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Abstract

We report on a systematic study of the thermodynamic, electronic and charge transport proper-

ties of high-quality single crystals of BaNiS2, the metallic end-member of the quasi-twodimensional

BaCo1−xNixS2 system characterized by a metal-insulator transition at xcr = 0.22. Our analysis of

magnetoresistivity and specific heat data consistently suggests a picture of compensated semimetal

with two hole- and one electron-bands, where electron-phonon scattering dominates charge trans-

port and the minority holes exhibit, below ∼100 K, a very large mobility, µh ∼ 15000 cm2V−1s−1,

which is explained by a Dirac-like band. Evidence of unconventional metallic properties is given

by an intriguing crossover of the resistivity from a Bloch-Grüneisen regime to a linear−T regime

occurring at 2 K and by a strong linear term in the paramagnetic susceptibility above 100 K.

We discuss the possibility that these anomalies reflect a departure from conventional Fermi-liquid

properties in presence of short-range AF fluctuations and of a large Hund coupling.

PACS numbers: 71.38.Cn, 72.15.Eb, 72.15.Gd, 72.15.Lh
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I. INTRODUCTION

BaNiS2 is the metal phase precursor of the metal-insulator transition (MIT) observed

at xcr = 0.22 in the quasi-two-dimensional square-lattice BaCo1−xNixS2 system, where the

Ni/Co substitution level, x, controls electron doping. This MIT has attracted interest for

it is associated with a competition between an insulating antiferromagnetic (AF) phase

and a paramagnetic metallic one1, similar to the case of unconventional superconductors,

such as cuprate2, Fe-based3 and heavy-fermions4. On the other hand, no superconductivity

has been hitherto reported in BaCo1−xNixS2. In its simple tetragonal P4/nmm structure5

made of a checkerboard-like network of edge-sharing NiS5 pyramids (see Fig.1), all atomic

coordinates are set by symmetry in the ab-plane and the structural degrees of freedom are

limited to the z-coordinates along the c-axis. Because of the absence of structural distortions

concomitant to the MIT, BaCo1−xNixS2 is a model system for studying the doping-controlled

Mott transition in a square lattice6, where the electronic degrees of freedom are decoupled

from those of the lattice.

In order to unveil the mechanism of the MIT, previous studies have been mostly devoted

to the doping region in the vicinity of xcr, whilst the precursor metallic phase BaNiS2

remains little studied. It is the purpose of the present work to systematically investigate

this phase, which should help elucidating the stability of the metallic state in the important

limit of no chemical disorder (x=1). Open questions are the relevance of electron-electron

correlations to charge localization and the possibility of unconventional topological phases

that may arise from the following features of the electronic structure of BaNiS2: (i) strong

spin-orbit (SO) coupling effects leading to a large Rashba splitting, which is unexpected for

a compound composed by comparatively light element7; (ii) a Dirac-like point at the Fermi

surface. In the present work, we carried out a systematic study by means of specific heat,

susceptibility and magnetoresistivity measurements on high-quality single crystals. The

data give evidence of anomalous properties suggesting a quantum critical point scenario

controlled by AF fluctuations and by a strong Hund coupling involving the Ni2+ ions.

2



II. METHODS

BaNiS2 single crystals were synthesized using a conventional solid state reaction method,

as described in detail elsewhere8. In brief, powders of barium sulfide (BaS, 99.9% purity),

sulfur (99.995%) and metallic nickel (99.999%) in non-stoichiometric molar ratios Ba:Ni:S

= 0.10:0.425:0.475 were finely ground and pelletized. The pellets were loaded in a graphite

crucible and sealed in a quartz ampoule in vacuum at pressures of 10−5 mbar or better.

Graphite was used as a catalytic matrix for oxygen, thus preventing oxidation of the reagents.

The heat treatment consists of a first dwell at 300 ◦C for 2h followed by a second one at 1100

◦C for 48h, a cooling down to 850 ◦C at a rate of 50 ◦C/h and a final quench into water.

