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Abstract Chronic infection perturbs immune homeostasis. While prior studies have reported

dysregulation of effector and memory cells, little is known about the effects on naı̈ve T cell

populations. We performed a cross-sectional study of chronic hepatitis C (cHCV) patients using

tetramer-associated magnetic enrichment to study antigen-specific inexperienced CD8+ T cells (i.e.,

tumor or unrelated virus-specific populations in tumor-free and sero-negative individuals). cHCV

showed normal precursor frequencies, but increased proportions of memory-phenotype

inexperienced cells, as compared to healthy donors or cured HCV patients. These observations

could be explained by low surface expression of CD5, a negative regulator of TCR signaling.

Accordingly, we demonstrated TCR hyperactivation and generation of potent CD8+ T cell

responses from the altered T cell repertoire of cHCV patients. In sum, we provide the first evidence

that naı̈ve CD8+ T cells are dysregulated during cHCV infection, and establish a new mechanism of

immune perturbation secondary to chronic infection.

DOI: 10.7554/eLife.07916.001

Introduction
Functional impairments of CD8+ T cells have been characterized in several persistent viral infections,

including human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infection in humans, simian

immunodeficiency virus (SIV) infection in macaques, and lymphocytic choriomeningitis virus (LCMV)
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infection in mice (Ahmed and Rouse, 2006). In particular, it has been shown that chronic infection

skews memory/effector CD8+ T cell differentiation (Stelekati and Wherry, 2012), and drives virus-

specific CD8+ T cells towards an « exhausted » phenotypic state, as marked by high expression of

the programmed cell death-1 (PD-1) molecule (Kim and Ahmed, 2010). Chronic infections have also

been reported to impair immune responses to unrelated infectious microbes in mouse models

(Stelekati and Wherry, 2012; Richer et al., 2013), as well as in humans infected with HCV

(Park and Rehermann, 2014). This phenomenon correlates with a interferon (IFN) stimulated gene

(ISG) transcriptional signature, suggesting an indirect effect of systemic type I IFN secondary to

innate immune activation (Stelekati et al., 2014). Following from these observations, we hypothe-

sized that chronic infection may alter the T cell preimmune repertoire, which plays an important role

in shaping the adaptive immune responses (Jenkins and Moon, 2012). Employing a newly validated

approach for the study of low-frequency (< 10–5) antigen-specific T cells (Alanio et al., 2010), we

evaluated this prediction in patients with chronic viral infection of the liver.

The a/b T cell preimmune repertoire is defined as the set of mature but antigen inexperienced

lymphocytes that circulate in blood and secondary lymphoid organs, ready to be activated by cog-

nate high-affinity peptide-class I MHC (pMHC) complexes (Jenkins et al., 2010). They are main-

tained in the periphery by survival factors such as IL-7, as well as transient contacts with low affinity

non-cognate pMHC complexes (Sprent and Surh, 2011). Over the last decade, studies using newly-

developed tetramer-enrichment assays - sensitive enough to detect and track antigen-specific

eLife digest Long-lasting or “chronic” infections massively perturb the immune system as a way

to favor their own growth. In particular, they can stop T cells – a subtype of immune cells that help

to destroy viruses – from working well. For example, HIV and hepatitis C viruses can overwork T cells

and cause them to die. This can make individuals vulnerable to other infections.

In healthy people, T cells that have participated in the fight against particular infections continue

to live to provide a memory of those past infections. Groups of “naı̈ve” T cells that have not yet

encountered an infected cell also patrol the body, ready to respond to infections by a new virus.

There are relatively few virus-specific naı̈ve T cells in the body, so until recently it has been hard to

study them. As a result, researchers know little about how these cells are affected by long-lasting

infections, and whether chronic infection affects our capacity to fight unrelated infections.

Alanio et al. have now used a highly sensitive technique to compare naı̈ve T cells found in the

blood of three groups of people: those with chronic hepatitis C infections, those who have been

cured of a chronic hepatitis C infection, and healthy people. This revealed that the naı̈ve T cells are

negatively affected by chronic hepatitis C infections, and become hypersensitive: they get easily

overexcited, which can lead to their death. This compromises the immune defenses at the moment

they are most needed.

Closer inspection showed that the naı̈ve T cells of patients with hepatitis C are hypersensitive

because they have less of a protein called CD5 on their surface. This protein acts as a natural brake

for the T cells, and thus having less results in the T cells mounting stronger immune responses.

Although this might be beneficial when fighting certain infections, this may also account for

conditions where T cells attack healthy tissues.

Finally, Alanio et al. found evidence that people who have been cured of a chronic hepatitis C

infection recover a healthy set of naı̈ve T cells within two years. Treating patients as soon as an

infection is diagnosed therefore has several benefits: as well as clearing the virus, this will reset the

immune system balance and reduce the damage that hyperactive immune cells cause to the body.

The results also have implications for vaccinations, which work by pushing naı̈ve T cells to arm

themselves against a particular virus. The discovery that naı̈ve T cells are hypersensitive in patients

with hepatitis C suggests that we may need a distinct strategy for efficiently vaccinating these

patients. It is indeed possible that standard vaccines – tested in groups of healthy people – may

result in unexpected and unwanted immune responses in individuals with hepatitis C.

These open questions will be addressed in further studies. It will also be of interest to know if

other chronic viruses have the same ability to alter the activity of naı̈ve T cells.

DOI: 10.7554/eLife.07916.002

Alanio et al. eLife 2015;4:e07916. DOI: 10.7554/eLife.07916 2 of 20

Research article Human biology and medicine Immunology

http://dx.doi.org/10.7554/eLife.07916.002
http://dx.doi.org/10.7554/eLife.07916


populations prior to immunization - have provided new insights into the impact of preimmune reper-

toire heterogeneity (Jenkins et al., 2010). First, the number of antigen-specific T cells (i.e. precursor

frequency) is not equivalent across inexperienced populations, with the absolute number positively

correlating with the magnitude of responses that are induced upon priming (Obar et al., 2008;

Moon et al., 2007; Kwok et al., 2012; Schmidt et al., 2011; Kotturi et al., 2008; Tan et al., 2011).

Second, antigen-inexperienced CD4+ and CD8+ T cell populations contain variable proportions of

memory-phenotype (MP) cells (Legoux et al., 2010; Su et al., 2013). These cells have been

explained in the literature as a result of cross-reactivity or homeostatic proliferation (Sprent and

Surh, 2011). Cross-reactivity is now recognized as an essential feature of the T-cell receptor (TCR) /

MHC interaction (Mason et al., 1998), and a major determinant of virus-specific MP cells in the CD4+

T cell repertoire of unexposed healthy donors (Su et al., 2013). Alternatively, homeostatic prolifera-

tion may occur in settings of lymphopenia (Jones et al., 2013). Finally, differential CD5 expression

by antigen-specific T cell populations has been shown to dictate clonal recruitment and expansion

(Fulton et al., 2015; Tabbekh et al., 2013). To date, the impact of non-heritable influences such as

human chronic viral infection on the quantitative and qualitative aspects of the preimmune repertoire

remains unknown.

