N

N

Service functional testing automation with intelligent
scheduling and planning
Lom Messan Hillah, Ariele-Paolo Maesano, Libero Maesano, Fabio de Rosa,

Fabrice Kordon, Pierre-Henri Wuillemin

» To cite this version:

Lom Messan Hillah, Ariele-Paolo Maesano, Libero Maesano, Fabio de Rosa, Fabrice Kordon, et al..
Service functional testing automation with intelligent scheduling and planning. Symposium on Applied
Computing (SAC), ACM, Apr 2016, Pisa, Italy. pp.1605-1610. hal-01306954

HAL Id: hal-01306954
https://hal.sorbonne-universite.fr /hal-01306954
Submitted on 26 Apr 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0
International License

https://hal.sorbonne-universite.fr/hal-01306954
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Service functional testing automation with intelligent
scheduling and planning

Lom Messan Hillah
Univ. Paris Ouest, and Sorbonne
Universités, UPMC Univ Paris 06,

CNRS, LIP6 UMRT7606
4 place Jussieu, F-75005, France
lom-messan.hillah@lip6.fr

Fabio De Rosa
Simple Engineering France
F-75011, France
fabio.de-rosa@simple-eng.com

ABSTRACT

This paper presents the intelligent automation of functional
test of services (unit testing) and services architectures (end-
to-end testing) that has been developed by the MIDAS project
and is accessible on the MIDAS SaaS. In particular, the pa-
per illustrates how the extreme automation implemented in
the MIDAS prototype includes the solutions of tough prob-
lems such as: (i) the configuration of the automated test ex-
ecution engine against large and complex services architec-
tures, (ii) the test input generation based on formal methods
and constraint propagation, (iii) the test oracle generation
based on state machine execution, (iv) the dynamic schedul-
ing of test cases and the reactive, evidence-based planning
of test campaigns with on the fly generation of new test
cases, both based on based on probabilistic graphical infer-
ence. This paper reports some feedback from real-world case
studies in the health-care and in the logistics sectors.

CCS Concepts

eMathematics of computing — Bayesian networks;
Probabilistic reasoning algorithms; eInformation sys-
tems — Web services; eNetworks — Cloud comput-
ing; eTheory of computation — Probabilistic com-
putation; Bayesian analysis; eSoftware and its engi-
neering — Software functional properties; Ultra-large-
scale systems; eComputer systems organization — Re-
liability;

*Draft initially submitted to SAC 2016.

Ariele-Paolo Maesano
Simple Engineering France
F-75011, France
ariele.Maesano@simple-eng.com

Fabrice Kordon
Sorbonne Universités, UPMC Univ
Paris 06, CNRS, LIP6 UMR7606
4 place Jussieu, F-75005, France
fabrice.kordon@lip6.fr

Libero Maesano
Simple Engineering France
F-75011, France
libero.maesano@simple-eng.com

Pierre-Henri Wuillemin
Sorbonne Universités, UPMC Univ
Paris 06, CNRS, LIP6 UMR7606
4 place Jussieu, F-75005, France
pierre-henri.wuillemin@lip6.fr

Keywords

service testing; test automation; test generation; test prior-
itization; test scheduling; test planning

1. INTRODUCTION

MIDAS [1] is a SaaS prototype that provides automation of
service test activities such as functional, vulnerability and
usage-based testing. In particular, the MIDAS prototype
implements a complete intelligent automation solution for
unit and end-to-end functional test. The prototype imple-
ments test automation methods of all the basic test tasks (in-
put and oracle generation, engine configuration, execution,
arbitration, reporting). The MIDAS prototype includes also
intelligent optimizing test tasks such as dynamic prioritiza-
tion of test case through test run time scheduling, and fo-
cused, on-the-fly generation and run of new test cases on the
basis of evidences (reactive planning).

The MIDAS prototype brings enhanced solutions for the
most critical service test automation problems: (i) config-
uration of the test engine against large and complex ser-
vices architectures, (ii) test input generation based on for-
mal models and constraint propagation (iii) test oracle gen-
eration based on executable specifications, (iv) dynamic test
case prioritization and scheduling based on probabilistic graph-
ical inference, (v) reactive planning of test campaigns with
on-the-fly, evidence-based generation of new test cases, al-
ways based on probabilistic graphical inference. These test
automation methods are provided as services by the MIDAS
SaaS, through the MIDAS End User API.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work on service test automation.
Section 3 illustrates in detail the architecture of the solution
and its most important components. Section 4 sketches us-
ages of the prototype in operational environments, i.e. for
the test of real-world services architectures in the health-
care and logistic sectors. Section 5 discusses the limitations
of the current solution. In the conclusion we report some
findings, and outline the planned future work.

