equivalent for both methods (80%), sensitivity (true positive
rate) was much higher in the Rawrp6 method than in the Friston24
method (100% versus 78.6%), possibly because of the influence of resid-
ual motion artifacts that were less well accounted for by the Rawrp6
method than by the Friston24 method.

When experiments were considered separately, the best accuracy
was achieved with Experiment 2 (performance: 92.3%, sensitivity:
92.3%, specificity: 92.3%) which manipulated attention toward or
away from emotional bodily actions. In conclusion, these results con-
firmed that potential residual motion in the signal has a relatively low
but non-null influence on classification and indicates that the Friston24
correction method helps to reduce spurious classification linked to re-
sidual head-motion. Moreover, our results indicate that there seems to
be an advantage of using SVM RFE to increase classification accuracy
(mostly for the Rawrp6models) since performance improved in 4 anal-
yses (out of 6), was left unchanged in 1 analysis, and marginally de-
creased in 1 analysis. This also demonstrates that brain activity was
discriminative in all experiments, despite the explorative method we
employed.

To ensure that RFE and fusion are not selecting features related to
movement, we computed correlations between the continuous output
of classifiers and 13 motion parameters. Importantly, we observed no
correlations for the fusion of both experiments after Friston24 motion
correction and/or the application of RFE feature selection (all p N 0.05
uncorrected). Furthermore, the RFE algorithm helped reducing the in-
fluence of motion on classifiers' output. For additional details, see Sup-
plementary Fig. 1 and results.

Finally, since it has been proposed that ASD individuals have a spe-
cific deficit in processing emotional cues, we testedwhether or not clas-
sification performed on “anger” conditions achieved a better accuracy
than when it was performed on “neutral” conditions. To do so, we com-
bined the classifier scores of the two experiments for anger and neutral
conditions separately. Results indicate that accuracy for anger or neutral
conditions was very similar with an average accuracy difference of 1.7%
(Table 3). It is important to note, however, that the fact that
Table 3
Classification accuracy (%) after the fusion of either the Anger conditions or the Neutral
conditions from both experiments.

Motion
correction

Classification
method

Accuracy (%) for anger
conditions

Accuracy (%) for neutral
conditions

Rawrp6 SVMnoFS 69 75.9
Friston24 SVMnoFS 82.8 72.4
Rawrp6 SVM RFEFS 89.7 89.7
Friston24 SVM RFEFS 79.3 75.9
Mean accuracy (±STD) 80.2 (±8.6) 78.5 (±7.7)

The mean accuracy and standard deviation were computed across all movement correc-
tion and classification methods.
classification with emotional stimuli was only marginally better than
the one with neutral stimuli does not necessarily mean that emotions
are not beneficial to classification. The use of a diverse set of social stim-
uli probably increases subjects' attention, which benefits to classifica-
tion overall.

3.2.2. Visualization of the most discriminative voxels
Themost discriminative voxels (see Fig. 3) across experiments were

found in regions related to social cognition, namely regions involved in
the processing of faces and bodies [FFA: fusiform face area, OFA: occip-
ital face area, EBA: extrastriate body area — (Kanwisher et al., 1997;
Puce et al., 1996), and STS: sulcus temporal superior — (Allison et al.,
2000; Giese and Poggio, 2003; Pitcher, 2014)], active duringmentalizing
[TPJ: temporo-parietal junction and precuneus — (Castelli et al., 2000;
Samson et al., 2004)] or during action and emotion perception [PM:
premotor cortex — (Grèzes et al., 2007; Pichon et al., 2008, 2012)].
These regions consistently showed reduced contribution in ASD partic-
ipants compared to controls. The fusion of both experiments dramati-
cally increased the significance of discriminative features, which is
probably due to the increased sample size with a stable effect size. The
fusion of both experiments increased the number of significant discrim-
inative voxels by roughly 50%, with 139 significant voxels for Experi-
ment 1 (gaze), 219 for Experiment 2 (bodies) and 546 for the fusion
of both experiments.