In our study, we focused on patients with chronic hepatitis C virus infection (cHCV), which show

CD8+ T cell dysfunction (Park and Rehermann, 2014; Rehermann and Nascimbeni, 2005). In partic-

ular, HCV-specific responses are typically (i) weak – both in term of numbers and function, (ii) of low

avidity, and (iii) blocked in their differentiation into central memory cells, despite the availability of

cognate pMHC complexes (Park and Rehermann, 2014). cHCV is to date the only chronic viral

infection that can be cured, offering the unique possibility to interrogate the reversibility of immune

perturbations post-viral clearance (Pol et al., 2013). Herein, we applied the highly sensitive tetra-

mer-associated magnetic enrichment (TAME) technique for investigating at the antigen-specific level

the impact of chronic viral hepatitis infection on the CD8 T cell preimmune repertoire (Alanio et al.,

2010). Although precursor frequencies were similar to healthy controls, we observed significant

impairments of the preimmune repertoire in cHCV patients. Inexperienced T cell populations con-

tained increased proportions of MP cells. This correlated with naı̈ve-phenotype CD8+ T cells having

lower surface expression of CD5, which accounted for a lower threshold for TCR signaling and the

generation of potent immune responses from cHCV patients. Importantly, the positive effect of

chronic infection on naı̈ve T cell recruitment into immune responses is transient, as cHCV patients

who clear their virus following successful therapy (referred to as Sustained Virologic Responders or

SVR) can experience a reversion towards a healthy naı̈ve T cell repertoire within 2 years. These data

provide the first evidence for chronic infection resulting in the bystander dysregulation of the anti-

gen-specific preimmune repertoire in humans, and highlight the added benefit of early viral clear-

ance in patients with chronic HCV infection.

Results

Perturbed naı̈ve CD8+ T cell repertoire during chronic infection
To test the hypothesis that chronic viral infection perturbs preimmune repertoire homeostasis, we

evaluated the influence of cHCV infection on the phenotype of circulating CD8+ T cells. 29 cHCV

and 37 Sustained Virologic Responders (SVR, i.e. patients achieving clearance of the virus after ther-

apy) patients were included in the study (Table 1). 62% of the chronic and 100% of the SVR patients

received at least one anti-HCV treatment (of those treated, 69% received conventional IFN-ribavirin

bitherapy, 31% IFN + direct antiviral agent (DAA), and IFN-free DAA combination therapy alone in

the case of a single SVR patient). Healthy donors from the blood bank were included as controls.

Total lymphocyte numbers were within the normal range for all tested patients (median 2.2 +/-

0.6 G/l). Within the CD3+ lymphocyte population, we observed similar percentages of circulating

CD8+ T cells (Figure 1—figure supplement 1). However, absolute numbers of CD3+ were signifi-

cantly increased in our cohort of cHCV (KW p<0.0001), translating into increased absolute numbers

of CD8+ T cells in cHCV patients (KW p=0.0002) (Figure 1—figure supplement 2). We further sub-

setted the CD8+ T cells according to their surface expression of CD45RA and CD27. Based on prior

studies (Alanio et al., 2010; De Rosa et al., 2001) and our confirmatory experiments using 5 pheno-

typic markers for naı̈ve or memory T cells, we determined that co-expression of high levels of
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Figure 1. Perturbed naı̈ve CD8+ T cell repertoire during chronic HCV infection. Percentages and absolute numbers of CD3+ and CD3+CD8+ cells in

Healthy Donors (HD), Sustained Virologic Responder (SVR), and chronic HCV (cHCV) patients are provided in Figure 1—figure supplement 1 and 2. (A)

Representative examples of CD45RA+CD27+ naı̈ve CD8+ T cell compartment in the three donor subsets. FACS plots are gated on Live CD3+CD8+

cells. Validation of CD45RA/CD27 gating strategy for identifying naı̈ve CD8+ T cells in cHCV patients is provided in Figure 1—figure supplement 3. (B)

Percentages of naı̈ve CD8+ T cells in the three donor subsets. (C) Absolute numbers (G/L) of naı̈ve CD8+ T cells in HD, SVR, and cHCV patients. ns (not

Figure 1 continued on next page
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CD45RA and CD27 were sufficient to classify naı̈ve T cells in both HD and cHCV patients (Figure 1—

figure supplement 3). Decreased percentages of naı̈ve CD8+T cells have previously been reported

in cHCV (Shen et al., 2010). Here, we confirmed these findings in age- and CMV- matched chroni-

cally infected patients (KW p=0.0007, Figure 1A,B). Interestingly, we found that after correcting for

the higher CD8+ T cell numbers in cHCV patients, the absolute numbers of naı̈ve CD8+ T cells were

within the normal range as determined by the study of healthy donors (Figure 1C). We therefore

interpreted the lower proportion of naı̈ve T cells to simply be a result of an expansion of the memory

cell compartment.

To directly test this prediction, we isolated CD8+ T cells and measured the frequency of signal

joint TCR excision circles (sjTREC), by-products of TCR rearrangement, and previously validated as a

measure of thymic production (Rehermann and Nascimbeni, 2005; Clave et al., 2009). Confirming

previous studies, we found a significant decrease in sjTREC content of CD8+ T cells (MW p=0.01,

Figure 1—figure supplement 4). To address the bias due to differential naı̈ve T cell number, we iso-

lated CD45RA+/CD27+ naı̈ve CD8+ T cells and assessed sjTREC frequencies. Surprisingly, we also

observed within the naı̈ve compartment a significantly lower sjTREC content in cHCV patients as

compared to HD (MW p=0.03, Figure 1D). To further characterize this phenotype, we assessed the

Vb distribution within the naı̈ve repertoire of cHCV patients. cHCV patients showed a biased reper-

toire with increased representation of selected Vb families. A representative example of Vb usage

plotted as percentage accross the 24 tested families, and ordered by increasing size from one cHCV

patient and one HD is shown (Figure 1E). To compare distributions, Lorenz curves were constructed

as a graphical representation of the diversity of the repertoire (Figure 1F). Inequality measurements

in the Vb distribution, comparing cHCV patients to HD, indicated proportions of naı̈ve T cells being

Table 1. Donors included in the study.

All donors

cHCV SVR HD

n=29 n=37 n=25

Male, n (%) 16 (55) 21 (57) 12 (48)

Age, years, median (IQR1-3) 48 (42-55) 48 (44-58) 38 (31-46)

IgG anti-CMV positive, n (%) 14 (48) 24 (51) 11 (44)

Cirrhosis, n (%) 5 (17) 8 (22) na

Treatment experienced, n (%) 18 (62) 37 (100) na

Treatment (n per type: 0/1/2/3) 11/12/6/0 0/26/10/1 na

Delay post-treatment, years, median (IQR1-3) 3.8 (3.4-4.2) 1.7 (0.9-3.2) na

DOI: 10.7554/eLife.07916.008

Figure 1 continued

significant, p>0.05), *(p�0.05), **(p�0.01), and ***(p�0.001) refer to Dunn’s multiple comparison test of each subset toward HD. (D) Normalized

numbers of sjTRECs per 150,000 naı̈ve CD8+ in HD and cHCV samples. Normalized numbers of sjTRECs per total CD8+ T cells are provided in

Figure 1—figure supplement 4. (E) Representative example of the distribution of 24 FACS-screened Vb families in naı̈ve CD8+ T cells from one HD

and one cHCV sample. Families are ordered by increasing size in both individuals. (F) Lorenz curves representing the cumulative distribution of % of

usage of 24 FACS-screened Vb families from 7 HD and 7 cHCV patients. Mean Gini coefficients and standard deviations are indicated. Red line

indicates an extreme example of an unequal distribution, observed in the case of a T-cell lymphoma where >90% of the TCR repertoire is explained by

one particular Vb chain. (G) Individual Gini coefficients of all tested samples are represented for HD and cHCV subgroups.