2. RELATED WORK

Service test and, in particular, end-to-end test of complex
services architectures is difficult, knowledge intensive, hard
to manage and expensive in terms of labor effort, hard-
ware/software equipment, and time to market. Since the
inception of the service orientated approach, service test-
ing automation has been a critical challenge for researchers
and practitioners [5, 17]. In particular, tasks such as: (i)
automated optimized generation of test inputs [5], (ii) au-
tomated generation of test oracles [4], and (iii) optimized
management of test suites for different test purposes - such
as first testing, re-testing, regression testing [17], has not
yet found automation solutions that can be applied to real
complex services architecture such as those that are imple-
mented in real-world health-care services architectures [6].
Model-based testing (MBT) utilizes formal models (struc-
tural, functional, and behavioral) of the services architecture
under test and of the test configuration to undertake the
automation of the testing tasks [10]. The "first-generation”
MBT research was essentially focused on test input genera-
tion. More recently, formal methods, especially SAT/SMT-
based techniques have been leveraged [11] that allow the
exhaustive exploration of the system execution traces, and
efficient test input generation satisfying constraints (formal
properties expressed in temporal logic). Jehan et al. [11] use
a constraint solver to compute the expected inputs for each
particular execution of the business process as extracted
from the control flow graph.

Even if Bayesian reasoning and probabilistic graphical in-
ference have been recently considered as an ”ideal research
paradigm for achieving reliable and efficient software test-
ing” [15], the research on this topic is still in its infancy. In
particular, the usage of probabilistic inference as a support
of test scheduling is carried out, in our best knowledge, only
by Mirarab and Tahvildari [14]. Their approach is static
(prioritization for regression testing) but they consider dy-
namic scheduling, i.e. incorporating as evidence the feed-
back of the test engine for each test run (the test verdict)
[13], as one of the most important subject of their future
research.

3. AUTOMATING SERVICE FUNCTIONAL
TEST

3.1 Model based automation

The automation of the test tasks (test generation, execution,
arbitration, scheduling, reporting and planning) is obtained
from a restricted set of models: (i) the service model, (ii)
the Services Architecture Under Test (SAUT) model, (iii)
the Test Configuration (T'C) model, and (iv) the Protocol
State Machine (PSM) model.

The service model is the standard definition of the service,
i.e., for SOAP services, the WSDL document. The SAUT
model is a blueprint, expressed in XML, of the services archi-
tecture under test: it allows defining its actual services, their
APIs and the dependencies (actual wires) between them.
The TC model is a blueprint of the test engine configura-
tion that defines its components (stimulators, mocks, inter-
ceptors) and their connections with the SAUT services.

A stimulator is a virtual upstream service that is able to

Pre-processing

Model checking

Service model —/

SAUT model

TC model

PSM model

Test input
templates
Test generation
policy

Test suite

Test input generation L — definition

Parallel PSM execution

KTES‘ oracle generation

7‘ Test suite #1

A Test suite #2

’9| Test suite #N

Figure 1: Automated generation of test cases

send test inputs to a SAUT service, receive replies and arbi-
trate them. A mock is a virtual downstream service that is
able to receive inputs from a SAUT service, arbitrate them
and transmit canned replies. An interceptor is able to catch,
arbitrate and forward transmissions over an observed actual
wire between two SAUT services. The MIDAS test engine is
configured automatically from the SAUT and the TC mod-
els.

Each SAUT service and each TC mock is equipped with a
PSM (protocol state machine), modeled as a Harel state-
chart [9], that represents the interaction states of the com-
ponent and the transitions triggered by message receptions
(events), filtered by Boolean conditions (guards) and pro-
ducing effects expressed as data-flow transfer functions, i.e.
expressions that calculate the elements of the message to be
sent as functions of the elements of the received messages.
The PSM is represented with the W3C standard SCXML
[2] as an XML document. PSM conditions and data-flow
transfer functions are expressed in JavaScript and XPath.
SCXML artifacts are executable specifications of the SAUT
service and TC mock external behavior.