The powders were ground again and a similar heat treatment as before was applied, except

the cooling rate was reduced to 1 ◦C/h. This second treatment leads to the formation of

black platelet-like single crystals of size up to ∼ 1 × 1 × 0.1 mm3 that were mechanically

removed from the batch and washed with ethanol. Several single crystals were selected

for the present study. Single crystal x-ray diffraction yielded structural parameters a =

b = 4.4404(6) Å, and c = 8.897(2) Å, in agreement with previous results5,9. Structural

refinements carried out assuming no sulfur or nickel vacancies yielded exceptionally low

reliability factors, Rw < 0.015, thus indicating a low amount of disorder. Refinements that

include the possibility of vacancies did not improve the result and systematically converged

to the stoichiometric formula.

Magnetization and specific heat measurements were carried out in a Quantum Design

SQUID vibrating sample magnetometer (VSM) at a field of 1 T and in a Quantum Design

physical properties measurement system (PPMS) using a 2-τ relaxation method, respec-

tively. For transport measurements, the samples were contacted with silver epoxy (Dupont

6838 conductor paste) which ensures low-resistance ohmic contacts after a heat treatment

under vacuum at 250 ◦C overnight. The in-plane (ab) longitudinal and transverse resistances,

Rxx and Rxy respectively, were measured using a AC four-probe technique in the PPMS in

the bar or van der Pauw10 configurations. The out-of-plane (c-axis) resistivity was mea-

sured by employing a ring geometry of the current electrode, as described elsewhere11. The

in-plane resistivity of a representative single crystal was measured at very low temperatures

down to 40 mK in a He3 dilution refrigerator cryostat using a lock-in detection technique.

The band structure has been calculated with the Perdew-Burke-Ernzerhof density
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functional12 augmented by a local Coulomb repulsion via the spherically symmetric Hubbard

matrix with U = 3 eV and by a Hund coupling J = 0.95 eV, while the Racah parameter

ratio F4/F2 is taken from the atomic value. We used norm-conserving pseudopotentials by

treating the Ni pseudoatom as fully relativistic. The spin-orbit coupling is taken into ac-

count by using the Quantum Espresso implementation13, with a spinor formulation based

on non-collinear two-component spin-Bloch functions14,15. The self-consistent calculation

has converged on a 8x8x8 Monkhorst-Pack k−points grid with a plane-waves cutoff of 120

Ry. The density of states has been computed with a non-self consistent calculation on a

16x16x16 k−points grid and the tetrahedron method16.

FIG. 1: (color online) Tetragonal structure of BaNiS2. The unit cell is drawn using solid lines.
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III. RESULTS

Fig. 2 shows the temperature-dependent isobaric specific heat, CP (T ), measured on a

bunch of single crystals of total weight 5.77 mg selected from the same batch. No anoma-

lies are found in the whole 2-400 K range measured, which indicates the absence of phase

transitions. As customary done for solids in the above range, in the present data analysis,

we neglect the small difference between the isobaric and isochoric specific heats given by

CP −CV = α2KTV T , where α, KT and V are the thermal expansion coefficient, the isother-

mal bulk modulus and the molar volume, respectively. Considering the experimental value

of α reported for BaNiS2
17 and typical values for KT , the magnitude of this difference in the

temperature range considered here is estimated to be ∼1-2 % or less. We then analyze the

data using the usual expression for CV that reads

CV (T ) = γT + 9skB

(

T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx (1)

where the first and second terms represent the electronic and lattice contributions, respec-

tively, described by a conventional band model and by the Debye model. The quantities γ,

s, kB and θD denote the Sommerfeld coefficient, the number of atoms per mole, the Boltz-

mann constant and the Debye temperature, respectively. By fitting the low temperature

data below 8 K, where the expression in Eq. 1 is approximated by CV (T )/T = γ+βT 2 and