DOI: 10.7554/eLife.07916.003

The following figure supplements are available for figure 1:

Figure supplement 1. Comparable proportions of CD8+ T cells circulate in cHCV patients and HD.

DOI: 10.7554/eLife.07916.004

Figure supplement 2. Increased absolute numbers of CD3+ and CD8+ T cells in cHCV and SVR patients.

DOI: 10.7554/eLife.07916.005

Figure supplement 3. Validation of CD45RA/CD27 gating strategy for identifying naı̈ve CD8+ T cells in cHCV patients.

DOI: 10.7554/eLife.07916.006

Figure supplement 4. Decreased number of sjTRECs in total CD3+CD8+ T cells from cHCV patients.

DOI: 10.7554/eLife.07916.007
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altered in their Vb usage. In brief, for a given percentage (x) of the 24 Vb chains, Lorenz curves indi-

cate the proportion of the T cell population that have Vb chains among the 24 * x% least abundant

ones. An equal distribution is represented as the dotted line. By contrast, an extreme, unequal distri-

bution is shown in red, as in the case of a T-cell lymphoma where >90% of the TCR repertoire is

explained by one particular Vb chain (red line). We included Gini coefficient as a numeric measure of

Lorenz curve’s based observations. It corresponds to the ratio of the area between the line repre-

senting equal use of all Vb chains (dotted line) and the observed Lorenz curve to the total area below

the line representing equal use. The higher the coefficient, the more unequal is the distribution. In

line with our observation, we found Gini coefficients increased in cHCV patients (M-W p=0.03, see

Material and Methods for details of calculation) (Figure 1G). These data support an overall per-

turbed naı̈ve CD8+ T cell repertoire in cHCV patients, with increased peripheral expansion of

selected populations.

MP Mart1-specific CD8+ T cells during chronic infection may be
reversed by viral clearance
To evaluate more precisely the impact of these perturbations on antigen-specific populations, we

applied recently developed strategies to detect, quantify and phenotype rare inexperienced anti-

gen-specific CD8+ T cells (Klenerman and Thimme, 2012; Alanio et al., 2013). Specifically, we uti-

lized TAME to enumerate and subdivide Mart1-specific T cell populations. While similar absolute

numbers of Mart1-specific CD8+ T cells were observed in our respective study groups (Figure 2A,B),

SVR and cHCV patients showed a more differentiated phenotype (Figure 2C), defined by fewer

CD45RA+/CD27+ and increased proportions of memory-phenotype (MP) cells (KW p<0.0001,

Figure 2D). Of note, these MP cells were mostly of central-memory (CD45RA-CD27+) phenotype

(Figure 2—figure supplement 1). Also, when considering only naı̈ve-phenotype Mart1-specific cells,

precursor frequencies were still comparable across the different study groups (Figure 2—figure sup-

plement 2). We were able to purify sufficient numbers of Mart1-specific naı̈ve- and memory- pheno-

type CD8+ T cells from one HCV patient to perform an immunoscope analysis on the Vb chain usage

(Figure 2E). In line with our data in bulk T cells populations (Figure 1), we observed a restricted rep-

ertoire of Mart1-specific naı̈ve T cells, with evidence of an expanded Vb clonotype in memory cells.

These data argue in favor of MP cells being the progeny of a perturbed naı̈ve T cell repertoire.

Although they could be expanded in response to either specific or non-specific signals, we favor the

latter hypothesis based on prior knowledge of Mart1 antigen pattern of expression (Pittet et al.,

1999).

We next extended our observations to other antigen specificities by using four additional multi-

mers (hTERT1572-580, human CMV pp65495-503, Ebola NP202-210 (Sundar et al., 2007), HIV-1 Gag

p1777-85) that are expected to detect inexperienced self- and virus-specific CD8+ T cell populations

in tumor-free, CMV-, Ebola- and HIV- seronegative individuals. Here again, we found high propor-

tions of T cells with a memory-phenotype in both self (Mart1- and hTERT- specific) and viral (CMV-,

Ebola- and HIV- specific) antigen-inexperienced populations of cHCV patients as compared to

healthy donors (representative plots are shown in Figure 3A and B; and combined results from 2–6

individuals per group in Figure 3C; self-specific: KW p<0.001; non-self-specific: KW p=0.009). When

subsetted using CD45RA and CD27 phenotypic markers, the MP cells found in cHCV patients were

preferentially of CD45RA-CD27+ central memory phenotype (Figure 3—figure supplement 1).

We next compared cHCV patients to those who achieved viral clearance. Sequential samples

(available from five patients who achieved cure) suggested that immune restoration of the naı̈ve

compartment is possible (positive time dependency p-value p=0.03, Figure 4A and B). These

patients were all treated by IFN-RBV biotherapy (n = 3), or triple therapy that included an NS3 inhib-

itor (n = 2, patients S2 and S12). Testing our observation in our cross-sectional cohort, we replicated

our findings, showing a statistically significant recovery of naı̈ve antigen-specific CD8+ T cells as a

function of time (MW p=0.04; Figure 4C). These results indicate that the differentiated cells within

the perturbed repertoire of cHCV patients are a reflection of active HCV infection, and likely not a

result of cross-reactivity or true memory T cell differentiation. Together the results in Figures 1–

4 highlight an overall perturbation of the preimmune CD8+ T cell compartment during active cHCV

infection.
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Decreased expression of CD5 on naı̈ve CD8+ T cells associates with
TCR hypersensitivity in cHCV patients
To establish a mechanistic understanding of our findings, we considered the key homeostatic factors

governing maintenance of the naı̈ve CD8+ T cell compartment (Jenkins et al., 2010; Ho and Hsue,

2009; Hazenberg et al., 2000). We hypothesized that an altered threshold for TCR activation could

Figure 2. Peripheral differentiation of Mart1-specific CD8+ T cells during cHCV infection. (A) Representative examples of Mart1-specificCD8+ T

cellpopulations in HD, SVR, cHCV patients. FACS plots are gated on TAME-enriched LiveFSCloSSCloCD3+CD8+ PBMCs. (B) Precursor frequency of

Mart1-specific cellsin the three donor subsets. Precursor frequency of naı̈ve-phenotype Mart1-specific cellsis provided in Figure 2—figure supplement

1. (C) Representative examples of the CD45RA/CD27 phenotype of TAME-enriched Mart1-specificpopulations in patients subsets as in A. D/

Percentages of memory-phenotype (MP) cells in Mart1-specific populations in the three donor subsets. Further subsetting of MP inexperienced T cells

into CD45/CD27-based T cell differentiation phenotype is provided in Figure 2—figure supplement 1. E/ Immunoscope profile of naı̈ve and memory

Mart1-specific populations FACS-sorted from one cHCV patient.

DOI: 10.7554/eLife.07916.009

The following figure supplements are available for figure 2:

Figure supplement 1. CD45RA/CD27-based subsetting of Mart1-specific T cells enriched from HD, SVR, cHCV.

DOI: 10.7554/eLife.07916.010

Figure supplement 2. Precursor frequency of Mart1 naı̈ve-phenotype cellsin the three donor subsets.