For each stateful service, it is possible to define an XML
resource that gives a representation of the service state that
is observable by the service user. The developer supplies
with her service an ancillary “external state” service that
implements setState and getState stereotyped operations.
The test engine calls these operations automatically in or-
der to initialize pre-conditions (setState) and to check post-
conditions (getState) as specified in the PSM. This feature
allows double-checking of the stateful service operations, en-
abling to arbitrate not only the operation reply, but also the
getState output.

3.2 Automated generation of test cases

Figure 1 sketches the activity diagram of the automated test
case generation. The input artifacts are the service model,
the test models (SAUT, TC, PSM), the test generation pol-
icy, and input templates. The test generation policy pilots
the behavior of the test case generator. For instance, the test
generation can be focused on specific types of messages to
enable the exploration of specific logical (service operations)
and "physical” (SAUT components) regions of the behavior

of the service architecture under test. Optionally, the user
can supply test input payload templates that guide the test
case generation by focusing, through regular expressions, on
relevant ranges of data values (instead of using randomly-
generated values) in the operation payload. The outputs
produced by the generation task are:

e Test suite definition (T'SD) - the test suite definition
is an XML document that represents the abstract in-
teraction paths that are the results of the symbolic
execution of the collection of PSMs, starting from first
test input classes.

e Test suite(s) (TSs) - a test suite is a collection of test
cases; each test case is a partially ordered collection of
instantiated messages (input, oracles) that instantiates
a TSD interaction path.

The preprocessing phase performs consistency checking across
all input artifacts, binds the service and mock PSMs through
wires and build a parallel state machine which combines all
individual PSMs.

The test case generation leverages model checking techniques
provided by the TLA+ framework [12] that “"implements”
the well-known TLA formal specification language based
on temporal logic. First, we translate the PSMs into the
PlusCal, a TLA+ companion algorithm language supported
by the TLA+ framework (Translation activity in Figure 1).
The model obtained in PlusCal is then compiled into the
TLA+ core language (Compilation activity in Figure 1).
TLA+ is backed by the TLC model checker to exhaustively
check correctness properties across all possible executions
of the system and by the TLAPS proof system that relies
on SMT (Satisfiability-Modulo Theory) solvers for checking
TLA+ proofs. Through assertions, execution traces that
match some criteria - for instance where messages of some
specific types, or containing some specific values, are ex-
changed - are requested to the proof system (Model check-
ing activity in Figure 1). Hence, the TLC model checker
achieves the generation of the execution traces by temporal
logic constraint propagation. The execution traces are de-
fined as interaction paths in the TSD. Input data are then
extracted from the execution traces (Test input generation
activity in Figure 1). The obtained test inputs are then sup-
plied one by one to the SCXML parallel state machine built
as a composition of the individual PSMs and the SCXML
execution engine is invoked (Parallel PSM execution activity
in Figure 1). The execution of the parallel state machine is
monitored and all events and the associated "messages” are
intercepted, allowing the test generator to produce, for each
test input, the corresponding test oracles and to constitute a
test case that is compliant with an interaction path defined
in the T'SD and is placed in a test suite (TS).

Thanks to the test generation policy and the templates for
the test input payloads provided by the tester, the test input
generator can focus on interesting specific ranges of values
for the test input payloads using different strategies to gen-
erate relevant data. Explored strategies are random, cyclic
domain sampling, boundary values, and domain partitioning
by analyzing the data-flow transfer functions in the PSMs.

Testsystem
configurator

Service model

SAUT medel Test executor
TC model
Test arbiter
Test scheduling
policy Testlog
Test dynamic
Test beliefs scheduler Test report

BN compiler
AC engine

Test suite
definition

Test suite -
Test session

SAUT endpoint reporter
table
Test run
Figure 2: Automated test run with dynamic

scheduling.

3.3 Automated test run with dynamic schedul-
ing

The test run engine is configured automatically from the
Service, the SAUT and the TC models, and the SAUT end-
point table (Figure 2). The engine configurator generates
the test run components (stimulators, mocks and intercep-
tors) from the TC model that are bound to the services
under test following the specifications of the Service model,
the SAUT model, and the SAUT endpoint table that gives
the locations of the service endpoints.