4. Analysis 2 — dimensional approach

4.1. Methods

In analysis 1, we focused on the accuracy of the classifier to discrim-
inate participants based on their diagnosis and we examined discrimi-
native brain activity patterns between patients and controls. This first
step was useful to compare the benefits of our cross-experiment
MVPAmethodologywith classification performed on single tasks. How-
ever, recent recommendations in psychiatry have emphasized the need
to go beyond diagnostic boundaries and to adopt a more dimensional
approach for a finer understanding of the neurobiological substrate of
psychiatric conditions. The rationale is that until the formulation of clin-
ical diagnosis is improved, research in neuroscience should focus on dis-
crete dimensions of behavior which are likely to be more directly
linkable to neurobiology (London, 2014). One promising dimension in
the domain of ASD research is social motivation (Chevallier et al.,
2012b). Social motivation can be described as a set of biological mecha-
nisms driving individuals to preferentially orient their attention to the
social world and to treat social interactions as rewarding. Social motiva-
tion can be assessed using a number of tools including self-report ques-
tionnaires (Eckblad et al., 1982). In analysis 2, we therefore departed
from the standard diagnosis-based approach in order to assess whether

the classification outputs f ð jÞ were related to social anhedonia (SAS)
and other personality or diagnostic measures. Since the classifiers
were trained to distinguish participants with ASD from control partici-
pants, we expected that correlations would be driven by mere group
differences. Hence we used partial correlations to remove the group ef-
fect. We computed additional correlations within each groupwhenever
the partial correlation was marginally correlated (p b 0.1).

4.1.1. Questionnaires
Participants completed the revised-Social Anhedonia Scale

(Kosmadakis et al., 1995), which is a 40-item true/false scale commonly
used to assess the ability to anticipate and experience interpersonal
pleasure (e.g., being with people, talking, exchanging expressions of
feelings, and doing things with others). High scores reflect diminished
pleasurable responses, hence greater social anhedonia. We recently re-
vealed selective social anhedonia (deficit in social desire and drive) in
adolescents with ASD, with ASD severity (ADOS scores) correlating



Table 4
Discriminative voxels across experiments using SVM RFE.

Both experiments Experiment 1 (faces) Experiment 2 (bodies)

R/L Anatomical region MNI coordinates MNI coordinates MNI coordinates

x y z x y z x y z

TD N ASD
R Premotor cortex 52 10 46
R Temporo-parietal junction (TPJ) 54 −36 24
R Supramarginal gyrus 68 −42 26
R & L Fusiform face area (FFA) ±44 −54 −16 ±39 −52 −23
L Superior temporal sulcus (STS) −54 −56 10
L Lingual gyrus −18 −58 0
L Superior parietal lobule (SPL) −16 −56 70
R & L Calcarine sulcus ±12 −68 16 ±14 −70 16
R Occipital face area (OFA) 44 −70 −4 44 −70 −2
R & L Extrastriate body area (EBA) −52 −72 6 −54 −68 14
R Precuneus 14 −72 62 14 −70 60
L Superior occipital gyrus −20 −76 38 −18 −78 −40
R Lunal gyrus 20 −80 −6
L Occipito-temporal face area (OFA) −42 −80 −6
L Middle/superior occipital gyrus −20 −82 16 −18 84 18
R & L Occipital pole ±18 −92 −8 ±22 −95 −6
R & L Occipital pole ±32 −96 −10 30 −95 −7

ASD N TD
L Angular gyrus/inferior parietal lobule (IPL) −36 −70 40 −36 −70 38
R Angular gyrus/inferior parietal lobule (IPL) 48 −60 50 48 −62 52
L Posterior cingulate cortex (PCC) −14 −40 38 −16 −44 36
R Inferior temporal gyrus 64 −30 −18 52 −20 −26
R Middle temporal gyrus 64 −38 −10
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positively with the level of social anhedonia (Chevallier et al., 2012a). In
addition to the ADOS, autistic traits were assessed using the AQ ques-
tionnaire (Baron-Cohen et al., 2001).

Participants also filled the STAI (form Y) questionnaire assessing
state and trait anxiety (Spielberger et al., 1983). Indeed, anxiety is one
of the most common psychiatric co-morbidities in ASD, with as many
as 40–50% of individuals with ASDmeeting conditions for clinical anxi-
ety (Kerns et al., 2015). Since anxiety influences brain responses to
emotional stimuli (Bishop, 2007; Pichon et al., 2015) and interferes
with social motivation (Nettle and Bateson, 2012), we tested whether
classification scores were related to inter-individual differences in anx-
iety (see Table 5).