DOI: 10.7554/eLife.07916.011
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explain the differentiation phenotype of inexperienced T cells. CD5 expression has been shown to

correlate with the threshold of activation in mice (Grossman and Paul, 2015). It is typically high on

naı̈ve T cells, showing diminished levels as a function of T cell differentiation (Figure 5—figure sup-

plement 1). We observed phenotypic changes (i.e. low CD5 expression) that were significant for the

Figure 3. Memory-phenotype cells within self and non-self antigen-inexperienced populations. (A) Representative examples of Mart1-, hTERT-, CMV-,

Ebola- and HIV- specificpopulations from HD, SVR, and cHCV patients. Enriched tetramer-specific populations are overlaid on total CD8+ T cells. (B)

CD45RA/CD27 phenotype of tetramer-specific populations gated in A. (C) Percentages of memory-phenotype cells in Mart1- and hTERT- (self); CMV-,

Ebola- and HIV- (non-self) specific populations from HD, SVR and cHCV patients. Further subsetting of MP inexperienced T cells into CD45/CD27-based

T cell differentiation phenotype is provided in Figure 3—figure supplement 1.

DOI: 10.7554/eLife.07916.012

The following figure supplement is available for figure 3:

Figure supplement 1. CD45RA/CD27-based subsetting of Mart1-, Ebola-, and HIV- specific T cells enriched from cHCV patients.

DOI: 10.7554/eLife.07916.013
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comparison between CD45RA+/CD27+ naı̈ve CD8+ T cells in cHCV vs HD (KW p=0.02, Figure 5A

and B). Based on its role in regulating TCR signaling, we predicted that lower CD5 expression on

naı̈ve T cells would result in their hyperactivation upon stimulation. This was tested functionally by

evaluating TCR signaling in naı̈ve CD8+ T cells, stimulating cells with low doses of plate-bound anti-

CD3 and anti-CD28 Abs. While only weak induction of phosphorylated ERK (p-ERK) could be

observed in HD during the first hour of stimulation, TCR stimulation induced a strong p-ERK signal in

naı̈ve cells from seven of sixteen cHCV patients tested (histograms from one responding cHCV and

one HD are shown in Figure 5C; MW p=0.03, Figure 5D). Using the same stimulation protocol, we

investigated expression of activation markers (i.e., CD25, CD69) measured after 24 hr stimulation.

Consistent with p-ERK data, we observed higher percentages of cells expressing CD25 on naı̈ve

CD8+ T cells from cHCV as compared to HD (representative example from one cHCV and one HD

are shown in Figure 5E; MW p=0.02, Figure 5F). Similar results were obtained for CD69 analysis

(data not shown). We also observed increased percentages of naı̈ve CD8 T cells undergoing activa-

tion-induced cell death – as assessed by active caspase 3 staining after 24 hr - in cHCV patients as

compared to HD (MW p=0.002; Figure 5—figure supplement 2). These findings are all consistent

with strong TCR engagement despite the use of low doses of cross-linking antibodies in cHCV

patients.

To test the mechanistic link between CD5 expression and hyperactivation of naı̈ve T cells, we

evaluated the effect of blocking CD5 signaling. When PBMCs from HD were exposed to blocking

anti-CD5 Abs (aCD5) prior to TCR stimulation, we observed (i) increased levels of p-ERK after 5 min

(Wilcoxon p=0.007, Figure 5G), (ii) increased CD25 expression after 24 hr (Wilcoxon p=0.03,

Figure 4. Memory phenotype of Mart1-specific CD8+ T cells during chronic infection may be reversed by viral clearance. (A) Example of CD45RA/CD27

phenotype of Mart1-specific cells during chronic phase, and over time after viral clearance in one HLA-A0201 SVR patients (patient S7). (B) Percentages

of Mart1 memory-phenotype cells over time after viral clearance on 5 SVR patients with longitudinal sampling – including S7 presented in E. (C)

Percentages of memory-phenotype cells in Mart1-specific populations vs. time elapsed since clearance of the virus in SVR patients (time-stratified, in

years). These data include all HLA A0201 SVR patients; first available data is incorporated for follow-up patients presented in F.

DOI: 10.7554/eLife.07916.014
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Figure 5. Decreased cell surface expression of CD5 on cHCV naı̈ve CD8+ T cells correlates with hypersensitivity to TCR activation. (A) Representative

histograms of CD5 on naı̈ve CD8+ T cells from one HD and one cHCV patient. (B) MFI of CD5 on the surface of naı̈ve CD8+ T cells from HD, SVR, and

cHCV patients. Representative histograms and MFI of CD5 on the other T cell differentiation subsets are provided in Figure 5—figure supplement 1.

(C) Representative overlay of histograms of phospho-ERK (p-ERK) signal at different time points following TCR stimulation from one HD and one cHCV

patient. Plots are gated on naı̈ve CD8+ T cell populations. (D) Percentages of p-ERK positive cells in naı̈ve CD8+ T cells from HD and cHCV patients 5

min after CD3/CD28 stimulation. (E) Representative overlay of histograms of CD25 expression, detected at 24 hr after TCR stimulation from one HD,

and one cHCV patient. Plots are gated on naı̈ve CD8+ T cell populations. (F) Percentages of CD25+ cells in naı̈ve CD8+ T cells from HD and cHCV

patients 24 hr after CD3/CD28 stimulation. Representative examples and percentages of active-caspase 3-expressing cells after similar stimulation are

provided in Figure 5—figure supplement 2. (G and H) Percentages of p-ERK (5mins), and CD25 (24 hr) after TCR stimulation in naı̈ve CD8+ T cells

from HD, with or without prior CD5 blockade with a-CD5 antibodies. Percentages of active-caspase 3-expressing cells under similar conditions are

provided in Figure 5—figure supplement 3. Impact of CD5 blockade on TCR activation in cHCV patients is provided in Figure 5—figure supplement

4. Similar evaluation of naı̈ve CD8+ T cell repertoire during chronic HBV infection is provided in Figure 5—figure supplement 5.

DOI: 10.7554/eLife.07916.015

The following figure supplements are available for figure 5:

Figure 5 continued on next page
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Figure 5H), and (iii) increased percentages of dying naı̈ve CD8 T cells as assessed by active caspase

3 staining after 24 hr (Wilcoxon p=0.003) (Figure 5—figure supplement 3). When compared to

cHCV patients, aCD5 partially reproduced the hyperactivation phenotype of naı̈ve T cells from cHCV

patients (Figure 5—figure supplement 4A,B). By contrast, when aCD5 was applied to the cHCV

patients, we observed no further increase in TCR-induced activation (Figure 5—figure supplement

4 A–D). These data provide direct evidence for a negative role of CD5 on TCR-induced activation

and activation-induced cell death, and support the concept that CD5 molecule is responsible, in

part, for the hyperactivation phenotype observed in naive T cells of cHCV patients. Together, these

data support a model where low expression of CD5 on naı̈ve T cells in cHCV patients results in dys-

regulation of the homeostatic TCR threshold.