β ∝ θ−3
D , we obtain γ = 2.15(11) mJ K−2 mol−1 and θD = 311(5) K. This γ value is slightly

larger than previously measured on polycrystalline samples18 but comparable to the values

2.9 mJ K−2 mol−119 and 3.1 mJ K−2 mol−120 estimated from ab initio DFT calculations

of the density of states (DOS) at the Fermi level, D(ǫF ), which suggests a modest mass

renormalization. The extrapolation of the Debye curve to higher temperatures using the

above parameters accounts for the data up to 400 K. The slight excess of the experimental

value with respect to the Dulong-Petit limit 3skB = 99.8 J mol−1 K−1 observed at such

higher temperatures, is ascribed to the small difference between CV and CP .

In Fig. 3, we plot the DC magnetic susceptibility curves, χab(T ) and χc(T ), in fields

parallel and perpendicular to the ab-plane for a representative BaNiS2 single crystal. The

difference between the two curves indicates a pronounced anisotropy of the magnetic re-

sponse. The averaged susceptibility is in good agreement with previous results on polycrys-
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FIG. 2: (color online) Temperature dependence of the isobaric specific heat, CP , of a bunch of

BaNiS2 single crystals. In the inset, the broken line is a fit of the low temperature data that yields

γ and ΘD. The red solid line is the theoretical Debye curve described by Eq. 1.

talline samples1,21,22, except the present data show a weaker upturn at low temperature. At

first sight, this may be due to a smaller concentration of paramagnetic impurities in the

present single crystals. Though, no clear evidence of Curie-like behavior is found at low

temperatures, so the physical origin of the upturn may be different. Notable feature of both

χab(T ) and χc(T ) is a pronounced linear behavior at high temperature with a large slope

4.2×10−7 emu mol−1 K−1. Such behavior contrasts the expectation of a constant Pauli term

in a conventional metal. A similar linear dependence with comparable slopes ∼ 4.3 × 10−7

emu K−1 mol(Fe)−1 and ∼ 6 × 10−7 emu K−1 mol(Fe)−1 has been previously reported in

other semimetals, such as the parent compounds of Fe-based superconductors LaOFeAs and

BaFe2As2, respectively
23,24. For these systems, two scenarios have been proposed, one based

on AF fluctuations and the other on a pronounced peak of the density of states at ǫF . Below,

we shall discuss the suitability of these two scenarios for the present BaNiS2 case.

Figure 4 shows the ab-plane and c-axis components of the electrical resistivity tensor,

ρab(T ) and ρc(T ). ρab(T ) was reproducibly measured on a dozen single crystals with residual

resistivity ratios RRR = ρab(300K)/ρ0 ranging from 4 up to 17, where ρ0 denotes the residual

resistivity measured at 10 K (see below and inset of Fig. 4). The largest RRR’s are about 4

times larger than those previously reported8, which indicates a higher purity of the present
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FIG. 3: (color online) Magnetic susceptibility of a BaNiS2 single crystal. χab and χc indicate the

measurements taken with field in the ab-plane and along the c-axis, respectively. The average is

given by χavg = 2
3
χab+

1
3
χc. The data have been corrected from the core diamagnetic susceptibility

estimated to be χcore ≈ −1.2× 10−4 emu mol−1.

crystals. The results of the present measurements confirm previous work, in particular the

value of the room temperature resistivity ρab(300K) ≈ 0.2 mΩcm, characteristic of a bad

metal. ρab and ρc are successfully explained by a conventional Bloch-Grüneisen model of

electron-phonon scattering described by the expression:

ρ(T ) = ρ0 + α
(

T

θD

)5 ∫ θD/T

0

x5ex

(ex − 1)2
dx (2)

where the Eliashberg function α ∼ λθD/ω
2
p, assumed to be temperature independent, de-

pends upon the electron-phonon coupling constant, λ, and upon the plasma frequency, ωp
25.