The basic run manager executes and arbitrates the test cases
of the test suite in the temporal sequence corresponding to
their static order in the test suite (basic run method). More
interestingly, the scheduled run manager handles a cycle
schedule/execute/arbitrate where the scheduler is able to
choose the next test case to run on the basis of past test
verdicts (dynamically scheduled run method). The sched-
ule/execute/arbitrate cycle continues until there are no more
test cases to run or some halting condition is met. The auto-
mated test run method produces machine-readable test log
and report.

The MIDAS approach to the prioritization of test cases is
entirely original [13]: it is based on the usage of probabilis-
tic graphical models [16] in order to dynamically choose the
next test case to run on the basis of the preceding test ver-
dicts. Namin and Sridharan [15] illustrate the well-known
advantages of probabilistic inference - intractable exact in-
ference in complex real-world domains, mathematically well-
defined mechanism for representation, explicit modeling of
uncertainty, management of multiple hypothesis about the
state of the system under test, capability of integrating ad-
ditional information about the state of the system. The
Markov assumption (a key principle in Bayesian reasoning)
that states that, given the system state S(t), the current
action and the current observation, the state S(t) can be
estimated conditionally independent of all prior states, ac-
tions and observations - is well suited for testing: (i) the
presence/absence of a fault does not change during the test
session, and (ii) each test run does provide an independent
test verdict because the system under test is reinitialized af-
ter each test run - following a best practice recommended
by the European Telecommunication Standard Institute [8].
The Markov assumption is the basis of the two-step itera-
tive Bayesian inference process: a prediction step updates

the belief of all possible hypotheses of system state based on
the prior belief and the actions taken since then, and a fur-
ther correction step "corrects” the updated belief based on
the correspondence between the expected and actual obser-
vations (evidences). Such an adaptive procedure is utilized
for discovering service failures (the primary test goal), but
also for troubleshooting, i.e. locating the faults that best
explain the symptoms (failures) in the most efficient way.
For complex systems, such as services architectures, deter-
mining which elements are causing troubles is not always
straightforward and often prone to inaccuracies. When end
to end testing of a service build new release, which is pro-
duced by a corrective maintenance action, reveals a failure
of another service that, eventually, does not interact directly
with the updated one, we are confronted with the exposure
of implicit and hidden tight coupling between services that
can be considered a "defect” (of both) but is not, strictly
speaking, a bug. Its is very important to discover this kind
of troubles, and the Bayesian Network approach to trou-
bleshooting bestows several advantages because the BN in-
ference results: (i) are probabilistic, allowing managing the
uncertainty in the decision process and the intractability of
exact inference, (ii) can be mathematically proven [7], (iii)
are knowledgeable, in contrast to other approaches, such as
Neural Networks, which act as black boxes.

The dynamic scheduler builds a Bayesian Network (BN)
model [16] from: (i) the SAUT model - allowing the asso-
ciation of random Boolean variables with SAUT elements;
(ii) the test cases - passive actions in the troubleshooting
jargon, because they do not change the state of the system;
(iii) the optional users’ beliefs on the SAUT - prior probabil-
ities and evidences, such as the information that the main-
tenance action on the service build has fixed the source of
a failure revealed by an identified test case in the preced-
ing test campaign). The BN variable types are associated
to SAUT structural elements such as the services and the
required /provided interfaces and with SAUT functional ele-
ments such as the service operations.

In order to move further the size and computation speed
limits, the classical representation of the BN is “compiled”
in a more compact structure (the Arithmetic Circuit - AC),
adapted to more efficient inference computation [13]. At
each test run, the verdicts are inserted as evidences in the
AC and the subsequent inference calculates a failure prob-
ability for each remaining test case that, combined with a

scheduling policy (e.g. max-failure, min-failure, max-entropy...),

allows the scheduler to choose the next test cases to run (Fig-
ure 3). Full details of the approach are reported in [13].
The scheduler performs policy-driven, dynamic and intelli-
gent prioritization of test cases that aims at: (i) precocious
discovery of failures, and (ii) precise localisation of faulty el-
ements (troubleshooting), in different testing contexts such
as first test, re-test and regression test.