Memory phenotype cells can be expanded to generate robust CD8+ T
cell responses
We next evaluated the consequences of a low threshold for TCR activation on the ability of inexperi-

enced T cells to expand and differentiate after stimulation with cognate peptide. After 8–11 days of

in vitro priming, we observed increased percentages of Mart1-specific CD8+ T cells when expanded

from PBMCs of cHCV patients as compared to those from HD (cHCV vs. HD, Day 8, M-W p=0.02,

cHCV vs HD, Day 11, M-W p=0.009, Figure 6A and B; individual FACS plots for all donors are pro-

vided in Figure 6—figure supplement 1). The positive impact of chronic infection on naı̈ve T cell

expansion was titratable, with more striking differences in the proportion of MP cells after expansion

observed when cells were primed with high doses of peptide (Sprent and Surh, 2011) (Day 8, M-W

p=0.03; Figure 6—figure supplement 2). Finally, we found that the Mart1-specific CD8+ T cells gen-

erated from cHCV patients express slightly higher amounts of granzyme B (representative example

from three cHCV and three HD is shown in Figure 6C; MW p=0.02, Figure 6D). Interestingly, a tend-

ancy for similar differences in Granzyme B expression could be seen in freshly isolated Mart1-specific

CD8+ T cell populations in cHCV patients (M-W p=0.09 as compared to HD, Figure 6—figure sup-

plement 3). Hyperreactive preimmune repertoire was further supported by our observation of

increased secretion of IFNg by freshly isolated and antigen-restimulated cells – shown for Mart1,

hTERT and CMV peptides in tumor-free, CMV-seronegative cHCV donors (2-way Anova p=0.0002;

Figure 6E and F).

Together, our results favor a model where low levels of CD5 on naı̈ve-phenotype cells from cHCV

donors allow low-affinity interactions with non-cognate antigens to result in T cell differentiation,

thereby providing an explanation for the increased frequency of MP cells in cHCV patients. Addition-

ally, our data indicate that qualitative alterations of the CD8+ T cell preimmune repertoire in cHCV

patients may result in a boosted response to cognate immune stimulation.

Distinct preimmune repertoire perturbations during chronic HBV
infection
Testing our ability to identify preimmune repertoire perturbations in other clinical conditions, we col-

lected 18 cHBV patients using standard sampling procedures. We found normal percentages of

CD3+CD8+ T cells (data not shown), and decreased percentages of bulk naı̈ve CD8+ T cells (MW

p=0.009, Figure 5—figure supplement 5A). With the limited amount of cells available, we focused

our analysis to (i) absolute count and phenotype of Mart1-specific T cells, (ii) CD5 expression on bulk

Figure 5 continued

Figure supplement 1. Evolution of MFI of CD5 over T cell differentiation in HD and cHCV patients.

DOI: 10.7554/eLife.07916.016

Figure supplement 2. Increased activation-induced cell death after TCR stimulation in cHCV patients.

DOI: 10.7554/eLife.07916.017

Figure supplement 3. CD5 blockade leads to increased activation-induced cell death after TCR stimulation in HD.

DOI: 10.7554/eLife.07916.018

Figure supplement 4. Impact of CD5 blockade on TCR activation in cHCV patients.

DOI: 10.7554/eLife.07916.019

Figure supplement 5. Distinct perturbation of naı̈ve CD8+ T cell repertoire during chronic HBV infection.

DOI: 10.7554/eLife.07916.020
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Figure 6. Memory phenotype cells can be expanded to generate robust CD8+ T cell responses. (A) Examples of Mart1-specific populations expanded

from HD and cHCV patients after 8 days of in vitro priming (IVP) with low (10–8, upper line) and high (10–6, bottom line) doses of Mart1 peptide. FACS

plots from all donor tested are provided in Figure 6—figure supplement 1. (B) Percentages of Mart1-specific cells expanded after 8 and 11 days of IVP

with low and high doses of Mart1 peptide as in A. Proportions of MP cells within those expanded populations are indicated in Figure 6—figure

supplement 2. (C) Representative histograms of intracellular granzyme-B expression by Mart1-specific T cells expanded from 3 HD and 3 cHCV after 8

days of IVP with high doses of peptide as in A. (D) Percentages of granzyme-B-expressing Mart1-specific T cells expanded from HD and cHCV patients

after 8 days of IVP with low and high doses of Mart1 peptide. Baseline percentages are indicated in Figure 6—figure supplement 3. (E) Representative

examples of IFNg detection intracellularly after in vitro restimulation with CMV or Mart1 peptides in CMV seronegative, tumor-free HD and HCV

patients. IFNg-positive populations are overlaid on total CD8+ T cells. (F) Percentages of cells with IFNg-positive staining after Mart1-, hTERT-, and

CMV- in vitrorestimulation in HD and cHCV patients. sn, seronegative; sp, seropositive.

DOI: 10.7554/eLife.07916.021

The following figure supplements are available for figure 6:

Figure supplement 1. FACS plots of Mart1-specific populations expanded in vitro from cHCV and HD.

DOI: 10.7554/eLife.07916.022

Figure 6 continued on next page
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naı̈ve T cells, and (iii) response to TCR cross-linking. We demonstrated lower absolute numbers of

Mart1-specific CD8+ T cells in HBV patients (MW p=0.003, Figure 5—figure supplement 5B) and

increased frequencies of MP Mart1-specific cells (MW p=0.03, Figure 5—figure supplement 5C) as

compared to HD, but (ii) similar levels of CD5 expression (MW p=ns, Figure 5—figure supplement

5D), and (iii) a similar a activation profile of bulk naı̈ve T cells as compared to HD (MW p=ns, Fig-

ure 5—figure supplement 5E). These results indicate that different persistent viral infections of the

liver can trigger distinct preimmune repertoire perturbations. Additional studies will be required to

fully evaluate the heterogeneous disease pathogenesis of HBV infections as reflected by the

observed immune phenotypes.

Discussion
Our study provides novel evidence for chronic viral infection as a cause of CD8+ T cell preimmune

repertoire dysregulation. Specifically, we demonstrated that naı̈ve CD8+ T cells are dysregulated in

the context of cHCV, marked by (i) decreased sjTRECs levels, (ii) a restricted Vb repertoire, and (iii) a

lower threshold for TCR engagement.

Prior examples suggestive of preimmune repertoire perturbations have been documented in

humans. An increased threshold for TCR activation in naı̈ve CD4+ T cells in elderly persons has been

proposed as participating in the diminished response to vaccination that occurs with increasing age

(Li et al., 2012). Conversely, a decreased threshold for TCR activation, secondary to sustained cyto-

kine production, leads to diverse autoimmune manifestations in rheumatoid arthritis patients

(Singh et al., 2009; Deshpande et al., 2013). With respect to chronic infection, functional defects in

the naı̈ve T cell compartment have also been documented in HIV-infected individuals, with non-cog-

nate activation of T cells correlating with disease progression (Favre et al., 2011). One major caveat

for these studies is that their analysis was limited to global dysregulation of the bulk naı̈ve T cell

repertoire.

The challenge of studying perturbations of antigen-specific populations is their low precursor fre-

quency. Taking advantage of the possibility to study viremic vs. cured patients, we chose to investi-

gate this question in cHCV patients. Analyzing rare (i.e., frequency = 10–7 - 10–5) antigen-specific

inexperienced CD8+ T cells populations, we show increased proportions of memory-phenotype cells

in cHCV patients, and demonstrate that this correlates with naı̈ve T cells being hyperreactive to TCR

signaling in the context of the chronic infection. Despite these altered phenotypes, the absolute

number of antigen-specific cells was comparable to healthy donors. Of note, cHCV patients are not

thought to experience altered thymic output. As such, our findings provide direct evidence that MP

antigen-specific T cells can arise in non-lymphopenic humans.