The above expression is found to account well for both ρab and ρc curves up to 250 K and

200 K, respectively. A data fit yields almost identical values for the Debye temperature,

θD = 330 K for ρab and θD = 332 K for ρc. These values are in very good agreement with

the θD = 311 K obtained from the specific heat data, which strongly supports a picture of

electron-phonon scattering. The absence of a T 2 term at low temperature indicates negli-

gible electron-electron scattering, in agreement with the previous observation of small mass

renormalization effects by means of specific heat (see above) and ARPES measurements7.
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The anisotropy ratio is found to be κ = ρc/ρab ∼8 at 300 K and does not depends strongly

on temperature and may vary in the 6-10 range from sample to sample. These values sug-

gest quasi-twodimensional transport properties; a more pronounced 2D character is found

in unconventional metals, such as Sr2RuO4 (κ ≈ 200), BaFe2As2 (κ ≈ 150) and under-

doped cuprates, such as YBa2Cu3O7−δ (κ ≈ 100)24,26,27. Our observation of a significant

contribution of the c-axis conductivity is consistent with the existence of dispersive bands

along kz
7,19,20. The present result on single crystal contrasts a previous result on c-axis

oriented polycrystalline samples in which much larger ratios κ ∼ 103 were reported21. This

discrepancy may arise from the enhanced charge scattering at grain boundaries.

Notable are the following anomalies of the temperature dependence of the resistivity:

1. At high temperature, the resistivity tends to level off.

2. In the highest purity samples, below T ∗ ∼ 6 K, the in-plane resistivity does not

level off at the value of the residual resistivity, ρ0, as in a normal metal; instead, it

begins decreasing linearly with decreasing temperature down to the lowest temperature

measured, 40 mK (see inset of Fig. 4a).

The possible origin of these two anomalies are discussed below.

Fig. 5 displays the longitudinal and transverse components of the resistivity, ρxx and ρyx

respectively, as a function of magnetic field. A sample with RRR = 15.8 was chosen for

this measurement. ρxx exhibits a strong variation with B which increases with decreasing

temperature. The magnetoresistance ∆ρxx(B)/ρxx(0) = [ρxx(B)− ρxx(0)] /ρxx(0) does not

exhibit any saturation up to 9 T and its large magnitude as high as 20 at 2 K is comparable

to that of high mobility compounds, such as CuAgSe28. A large magnetoresistance is typical

of compensated semimetals like Bi29, which is indeed the case of BaNiS2, as indicated by the

aforementioned band calculations and ARPES data. The field dependence of the transverse

resistivity, ρyx, is linear at high temperature, as expected, but nonlinear at low temperature.

In the high RRR samples, the ρyx curve displays a change of sign, a further signature

of semimetallic properties. We further analyzed the magnetoresistivity data in order to

determine the carrier density and carrier mobility. The plot of Fig. 6 put into evidence a

deviation from Kohler’s rule30, which predicts a scaling of the ∆ρxx(B)/ρxx(0) curves as a

function of the scaling variable B/ρxx(0). This deviation is explained by the presence of at
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FIG. 4: ab-plane (a) and c-axis (b) resistivity of a representative BaNiS2 single crystal with

RRR = 9.4. The red lines are a data fit using eq. (2). The inset shows the low temperature

resistivity curve obtained on a sample with RRR=15.8. Black and red circles indicate data obtained

in a dilution cryostat and in a PPMS, respectively. The blue line is a linear fit ρ = ρ′0 +AT with

A = 1.91 × 10−3 mΩcm K−1 and ρ′0 = 5.5 × 10−3 mΩcm.

least two kinds of carriers with different mobilities. To investigate this point, we analyzed

the temperature and field dependent data using the usual expressions for the longitudinal

and tranverse magnetoconductivity:

σxx =
∑

i

|qi|niµi

1 + (µiB)2
(3)

σxy =
∑

i

qiniµ
2
iB

1 + (µiB)2
(4)