3.4 Automated evidence-based reactive plan-
ning of test campaigns

The full automation of a test campaign requires that the
automated generation of test cases be driven not only by
models but also by test goals expressed through policies.
The scheduler is able not only to drive the choice among
a set of existing test cases but also to establish a dynamic

Test verdicts ‘ | Test cases ‘ | Halt |

Scheduling
policy <
module

Evidences ‘ | Probabilities ‘

Probabilistic inference engine

Figure 3: Scheduling cycle.

& proof system
Test input
generator

TC model Test oracle
generator
PSM model Test generation
Test input Taaliog
1 lats
emplates V- 1\ Test report

Test generation Test engine
policy ——>1

Test suite
Test scheduling M definition
policy

Test suite

Service model

SAUT model

Test beliefs

—
I

Test arbiter

Test suite
definition

scheduler

Test session
reporter
Test run

—

Test suite

SAUT endpoint
table

Figure 4: Automated, evidence-based reactive plan-
ning of test campaigns.

Test

|Testverdxcls | | Test cases | generation Halt
J/ directive

Scheduling
policy

modul¢
'

Generation
| Evidences | | Probabilities |

Probabilities
Probabilistic
Inference
engine

Figure 5: Planning cycle.

relationship between test case prioritization and the model-
driven generation of new test cases, and to supply to the
generator evidence-driven directives.

With the reactive planning test method, the user can: (i) ei-
ther provide an initial previously generated or hand-written
test suite, that could be a re-testing suite, a test regres-
sion suite or a smoke test suite (preliminary testing to re-
veal simple failures severe enough to reject a prospective
service build release), (ii) or invoke the reactive planning
test method without any test suite, with a generation policy
that provokes a first generation from scratch (for instance,
in first testing contexts) (Figure 4).

Within the test session in progress, on the basis of evidences
(verdicts) accumulated from the past test runs, the sched-
uler calculates the degree of ignorance (Shannon entropy)
on SAUT elements and eventually recommends the genera-
tion of new test cases whose execution would diminish this
ignorance (for example by including test cases that trigger
scenarios involving scarcely stimulated services of the archi-
tecture). If the recommendation is followed, the test gener-
ator is solicited by the scheduler with appropriate directives
- that are calculated from the test generation policy - about
the execution traces to be considered (Figure 5). The newly
generated test cases are taken into account by the sched-
uler (with an updating of the BN/AC) and the scheduled
execution is restarted on the new test suite.

4. REAL-WORLD CASE STUDIES

We have a first feedback of the usage of the functional test
methods from the MIDAS ”pilots”, i.e. collections of real-
world services and services architectures in the sectors of
health-care and logistics that the MIDAS ”pilot” partners
have been developed in the context of separate business
and research projects. In the health-care sector, one of the
most relevant operational services architecture targeted by
the MIDAS test methods is the Calabria Cephalalgic Net-
work (CCN) [6], an application implemented as a multi-
owner standard [3] microservices architecture whose com-
ponents are physically deployed in separate premises and
private clouds.

The logistics pilot is a reference implementation of a stan-
dard supply chain management architecture. Companies
and institutions place their service builds in the architec-
ture and test the semantic interoperability with the MIDAS

test methods.

The feedbacks of the usage of the MIDAS facility reports
a real contribution of the MIDAS prototype on issues that
have been labeled as: (i) "test case overhead”, (ii) "unit test-
ing only”, (iii) ”poor planning” and (iv) "manageability”.
The "test case overhead” issue is particularly critical in the
health-care sector and relates to the necessity of creating
a huge amount of test cases since the standard services to
be tested are specified as generic and the payload structure
varies according to their instantiations [3]. In addition, typi-
cal payloads transferred in the health-care domain are made
of very complex data structures with several thousands of
atomic data types. The automated generation of test cases
brought by the MIDAS prototype reduces dramatically the
effort that was formerly dedicated to test case handwriting.
Moreover, home-made, open source and commercial off-the-
shelf testing frameworks are able to support only service
unit testing. End-to-end test of service compositions with
MIDAS requires only the drafting of the appropriate SAUT,
TC and PSM models, which is a challenging task, but is
accomplished once (the models are relatively stable). The
generation/run of test suites that evolve following the main-
tenance process (the cycle test/debug for first test, re-test,
regression test) can be performed in an optimized manner
with test scheduling and planning by using policies, input
templates, prior probabilities and evidences. Furthermore,
with the aforementioned huge amount of test cases, test op-
timization is a must.