It has been suggested that a high degree of cross-reactivity with environmental antigens is the

trigger for differentiation and MP conversion (Sprent and Surh, 2011). This finding has been

reported for human viral peptide / MHC restricted CD4+ T cells in unexposed donors (Su et al.,

2013). While cross-reactivity is a possible explanation for our findings, we demonstrate in cured

patients that the antigen-specific inexperienced T cell populations are restored to a naı̈ve pheno-

type. This result will need to be confirmed in a larger longitudinal cohort study. It favors an alterna-

tive model, where homeostatic proliferation accounts for the perturbed naı̈ve T cell repertoire in

cHCV patients. Supporting this conclusion, we note the evidence for rapid reversibility to a healthy

preimmune repertoire after transient lymphopenia (Jones et al., 2013). Consistent with our findings,

Jones et al. studied multiple sclerosis patients and showed an anti-CD52 (also known by alemtuzu-

mab) treatment-induced narrowing of the Vb repertoire and the dilution of sjTREC after treatment,

with a complete restoration of normal levels two years post-therapy (Jones et al., 2013).

Infection and inflammation is known to lower the threshold of TCR signaling in memory T cells,

making them more sensitive to activation (Richer et al., 2013). This effect is mediated by

Figure 6 continued

Figure supplement 2. Increased proportions of memory-phenotype cells within Mart1 populations expanded from cHCV patients.

DOI: 10.7554/eLife.07916.023

Figure supplement 3. Baseline proportions of granzyme B-expressing cells in cHCV patients and HD.

DOI: 10.7554/eLife.07916.024
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inflammatory cytokines (Raué et al., 2013). Our results extend this concept to naı̈ve T cells and

introduce CD5 downregulation as a mechanism for hyperreactivity. CD5 tunes the TCR signaling

threshold in peripheral T cells, with naı̈ve cells expressing higher levels than central memory or effec-

tor T cells (Tabbekh et al., 2013). In mice, Hawiger et al demonstrated that anti-CD5 blocking anti-

bodies, or the use of CD5-/- transgenic MOG-specific T cells, resulted in higher sensitivity to

experimental autoimmune encephalitis (Hawiger et al., 2004). In B cells, CD5 has also been shown

to regulate activation and low CD5 expression correlates with high sensitivity to activation induced

cell death (Tabbekh et al., 2013). In line with these findings, we demonstrate an increased sensitivity

of CD5lo naı̈ve CD8+ T cells to TCR ligation in cHCV patients. We further provide direct evidence

that this hypersensitivity phenotype can be partially reproduced in HD by blocking CD5. While not

evaluated in our patient cohort, we propose that elevated levels of inflammatory cytokines may be

responsible for the altered CD5 expression on naı̈ve cells (Park and Rehermann, 2014). Finally, we

applied our strategy for evaluating preimmune repertoire perturbations to other clinical conditions,

and demonstrate in cHBV patients that a distinct persistent infection of the liver triggers a different

preimmune signature. This observation may be related to the differing innate inflammation induced

as a result of infection (Duffy et al., 2014).

The combination of low levels of CD5 and increased proportions of MP in inexperienced antigen-

specific populations may provide a compounded effect, resulting in a highly reactive CD8+ T cell

compartment. We provide evidence here that chronic HCV infection facilitates the generation of

robust self-specific responses from the pool of preimmune cells. Given the important role for cellular

immunity in the pathogenesis of autoimmune manifestations (Palermo et al., 2001), we speculate

that circulating self-reactive effector CD8+ T cells may contribute to the systemic immune activation

observed during chronic HCV infection, and account for some of the extra-hepatic autoimmune-like

manifestations (Lee et al., 2012). If our prediction is correct, the ability to restore a physiologically

normal preimmune repertoire in cured patients may thus justify early treatment as a means to limit

immune-mediated manifestations of the disease. Further investigation in longitudinal cohorts is war-

rented to confirm these hypotheses, as well as assess the impact on the generation of non-self-spe-

cific responses (e.g., in the context of vaccination).

In summary, our study demonstrates that naı̈ve CD8+ T cells are dysregulated during cHCV, with

marked perturbations of the preimmune repertoire. Specifically, low levels of CD5 at the surface of

naı̈ve T cells, and high proportions of memory-phenotype cells represent two mechanisms by which

antigen-inexperienced CD8+ T cells are susceptible to stimulation and antigen-induced expansion.

These findings should be considered when designing future immunotherapeutic strategies.

Materials and methods

Human subjects, blood samples processing and HLA typing
29 cHCV, 37 SVR, and 18 cHBV patients were included (Table 1). All subjects were followed in the

Liver Unit of Hôpital Cochin (Paris, France) or the Department of Internal Medicine II (Freiburg, Ger-

many). French samples were obtained as part of study protocol C11-33 approved by the INSERM

clinical investigation department with ethical approval from the CPP Ile-de-France II, Paris (Clinical-

Trials.gov identifier: n˚ NCT01534728). German samples were obtained in the University Hospital

Freiburg according to regulations of local ethic committee. Both study protocols conformed to the

ethical guidelines of the Declaration of Helsinki, and patients provided informed consent. Patient

peripheral blood mononuclear cells (PBMCs) were obtained from leukapheresis, or whole blood col-

lections. Healthy donor PBMCs were obtained from buffy coat preparations or whole blood collec-

tions (Etablissement Français du Sang, France). PBMCs were processed within 5 hr of their

collection. They were used either fresh, or frozen and thawed when needed – and in both cases, cells

were rested overnight in serum-free RPMI at 37˚ before performing functional studies. Absolute lym-

phocyte counts were determined on the day of collection at the hospital laboratories for HCV and

SVR patients, and on fresh samples using AccuCheck Counting Beads (Life Technologies, France) for

healthy donors. For all samples, PBMCs were isolated by Ficoll-Paque gradient separation (GE

Healthcare, France) after 1:4 dilution in RPMI1640 (Gibco, Life Technologies, France) and controlled

for viability (>90%). Molecular HLA-A and –B loci typing were determined using extracted genomic

DNA according to standard clinical laboratory procedures (Hôpital St Louis, Paris, France).
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MHC class I multimers
Photocleavable-HLA-A*02:01 multimers were constructed using peptide exchange technology as

previously described (Jenkins et al., 2010; Toebes et al., 2006; Altman and Davis, 2003;

Hadrup et al., 2009). Briefly, heavy chain of HLA-A0201 and b2m were produced separately in E.

coli. Refolding was achieved by diluting each subunit in buffer containing the A0201 UV photocleav-

able peptide (KILGFVFJV, 95% purity, PolyPeptide, France) (Toebes et al., 2006; Blattman et al.,

2002). After biotinylation with recombinant BirA enzyme (Avidity, Denver, USA), monomers were

selected by size exclusion chromatography (Akta Purifier, GE Healthcare, France) and stored at -

80˚C until use. For specific peptides, synthetic 9mer were purchased (75% purity, BioMatik, Toronto,

Canada): MART126-35(Leu27) (ELAGIGILTV), hCMV pp65495-503 (NLVPMVATV), hTERT1572-580 (RLFFYR-

KSV), Ebola NP202-210 (RLMRTNFLI)(Sundar et al., 2007), and HIV-1 Gag p1777-85 (SLYNTVATL).

200 mM peptides were exchanged on calculated amounts of monomers (2 mM final concentration)

for 1h under UV-lamp (366nm, 2*8W, Chromacim, France). Titrated amounts of PE or APC-streptavi-

din (Invitrogen, France) were added. After incubation with D-biotin (25 mM final, Sigma, France), fluo-

rescently labeled multimers were kept in the dark at 4˚C until use. Mart1 PE pentamers were

purchased (ProImmune, UK) as quality control for our in-house production.