4.2. Results

Given that the SVM RFE algorithm performed the best, we used its
classification outputs f(j) to estimate correlations with questionnaires
and ASD scores in Table 6. A first glance at the correlations shows that
the Rawrp6 and Friston24 methods gave very similar results.

Interestingly, social anhedonia scores predicted classification scores
in Experiment 2 (bodies) for the ASD group (r=0.76, p b .01, see Fig. 4)
and for all subjects after removing the effect of group (r = .56, p b .01).
Importantly, neither trait (p = .09) nor state anxiety (p = .60) was re-
lated to classification scoreswhen considering both groups. Multiple re-
gression confirmed that social anhedonia predicted classification scores
in ASD participants (t(6)= 2.57, p= .04) while anxiety state (p= .31)
or trait (p = .21), IQ (p = .32) and age (p = .13) were not significant.
Our result supports the suggestion that social motivation is an impor-
tant factor to consider in autism research (Chevallier et al., 2012b).
Table 5
Participant scores for social anhedonia (SAS) and anxiety.

ASD (n = 15) TD

Mean SEM Range Me

Social Anhedonia SAS 18.76 2.19 8–31 7
Anxiety (trait) 47.5 2.96 29–77 38
Anxiety (state) 36.3 2.69 20–51 32
5. Discussion

The data-driven method proposed in this paper combines BOLD
measures from two heterogeneous experiments in order to classify
ASD subjects and controls without any prior information such as the
definition of ROIs. The originality of our approach is that the discrimina-
tive maps rely on feature selection rather than on the standard statisti-
cal methods commonly used in multivariate fMRI analyses. An
advantage of this approach is that the computed statistic is only based
on the rank of the feature. Consequently this method can be employed
to combine heterogeneous data sources such as different fMRI experi-
ments, different BOLD-related signals (betamaps, functional connectiv-
ity, etc.) or even different brain imaging modalities (i.e. structural MRI,
voxel-based morphometry, functional MRI, and PET). The only require-
ment is that the brain images should be co-registered and have the
same spatial resolution, a constraint that can easily be achieved at the
preprocessing stage using realignment and interpolation methods.

Importantly,we show that the usage of amore stringentmotion cor-
rection method than the classic inclusion of the 6motion parameters in
regression models helps to reduce potential residual influences of head
motion on classification results. The use of SVMRFE improved classifica-
tion accuracy for the Rawrp6 models, and this increase of performance
was not due to motion artifacts since RFE reduced the correlation of
classifiers' output with motion parameters observed in Experiment 1
(but not in Experiment 2 or after the fusion of both experiments).
Taken together, these results hold the promise that the present method
may become a valuable tool to help remove any potential residual influ-
ence of head movements in classification problems that involve com-
paring ASD Subjects (and more generally patients) with controls.
(n = 14) Group difference

an SEM Range T (ASD vs TD) p-Value

.42 0.84 2–13 −5.39 b0.001
2.98 23–63 −2.2 b0.05
2.48 20–52 −1.14 0.26



Table 6
Pearson r values for partial correlations (both) and correlation in each group (ASD and TD) between the averaged SVM outputs (with SVM RFE feature selection) and scores from scales.

Rawrp Social anhedonia (SAS) Autism quotient (AQ) Anxiety (trait)

Both ASD TD Both ASD TD Both ASD TD

Both exp Rawrp6 0.3 – – .36† 0.46† 0.14 0.15 – –
Friston24 .32† 0.29 .49† .33† 0.45 0.14 0.11 – –

Exp. 1 (gaze) Rawrp6 0.15 – – .38† 0.35 .46† 0.2 – –
Friston24 0.01 – – 0.23 – – 0.14 – –

Exp. 2 (bodies) Rawrp6 .50⁎ .65⁎ 0.05 0.28 – – 0.15 – –
Friston24 .56⁎⁎ .76⁎⁎ 0.14 0.3 – – 0.11 – –