The ”poor planning” issue is related to the fact that home-
made, open source and commercial off-the-shelf testing frame-
works have no support for test optimization (focused test
case generation, test case dynamic prioritization). MIDAS
policy based generation, intelligent scheduler and evidence-
based planning propose solutions to the optimization prob-
lem that are technically operational, potentially very power-
ful and whose evaluation is in progress. We and, above all,
our users shall constitute assets of experience and know-how
in testing using such advanced features.

Last but not least, with the currently available tools every
change in the deployed SAUT (IP addresses, ports, URIs,
parameterizations) requires a significant effort of reconfigu-
ration by hands, practically preventing any automated con-
tinuous integration approach that require the deployment of
distinct "copies” of the SAUT ("manageability” issue). With
the MIDAS prototype, the SAUT, TC, PSM models and the
generated test suites are independent of the SAUT compo-
nents’ physical locations that are indicated as configuration
parameters to be instantiated at test run time (SAUT end-
point table).

S. PROTOTYPE LIMITATIONS

This section lists the limitations of the actual prototype
in terms of service test automation, optimization and rou-
tinization. First of all, the prototype is able to test only
SOAP services and full SOAP architectures, even if the test
models (SAUT, TC, PSM) are already able to represent
REST /XML services, REST/JSON services and services ar-
chitectures in which all these protocols are present. With the
spread of REST/JSON services, this limitation restricts our
service test automation scope. The test generator and arbi-
trator are unable to work with passive oracles, i.e. oracles

that are not messages ready to be transmitted, but message
templates in which some parts are left unspecified. This
obliges the user to supply in each PSM a complete set of
message building rules (JavaScript data-flow transfer func-
tions or literals). This limitation is prejudicial for service
test automation and optimization.

Another important usage limitation is that, in the actual
prototype, the consistency of the actual configuration of the
services architecture under test with the SAUT model and
the SAUT endpoint table is not checked per se. Hence con-
sistency errors can be revealed, but not clearly identified
and documented, only when a test run scenario touches the
improperly defined services and endpoints. This is detri-
mental for service test routinization. This kind of check can
be performed only if the user implements for each service
and instantiates in the appropriate endpoint an ping-like
ancillary service that allows the test engine to check that a
certain API is actionable at a certain URL. This is not a big
charge for the user, and we even think that it fulfills a best
practice of service design for testability.

In re-testing and regression testing contexts, the inference
engine should be able to take into account as evidences
the relationship between the failed test cases in the pre-
ceding test campaigns and the new service build release.
This relationship could be labelled as: ”this service build
release fixes the defects that were the causes of campaignN-
1/failurel, campaignN-2/failure3 ...”. Actually, without ap-
propriate information we could only hypothesize that all the
failures revealed in the preceding campaigns are repaired in
the new service build release, which does not cope with the
current debugging/fixing practices. If the information indi-
cated above were supplied with the service build release, the
service test optimization could be really improved.
Evolving services architectures grow increasingly complex,
both spatially with densely interconnected cyber-physical
systems and functionally with emerging behavior, raising
a continuous challenge on functional testing. From an algo-
rithmic standpoint, the never-ending increasing complexity
of the functionalities will always highlight the limitation of
current approaches. Therefore, evolving advanced formal
techniques are even more necessary to cope with this grow-
ing complexity, both from the scheduler and the test gener-
ator perspectives. To leverage and efficiently combine these
techniques in a complete automated setting, the functional
testing framework must autonomously be able to dynami-
cally induce higher abstractions from in-depth analysis of
entire regions of the system’s complex behaviour. We be-
lieve the Cloud offers the best infrastructure to support such
a demanding task, in particular with auto-scaling, resource
pooling, and elasticity.

6. CONCLUSION

The collection of functional test automation methods of the
MIDAS prototype covers all the service functional test tasks,

including the most "intelligent” and knowledge-intensive ones.