Tetramer associated magnetic enrichment (TAME) of antigen-specific
CD8+ T cells
TAME was performed as previously described (Alanio et al., 2010; Alanio et al., 2013;

Kyewski and Klein, 2006). Briefly, purified PBMCs (2x107 to 4x108) were incubated with FcR block-

ing reagent (Miltenyi, France), then stained with PE and/or APC pMHC-multimers at 20nM final con-

centration for 30 min. Samples were incubated with anti-PE-microbeads and positive selection was

performed using MS MACS separation columns (Miltenyi, France). Unbound cells (“Depleted” frac-

tion) were collected. Bound cells (“Enriched” fraction) were eluted. As previously published

(Alanio et al., 2010), tetramer-positive populations were gated as LiveDump-CD8+Tetramer+ cells.

To approximate the number of the epitope-specific T cells within each sample, we used a calculation

previously described by Moon et al (Arstila et al., 1999; Moon et al., 2009). Precursor frequency is

defined as the number of tetramer-positive events in the “Enriched” fraction divided by the number

of total CD8+ in the sample.

Ab staining, flow cytometry and cell sorting
PBMCs were stained with titrated amounts of monoclonal Ab (mAbs) obtained from BD Biosciences,

Biolegend, or eBiosciences (Supplementary file 1). Live/Dead Fixable Aqua reagent (Life Technolo-

gies, France) was included at the same incubation step (dilution 1/200) in order to exclude dead

cells. For PhosFlow experiments, cells were stained with surface Abs for 20 mins, then fixed with

PFA 3.2% for 10 min at 37˚C, and permeabilized by addition of 90% methanol on ice. Intracellular

staining of granzyme B was performed using Transcription Factor Buffer Set (BD Biosciences). Sam-

ples were acquired using an LSR Fortessa cell analyzer (BD Biosciences, France). Data were analyzed

using FACS DIVA 6.0 (BD) and FlowJo 8.8.7 (Tree Star) softwares. Where indicated, stained cells

were sorted using a FACS AriaII (BD) in a P2+ facility.

Intracellular cytokine staining
Human PBMCs were rested overnight in RPMI 1640 GlutaMAX-10% pooled human serum. Cells

were plated at 5x106/mL in 24-well plates, and restimulated in vitro with MART126-35(Leu27), hCMV

pp65495-503, or hTERT1572-580 peptides (10 mM final). After 1 hr of stimulation, GolgiPlug (5 mg/mL

final, BD) was added. After 7 hr, cells were stained for surface Abs, then intracellularly using standard

procedures (Cytofix/Cytoperm; BD).

sjTRECs quantification
One million FACS-sorted T cells were lysed in TRIzol Reagent (Life Technologies, France). Genomic

DNA was extracted following manufacturer’s instructions. Quantification of thymic sjTREC was per-

formed by RT-PCR (ABI PRISM7700; Applied, France) (Obar et al., 2008; Moon et al., 2007;

Moon et al., 2009; Talvensaari et al., 2002). Data were expressed per 150 000 cells, after normali-

zation for the albumin genomic copy number.
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Immunoscope
After TAME, 1500 naı̈ve and memory Mart1-specific CD8+ T cells were sorted into RLT Buffer (Qia-

gen, France). Total RNA was extracted (Qiagen Microkit). cDNA were generated using the Super-

cript II enzyme (Invitrogen, France). RT-PCR reactions, thermal cycling conditions, calculations for

relative usage of each Vb family, and immunoscope profiles were performed as previously described

(Alanio et al., 2013; Bouvier et al., 2011) (Supplementary file 2).

Determination of naı̈ve Vb families by flow cytometry
One million PBMCs were stained for T cell surface markers and a set of three Abs directed against

TCR-Vb families (Supplementary file 3; IOTest Beta Kit, Beckman/Coulter, France). TCR-Vb families

were classified in increasing order of percentage usage. The Lorenz curve was constructed as a

graphical representation of the diversity of the repertoire (Alanio et al., 2010; De Maio, 2007).

After ordering Vb chains by abundance, from lowest to highest, the Lorenz curve shows the cumula-

tive distribution : for a given percentage (x) of the 24 Vb chains, it indicates the proportion of the T

cell population which have Vb chains that are among the 24 * x% least abundant ones. Gini coeffi-

cient was calculated as the ratio of « area between the line representing equal use of all Vb chains

(dotted line) and the observed Lorenz curve » to « total area below the line representing equal use

». As such, the higher the Gini coefficient, the more unequal the distribution is.

In vitro TCR activation assays
96-well plates were coated overnight with biotin anti-human CD3 and anti-human CD28 (1 mg/mL

and 0.5 mg/mL final concentration, respectively). Unstimulated and PMA/Ionomycin conditions

(50 ng/mL and 1 mg/mL respectively) were used as negative and positive controls. Measurements for

T cell activation included: PhosFlow, as described above; and phenotypic activation, as measured by

expression of CD25 and CD69 following a 24–48 hr culture. For experiments with blocking CD5, cells

were preincubated with 5mg/mL anti-human CD5 for 1 hr before being plated for TCR stimulation.

In vitro priming of antigen-specific CD8+ T-cell precursors
PBMCs from HLA-A*0201-positive donors were primed in vitro using the ELAGIGILTV (ELA) peptide

derived from Melan-A/MART-1 antigen (residues 26–35), using previously published method with

minor adaptations (Martinuzzi et al., 2011). Briefly, thawed PBMCs were resuspended in AIM

medium (Invitrogen), plated at 5x106 cells/well in a 24-well tissue culture plate, and stimulated with

10nM (low dose, 10–8) or 1 mM (high dose, 10–6) of Mart1 peptide ELAGIGILTV in the presence of

GM-CSF (0.2 mg/ml, R&D Systems). After 24 hr, dendritic cells maturation was induced by the addi-

tion of a cytokine cocktail comprising TNF-a (1000 U/mL), IL-1b (10 ng/mL), IL-7 (0.5 ng/mL) and

PGE2 (1 mM) (R&D Systems). On day 2, fetal calf serum (FCS; Gibco) was added to reach 10% by vol-

ume per well. Fresh RPMI-1640 (Gibco) enriched with 10% FCS was used to replace the medium

every 3 days. Frequency and phenotype of ELA-specific CD8+ T-cells were determined on day 8–11.

CMV serology
CMV serology was determined on plasma samples from HD and HCV patients by ELISA for CMV-

specific IgG Abs (Liaison XL, Diasorin). Donors were defined as seropositive for CMV if specific

IgG>13 U/mL, and seronegative if IgG<13 U/mL.

Statistical analysis
Statistics were performed using Prism 5, GraphPad software (San Diego, USA). Single continuous

variable data were analyzed by Mann-Whitney (MW), or Kruskal-Wallis (KW) followed by Dunn’s Mul-

tiple Comparison Test. Multi-feature continuous variable data sets were analyzed by Anova and Bon-

ferroni post-test. Paired non-parametric datasets were analysed using Wilcoxon’s statistical test.