9



101

102

0 2 4 6 8
-12

-6

0

6

(b)

 300K  80K
 200K  60K
 150K  40K
 100K  1.8K

xx
 (

 c
m

)

(a)

// c

B (T)

 

yx
 (

 c
m

)

// c

FIG. 5: (a) Transverse and (b) longitudinal magnetoresistivity of a BaNiS2 single crystal with RRR

= 15.8 at temperatures ranging from 1.8 K to 300 K. The magnetic field was applied perpendicular

to the current.

where qi, ni and µi are the charge, density and mobility of the carriers and i is the band

index. According to the above expressions, a significant field dependence of the conductivity

appears if the term µiB is of the order of unity or larger. In this case, a simultaneous fit

of the two components of the conductivity tensor by Eqs. (3) and (4) is possible, which

allows a determination of ni and µi for each band. This is indeed our case, as the curves

of Fig. 7 exhibit a strong field dependence up to 100 K. In this temperature range, we

then tried to determine both ni and µi for each band i by using Eqs. 3 and 4. Whilst this

analysis was not possible using a simple two-band model with one hole (h) and one electron
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FIG. 6: Magnetoresistance ∆ρ/ρ(B = 0) plotted as a function of B2/ρ2(B = 0). Note the deviation

from the Kohler’s rule at high temperature.

(e) band, the inclusion of an additional hole-band yields a very good agreement with the

data, as apparent from Fig. 7. The fitting could not be extended to the data above 100

K, where the field-dependence of the magnetoconductivity is weak. The results of the data

analysis are summarized in Table I. An indication of the reliability of this 3-band model is

indicated by the fact that the inclusion of an extra electron - instead of hole - band was

not successful. The carrier densities obtained from the above analysis are temperature and

sample independent and fall in the typical 1019 − 1020 cm−3 range for semimetals, which

account for the bad metallic properties of the compound. We find an excess of electrons of

∼1% of the total number of carriers, which confirms the picture of compensated semimetal

suggested by band calculations. In Fig. 8, the mobility of the three types of carriers are

plotted as a function of temperature. While electrons and type-1 (h1) holes exhibit relatively

similar mobilities, the mobility of type-2 (h2) holes is about 4-5 times larger and reaches the

remarkable value of ∼ 15000 cm2V−1s−1 in the cleanest crystals at low temperature. These

values are comparable to the values ∼ 20000 cm2V−1s−1 reported in undoped CuAgSe28 and

only one order of magnitude less than in pure Si and GaAs semiconductors31, in spite of the

much larger carrier densities in BaNiS2.
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σxx (a) and σxy (b). Black solid lines are fits of the curves using Eqs. (3,4) and a three-band model

with two hole bands and one electron band.

IV. DISCUSSION

We should first show that the three-band picture that emerges from the above analysis of

the magnetoresistance data is consistent with the DFT band structure calculations reported

in Figure 9 in the vicinity of the Fermi level, ǫF . The bands crossing at ǫF and the Fermi

sheets are as follows:

1. Two linearly dispersive bands cross ǫF almost exactly at mid-distance along the ΓM

direction. This linear dispersion is in agreement with the observation of highly mobile

h2 holes. Due to their weak dispersion along kz, these bands form a conic Fermi
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RRR 7.9 15.8

ne (×1019 cm−3) 8.20(8) 8.75(9)

nh1 (×1019 cm−3) 7.07(14) 7.4(4)

nh2 (×1019 cm−3) 0.92(16) 1.17(12)

TABLE I: Carrier densities of two BaNiS2 single crystals obtained from the analysis of the

temperature- and field-dependent longitudinal and transverse conductivities by using eqs. (3,4),

as explained in the text. The reported value are mean values of the carrier densities obtained at

different temperatures. Number in parentheses indicate standard deviations.
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FIG. 8: (Color online) Carrier mobilities extracted from the analysis of the temperature and field

dependence of the longitudinal and transverse conductivity for two BaNiS2 samples with RRR