These test methods bring solutions to tough functional test
automation problems such as: (i) the configuration of the
automated test engine against large and complex services
architectures, (ii) the test input generation based on for-
mal methods and constraint propagation, (iii) the test oracle
generation based on service behavior specifications, (iv) the

intelligent dynamic scheduling of test cases, (v) the intelli-
gent, evidence-based, reactive planning of test campaigns.
Furthermore, the test automation methods are provided as
services, allowing the MIDAS SaaS user to invoke them indi-
vidually, to easily combine them in complex procedures and
to routinize their usage in automated integration and deliv-
ery workflows. These methods are currently used, "tested”
and evaluated by the MIDAS pilot partners. Experiences for
assessing and mastering advanced features such as model-
based generation, dynamic scheduling and reactive plan-
ning for first testing, re-testing and regression testing are
in progress on real-world services architectures.

Current known drawbacks of the MIDAS prototype are man-
ageability and usability issues that are the targets of future
work: (i) taking into account, beyond SOAP and REST /XML,
also REST/JSON service testing, in services architectures
that ”mix” all these protocols; (ii) checking the alignment
of the SAUT actual deployment with the provided SAUT
model; (iii) better handling of passive oracles, i.e. oracles
generated from incomplete specifications.

7. ACKNOWLEDGMENTS

This research has been conducted in the context of the MI-
DAS project (EC FPT7 project number 318786) partially
funded by the European Commission.

8. REFERENCES

1] http://www.midas-project.eu.

2] http://www.w3.org/TR/scxml/.

3] https://hssp.wikispaces.com/.

4] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. Software Engineering, IEEE Transactions on,
41(5):507-525, May 2015.

[5] M. Bozkurt, M. Harman, and Y. Hassoun. Testing and
verification in service-oriented architecture: a survey.
Softw. Test. Verif. Reliab., 23(4):261-313, June 2013.

[6] D. Conforti, M. C. Groccia, B. Corasaniti, R. Guido,
and R. Tannacchero. EHMTI-0172. Calabria
cephalalgic network: innovative services and systems
for the integrated clinical management of headache
patients. The Journal of Headache and Pain, 15(Suppl
1):D12, 2014.

[7] R. Dechter. Bucket elimination: A unifying framework
for probabilistic inference. In E. Horvitz and F. V.
Jensen, editors, UAT ’96: Proceedings of the Twelfth
Annual Conference on Uncertainty in Artificial
Intelligence, pages 211-219. Morgan Kaufmann, 1996.

[8] European Telecommunications Standards Institute.
Methods for Testing and Specification (MTS);
Automated Interoperability Testing; Methodology and
Framework. ETSI Guide 202 810 V1.1.1, ETSI, 2010.

[9] D. Harel. Statecharts: a visual formalism for complex
systems. Science of Computer Programming, 8(3):231
— 274, 1987.

[10] R. M. Hierons, K. Bogdanov, J. P. Bowen,

R. Cleaveland, J. Derrick, J. Dick, M. Gheorghe,

M. Harman, K. Kapoor, P. Krause, G. Liittgen,

A. J. H. Simons, S. Vilkomir, M. R. Woodward, and

[
[
[
[

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. Zedan. Using formal specifications to support
testing. ACM Comput. Surv., 41(2):9:1-9:76, Feb.
2009.

S. Jehan, I. Pill, and F. Wotawa. Functional SOA
testing based on constraints. In 8" Int. Workshop on
Automation of Software Test (AST), pages 33-39,
2013.

L. Lamport. Specifying Systems, The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

A .-P. Maesano. Bayesian dynamic scheduling for
service composition testing. Ph.D. Thesis, Université
Pierre et Marie Curie - Paris VI, Jan. 2015.

S. Mirarab and L. Tahvildari. A Prioritization
Approach for Software Test Cases Based on Bayesian
Networks. In M. B. Dwyer and A. Lopes, editors,
Fundamental Approaches to Software Engineering
(FASE) 2007, volume 4422 of LNCS, pages 276-290.
Springer, 2007.

A. S. Namin and M. Sridharan. Bayesian reasoning for
software testing. In G. Roman and K. J. Sullivan,
editors, Workshop on Future of Software Engineering
Research (FoSER), at the 18" ACM SIGSOFT Int.
Symposium on Foundations of Software Engineering,
pages 349-354. ACM, 2010.

J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1988.

S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability,
22(2):67-120, 2012.