Correlation were analysed using Spearman linear regression. For all these tests, a cut-off value of

p�0.05 was chosen (*p�0.05; **p�0.01; ***p�0.001). For longitudinal data on SVR patients, after

linearisation of the data by squaring, a mixed model was fitted with a fixed time effect and random

patient effects for both the slope and the intercept. p-value gives significance for the fixed slope

effect. The R function lme (package nlme) was used.
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Aurélie Schnuriger
Kerstin Johnsson
Antoine Garbarg-Chenon
Laurence Bousquet
Stanislas Pol
Matthew L Albert

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

CA, FN, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or

revising the article; PS, AS, Acquisition of data, Drafting or revising the article; TF, Acquisition of

data, Analysis and interpretation of data, Contributed unpublished essential data or reagents; BP,

Acquisition of data, Analysis and interpretation of data; DD, KJ, JB, AT, Analysis and interpretation

of data, Drafting or revising the article; EB, AL, EC, Acquisition of data, Analysis and interpretation

of data, Drafting or revising the article; MMvanB, TNS, Conception and design, Drafting or revising

the article, Contributed unpublished essential data or reagents; AGC, Acquisition of data, Contrib-

uted unpublished essential data or reagents; LB, EM, FH, Conception and design, Contributed

unpublished essential data or reagents; VA, RT, SP, Conception and design, Analysis and

Alanio et al. eLife 2015;4:e07916. DOI: 10.7554/eLife.07916 17 of 20

Research article Human biology and medicine Immunology

http://dx.doi.org/10.7554/eLife.07916


interpretation of data, Drafting or revising the article; VM, Conception and design, Drafting or revis-

ing the article

Ethics

Clinical trial registration NCT01534728

Human subjects: 29 cHCV, 37 SVR, and 18 cHBV patients were included (Table 1). All subjects were

followed in the Liver Unit of Hopital Cochin (Paris, France) or the Department of Internal Medicine II

(Freiburg, Germany). French samples were obtained as part of study protocol C11-33 approved by

the INSERM clinical investigation department with ethical approval from the CPP Ile-de-France II,

Paris (ClinicalTrials.gov identifier: n˚NCT01534728). German samples were obtained in the University

Hospital Freiburg according to regulations of local ethic committee. Both study protocols conformed

to the ethical guidelines of the Declaration of Helsinki, and patients provided informed consent.

Additional files
Supplementary files
. Supplementary file 1. HLA A0201-donors included in the study.

DOI: 10.7554/eLife.07916.025

. Supplementary file 2. Abs used for flow cytometry experiments.

DOI: 10.7554/eLife.07916.026

. Supplementary file 3. Oligonucleotides used for Immunoscope assay.

DOI: 10.7554/eLife.07916.027

References
Ahmed R, Rouse BT. 2006. Immunological memory. Immunological Reviews 211:5–7. doi: 10.1111/j.0105-2896.
2006.00424.x

Alanio C, Lemaitre F, Law HK, Hasan M, Albert ML. 2010. Enumeration of human antigen-specific naive CD8+ T
cells reveals conserved precursor frequencies. Blood 115:3718–3725. doi: 10.1182/blood-2009-10-251124

Alanio C, Bouvier I, Jusforgues-Saklani H, Albert ML. 2013. Tracking antigen-specific CD8+ T cells using MHC
class I multimers. Methods in Molecular Biology 960:309–326. doi: 10.1007/978-1-62703-218-6_23

Altman JD, Davis MM. 2003. MHC-peptide tetramers to visualize antigen-specific T cells. Current Protocols in
Immunology Chapter 17:Unit17.3. doi: 10.1002/0471142735.im1703s53

Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. 1999. A direct estimate of the human t cell
receptor diversity. Science 286:958–961. doi: 10.1126/science.286.5441.958

Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R. 2002. Estimating
the precursor frequency of naive antigen-specific CD8 t cells. Journal of Experimental Medicine 195:657–664.
doi: 10.1084/jem.20001021

Bouvier I, Jusforgues-Saklani H, Lim A, Lemaı̂tre F, Lemercier B, Auriau C, Nicola MA, Leroy S, Law HK, Bandeira
A, Moon JJ, Bousso P, Albert ML. 2011. Immunization route dictates cross-priming efficiency and impacts the
optimal timing of adjuvant delivery. Frontiers in Immunology 2. doi: 10.3389/fimmu.2011.00071

Clave E, Busson M, Douay C, Peffault de Latour R, Berrou J, Rabian C, Carmagnat M, Rocha V, Charron D, Socié
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Badulli C, Necker A, Giachino C. 2001. Specific cytotoxic t lymphocyte responses against melan-A/MART1,
tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of
cellular immunity in the etiopathogenesis of vitiligo. The Journal of Investigative Dermatology 117:326–332.
doi: 10.1046/j.1523-1747.2001.01408.x

Park S-H, Rehermann B. 2014. Immune responses to HCV and other hepatitis viruses. Immunity 40:13–24. doi:
10.1016/j.immuni.2013.12.010

Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini J-C,
Romero P. 1999. High frequencies of naive melan-a/Mart-1-specific Cd8+ T cells in a large proportion of human

Alanio et al. eLife 2015;4:e07916. DOI: 10.7554/eLife.07916 19 of 20

Research article Human biology and medicine Immunology

http://dx.doi.org/10.1038/ni.3043
http://dx.doi.org/10.1146/annurev-immunol-032712-100027
http://dx.doi.org/10.1007/978-1-59745-450-6_28
http://dx.doi.org/10.1007/978-1-59745-450-6_28
http://dx.doi.org/10.1016/j.immuni.2004.05.002
http://dx.doi.org/10.1038/79724
http://dx.doi.org/10.1136/hrt.2008.161463
http://dx.doi.org/10.1136/hrt.2008.161463
http://dx.doi.org/10.1146/annurev-immunol-030409-101253
http://dx.doi.org/10.1146/annurev-immunol-030409-101253
http://dx.doi.org/10.4049/jimmunol.1102661
http://dx.doi.org/10.1073/pnas.1313654110
http://dx.doi.org/10.1016/j.coi.2010.02.005
http://dx.doi.org/10.1136/gutjnl-2011-300620
http://dx.doi.org/10.4049/jimmunol.181.3.2124
http://dx.doi.org/10.4049/jimmunol.1102190
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115601
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115601
http://dx.doi.org/10.1093/infdis/jis385
http://dx.doi.org/10.4049/jimmunol.1000295
http://dx.doi.org/10.4049/jimmunol.1000295
http://dx.doi.org/10.1038/nm.2963
http://dx.doi.org/10.1038/nm.2963
http://dx.doi.org/10.1182/blood-2010-12-326231
http://dx.doi.org/10.1016/S0167-5699(98)01299-7
http://dx.doi.org/10.1016/j.immuni.2007.07.007
http://dx.doi.org/10.1038/nprot.2009.9
http://dx.doi.org/10.1016/j.immuni.2008.04.010
http://dx.doi.org/10.1046/j.1523-1747.2001.01408.x
http://dx.doi.org/10.1016/j.immuni.2013.12.010
http://dx.doi.org/10.1016/j.immuni.2013.12.010
http://dx.doi.org/10.7554/eLife.07916


histocompatibility leukocyte antigen (hla)-A2 individuals. Journal of Experimental Medicine 190:705–716. doi:
10.1084/jem.190.5.705

Pol S, Corouge M, Sogni P. 2013. Oral antiviral therapies for chronic hepatitis c infection. Therapeutic Advances
in Infectious Disease 1:107–116. doi: 10.1177/2049936113488359
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