The “Both” column indicates that a partial correlationwas employed to remove the effect of group. The columns ASD and TD refer to the correlations performed in either group (†: p b =0.1,
*: p b 0.05, **: p b 0.01, Two-tailed positive Pearson correlation). Correlations within each group were further computed when the partial correlation approached significance (p b 0.1).
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In the past few years, most fMRI classification studies relied on
resting-state functional connectivity patterns and/or ROI analyses and
reached categorization accuracy ranging from 79% to 96% (Anderson
et al., 2011; Deshpande et al., 2013; Iidaka, 2014; Murdaugh et al.,
2012; Wang et al., 2012; Zhou et al., 2014). Our method achieved accu-
racies in a similar range (between 69% and 92.3%) than the studies
above relying on resting state connectivity measures. Note that even
though RFE was not associated with obvious gains in all conditions,
the best accuracy was obtained with this method (92.3%). These results
are all themore encouraging that we faced a number of methodological
challenges: 1) we relied on tasks that were not designedwithmultivar-
iate pattern analysis in mind; 2) the samples we classified did not have
Fig. 4.Correlations for Experiment 2 (bodies) forwhich classification scores best predicted
social anhedonia in the ASD group. Anxiety scores were unrelated to classification scores
(we used classification scores from the SVMRFE feature selection and the Friston24move-
ment correction methods).
the same distribution (i.e. they derived from different tasks and exper-
iments); 3) we relied on relatively small samples lying in a highly di-
mensional space, which might have raised a curse of dimensionality
issue. In response to this last challenge, our results indicate that feature
selectionwith SVM RFE reduces the impact of the curse of dimensional-
ity by selecting discriminant subsets of voxels. In response to the second
challenge, the proposed fusion approach allowed to build a model for
each task and condition thus solving the problem of non-identically dis-
tributed samples. Taken together, the present study confirms that clas-
sifiers can be successfully applied to mine information from multiple
BOLD datasets without relying on a priori ROIs and even if they are
not originally designed for multivariate pattern analysis.

Our second goal was to evaluate whether the fusion of heteroge-
neous data sources improved classification performance and revealed
new additional topological information. We found that accuracy
remained approximately the same when fusing the classifier outputs
of our two experiments. However, the fusion method revealed 50%
more significant voxels compared to the method taking each experi-
ment separately. Specifically, the fusion led to an increase in the size
of the largest significant clusters and to a disappearance of the smallest
clusters. This suggests that the fusionmethod favors the selection of dis-
criminative features that are common across experiments and validates
the proposed method. Identified areas were astonishingly consistent
with brain regions of the “social-brain” known to show aberrant func-
tioning in ASD (Castelli et al., 2002; Pierce et al., 2004; Schultz, 2005;
Zilbovicius et al., 2006). More specifically, we found a hypo-
contribution of the fusiform gyrus and the occipital face area (OFA),
which are both involved in face perception (Kanwisher et al., 1997;
Puce et al., 1996); of the posterior STS, which plays a role in processing
gaze direction (Allison et al., 2000), emotional displays (Pitcher, 2014)
and biological motion (Giese and Poggio, 2003); and of the TPJ which
is part of the mental state attribution network (Castelli et al., 2000;
Samson et al., 2004).

Finally, to explore the clinical validity of our classifiers, we correlated
classifier scores and phenotypic information. We focused on social mo-
tivation deficits, which are arguably an important dimension of the ASD
phenotype and found that the classifier scores of the fusionmethod cor-
relatedwith socialmotivation scores. In contrast to this dimensional ap-
proach past studies have often focused on overall diagnosis. Anderson
et al., (2011) and Coutanche et al (2011), for instance, found that their
classifier scores correlated with ADOS total scores. Similarly,
Deshpande et al. (2013) found that top rank features of connectivity
measures were positively correlated with autistic traits' scores (AQ).
In line with the RDoC framework (NIMH Research Domain Criteria),
wewould like to highlight that looking at relevant dimensions of behav-
ior instead of overall diagnosis is a promising approach to understand
the biological roots of ASD and, ultimately, to identify biomarkers.

In conclusion, the present study indicates that RFE is an interesting
method to leverage information from several datasets and explore po-
tential brain atypicalities in ASD or other psychiatric conditions (e.g. de-
pression). In this paper, social brain areas were identified as most
discriminative. This finding, however, is only a first step in the identifi-
cation of potential biomarkers: first, our sample size was relatively
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limited, which prevents us from grasping the heterogeneity that is so
characteristic of ASDs; second, and perhaps more importantly, we
only compared participants with ASD to typically developing controls,
which means that we cannot know whether the discriminative brain
pattern we identified is specific to ASD. These cautionary notes have
been underlined recently and suggest that “we must be patient when
searching for an autism biomarker” (Goldani et al., 2014;
Tager-Flusberg, 2014).
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