= 7.9 (left panel) and RRR = 15.8 (right panel). The dashed lines above 100 K indicate the

extrapolated behavior of the mobility by assuming a conventional µi ∝ 1/T dependence expected

for a metal with ρ ∝ T .

surface similar to the Dirac cone in graphene. In the present case, contrary to the case

of graphene, the shape of the cone basis in the kx-ky plane is not circular because of

the different orbital character of the two bands that are mainly formed by d3z2−r2 and

dx2−y2 states. In the light of the rich physics of the Dirac cones, it would be interesting

to study the mobility of such h2 holes as a function of doping.

2. The calculations predict a valence band and a conduction band at Γ and Z respec-

tively. The two bands, split by spin-orbit coupling effects, form the two hole and

13



electron pockets visible along the Γ-Z direction, in agreement with the scenario of a

second (h1) hole band and of an electron band suggested by the previous analysis of

magnetoresistance data.

3. In agreement with a very recent ARPES experiment7, two Rashba-split conduction

bands are also visible at R. These bands touch the Fermi level and the volume of

the resulting electron pockets is negligible as compared to that of the other pockets.

Therefore, these bands should not affect the magnetotransport properties or marginally

affect µe and ne.

Second, we should discuss the anomalous properties that remain unexplained: (i) the

levelling-off of the resistivity at values smaller than expected from the Mott-Ioffe-Regel limit;

(ii) the crossover of resistivity regime at T ∗ and (iii) the linear temperature-dependence of

the susceptibility above 100 K.

Typically, feature (i) is the signature of a resistivity saturation in the Mott-Ioffe-Regel

limit described by the condition that the electron mean free path becomes comparable to

the Fermi wave length. In 2D, this limit is reached for ρsat = 2π e2

h̄
c ≈ 2.2 mΩcm. In our

case, ρab(400 K) is about one order of magnitude smaller than this value, so we consider

the alternative explanation of a thermal activation of the carriers, which is significant in

semimetals. Due to the low carrier density, n, which is apparent from the calculated density

of states in Figure 9, this activation leads to a large relative increase of n, detected as a

reduction of the resistivity coefficient at high temperatures, as observed in graphite at ∼80

K32. In BaNiS2, this reduction occurs at higher temperatures owing to the larger carrier

density, n ∼ 1020 cm−3, as compared to that of graphite, where n ∼ 1019 cm−3 or less.

This scenario is supported by the observation of a broad maximum of the thermoelectric

power of BaNiS2 at 175 K1. The ARPES band structure showing that the bottom of the

Rashba-split bands barely touch the Fermi level further suggests that these are the bands

populated by thermal activation. Magnetotransport measurements in high magnetic fields

above 100 K may confirm the validity of this scenario.

As to the anomaly of the resistivity at T ∗, we first consider a scenario of umklapp

processes in combination with a singular DOS. It was previously proposed33 that, under

these conditions, the electronic scattering rate acquires a non-analytic contribution leading
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to non-Fermi liquid transport properties down to very low temperatures. Specifically, the

exponent of the temperature dependence of the resistivity can be significantly less than

two34. In the present case, the minimum of the Rashba-splitted bands at R indeed forms

a van Hove singularity near ǫF . However, it is difficult to reconcile the large drop of the

resistivity by a factor of two between T ∗ and 40 mK with the modest number of minority

carriers associated with this singularity. As a second possibility, we recall that the linear

behavior of the resistivity is characteristic of correlated metals, such as heavy fermions in

the vicinity of an AF order35 or superconducting cuprates36–38. However, in these systems,

the linear dependence extends to a much wider temperature range, whilst in the present

case this dependence is rather similar to a crossover between conventional Bloch-Grüneisen

regime above and low-temperature regime below T ∗. Phenomenologically, this could be

consistent with a crossover from a coherent Fermi-liquid regime to an incoherent regime

controlled by a spin-freezing dynamics in the presence of a strong intra-atomic Hund

coupling39, which is expected in the present multiorbital case. According to this scenario,

the loss of quasiparticle coherence at sufficiently high temperature leads to crossover of the

transport regime40 in qualitative agreement with the present data.

As to anomaly (iii), it is recalled that a similar anomaly has been reported on Fe-based

pnictides41. For these systems, two scenarios have been proposed. The first scenario invokes

the effect of the temperature-dependent chemical potential, µ, near a sharp peak of the

DOS42. As apparent from the usual expression for the Pauli susceptibility:

χPauli = −µ2
B

∫ ∞

0
D(ǫ)

∂f(ǫ, µ, T )

∂ǫ
dǫ (5)

where f(ǫ, µ, T ) is the Fermi-Dirac distribution and µB is the Bohr magneton, a linear

dependence of χ appears if the DOS strongly varies with energy near ǫF ≈ µ, as in the

case of semimetals. This simple picture has been proposed for pnictides on the basis of

dynamic mean field theory (DMFT) calculations41,43. At first sight, a similar picture may

be applicable to the present case as well, for the calculated band structure of BaNiS2 also

exhibits a pronounced dip in the DOS at ∼ 0.1 eV below ǫF . Indeed, the calculated χ(T )

reproduce qualitatively the observed behavior of χ(T ), including the existence of a tail at

low temperature and the linear term at high temperatures. However, the experimental
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slope dχ(T )/dT is about one order of magnitude larger than predicted using Eq. 5 and the

calculated DOS. One may consider the possibility that the real DOS is much more singular

than the calculated one due to renormalization effects. However, this possibility contrasts

the evidence of modest renormalization effects from the present specific heat results and

from ARPES measurements7.

A second scenario invokes the existence of short-range AF fluctuations23,24, in agreement

with previous theoretical studies of frustrated Heisenberg models with comparable nearest-

neighbor and next-nearest-neighbor exchange coupling constants, J1 and J2
44. This scenario

could be applicable to the present case since a J1-J2 model is consistent with the observation

of collinear AF order in BaCoS2
45 and with the fact that the next-nearest-neighbor Ni-Ni

distance in the square lattice of BaNiS2 is only
√
2 times the nearest-neighbor distance.

Thus, it is envisaged that residual short-range fluctuations may be present in BaNiS2 as well.

Suitable studies of spin dynamics would be required to probe directly these fluctuations.

V. CONCLUSION

In conclusion, the present study on high-quality BaNiS2 single crystals suggests a con-

sistent picture of compensated semimetal with two hole bands and one electron band, in

agreement with ARPES data and DFT calculations. Notable is the high mobility of the

minority holes attributed to a Dirac-like Fermi pocket, similar to the case of graphene.

The transport properties are markedly two-dimensional and dominated by a conventional

electron-phonon mechanism. While the low-temperature electronic specific heat is consistent

with the calculated density of states, the magnetic susceptibility is strongly enhanced and

exhibits a pronounced linear term at high temperature. This anomaly could be explained

either by a strong variation of the density of state at ǫF , not predicted by DFT calculations,

or by the presence of short-range AF fluctuations reminiscent of the AF order observed in

BaCoS2. A further signature of unconventional behavior is a striking crossover of the resis-

tivity from a conventional Bloch-Grüneisen behavior to a linear behavior below T ∗ ∼ 6 K.

We envisage that this crossover may reflect the loss of quasi-particle coherence caused by a

spin-freezing dynamics in presence of a large Hund coupling. Further studies are required

to verify the validity of the above scenario according to which both intra- and inter-atomic

magnetic interactions strongly alter the stability of a conventional Fermi-liquid ground state.
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FIG. 9: (Color online) Calculated electronic bands and total density of states. The dotted line

indicates the Fermi level, ǫF .
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