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Abstract
This paper reports an efficient preparation of bridged bis-β-CD AZO-CDim 1 bearing azobenzene as a linker and exhibiting high

solubility in water. The photoisomerization properties were studied by UV–vis and HPLC and supported by ab initio calculations.

The cis/trans ratio of AZO-CDim 1 is 7:93 without irradiation and 37:63 after 120 min of irradiation at 365 nm; the reaction is re-

versible after irradiation at 254 nm. The photoinduced, switchable binding behavior of AZO-CDim 1 was evaluated by ITC, NMR

and molecular modeling in the presence of a ditopic adamantyl guest. The results indicate that AZO-CDim 1 can form two different

inclusion complexes with an adamantyl dimer depending on its photoinduced isomers. Both cavities of cis-AZO-CDim 1 are

complexed simultaneously by two adamantyl units of the guest forming a 1:1 complex while trans-AZO-CDim 1 seems to lead to

the formation of supramolecular polymers with an n:n stoichiometry.
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Introduction
α-, β- or γ-Cyclodextrins (CDs) are cyclic oligosaccharides

composed of 6, 7 or 8 α-D-1,4 glucopyranose moieties, respect-

ively. They are natural compounds produced from starch by the

reaction of 4-α-glucanotransferases [1]. Their toroidal shape,

with C6-primary hydroxy groups on the narrow rim and C2 and

C3 secondary groups on the wider rim, enables encapsulation of

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:florence.pilard@u-picardie.fr
http://dx.doi.org/10.3762%2Fbjoc.10.304
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Scheme 1: Synthesis pathway of the dimer AZO-CDim 1.

hydrophobic molecules inside their cavity. Since the 1950s, it

has been demonstrated that CDs can form non-covalent-force

complexes in water due to their unique spatial arrangement. In

particular, β-cyclodextrin (β-CD) is known to form supra-

molecular inclusion complexes with molecules, and such inclu-

sion usually enhances the solubility of water-insoluble

substances [1-4]. Pharmaceutical companies already use these

cyclodextrins or their derivatives in their formulations [5,6]. In

fact, they have a well-defined structure, low toxicological or

pharmacological activity, and good solubility in water. For

example, the inclusion of active substances in CDs can reduce

their undesirable storage or metabolism degradation, which has

led research on CDs to focus on controlled drug delivery [4]. In

the food industry, CDs enable the fixation or retention of

volatile flavors, as well as the removal of undesirable flavors

from food [7,8].

In comparison with CD monomers, bridged bis-cyclodextrins

can improve the original binding ability of native CDs through

the cooperative binding of both cavities located close to the

guest molecules [9,10]. These cyclodextrins linked by ester

[11], thioether [12-16], urea [17-19], or triazole [20] moieties

have been previously described. In addition, aromatic azoben-

zenes are excellent candidates as molecular switch linkers as

they have two forms, namely cis (Z) and trans (E) isomers,

which can be interconverted by both photochemical and thermal

means [21]. This transformation by external stimuli induces a

molecular movement and a significant geometric change

[22,23]. CDs and azobenzene derivatives can form inclusion

complexes controlled by photoisomerization of the guests and

this property has been widely applied to molecular shuttles,

motors, information storage [24,25] and catalysis [26].

Some examples of azobenzene-linked CD dimers can be found

in the literature but they generally suffer from arduous purifica-

tion steps and very low yields [27,28]. As an exception, Vargas

et al. [29] described the synthesis of 1,2,3-triazole-linked

azobenzene-cyclodextrin derivatives producing rather good

yields but the photoisomerization and inclusion complex prop-

erties were not investigated. Here, we report an efficient prepar-

ation of a new bis-β-CD with azobenzene dicarboxylate and the

influence of photoisomerization of the linker on the con-

formation and binding behavior of the CD dimer.

Results and Discussion
The AZO-CDim 1 synthesis was performed as follows: 4,4’-

azobenzenedicarboxylic acid was first obtained by reductive

coupling of 4-nitrobenzoic acid with a yield of 49% (Scheme 1)

[30]. Then, the carboxylic groups were activated by N-hydroxy-

succinimide (NHS) and condensed with mono-6-amino-6-
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Figure 1: Overlaid UV spectra of the irradiation of AZO-CDim 1 (a) from 0 to 120 min at 365 nm and then (b) from 0 to 90 min at 254 nm; (c = 10−4 M,
water, 6 W lamp).

deoxy-β-cyclodextrin (β-CD-NH2) [31] in anhydrous DMF at

room temperature. Flash chromatography (C18 column, H2O/

MeOH 90:10 to 10:90 v/v in 20 min) afforded pure AZO-CDim

1 with 62% yield.

It should be noted that AZO-CDim 1 exhibits surprisingly high

solubility in water, reaching 220 mM at 293 K, even though the

linker is hydrophobic and the solubility of β-CD is only 16 mM

under the same conditions. Concentration-variable NMR

analysis revealed a strong upfield shift and a broadening of the

proton signals. No significant chemical shift variations were

observed at concentrations below 1 mM, which is consistent

with a critical aggregation concentration of around 1·10−3 M.

The UV–vis absorption spectrum of azobenzene presents three

characteristic absorption bands (250, 320 and 450 nm) corres-

ponding to π–π* and n–π* electronic transitions, respectively.

For the trans isomer, the absorption band π–π* at 320 nm is

very intense while the other two bands (π–π*) at 250 nm and

(n–π*) at 420 nm are much weaker. For the cis isomer, the

absorption band π–π* is shifted slightly to a shorter wavelength

and is significantly less intense at 320 nm. Because the n–π*

transition is possible in the cis isomer, this band increases in

intensity [22,23]. A molecular switch is based on the light-

induced, reversible transformation of chemical species between

two molecular states with different absorption spectra. Thus, the

trans/cis isomerization can be reversibly controlled through UV

light irradiation as depicted in Figure 1. As shown in Figure 1a,

when a sample containing AZO-CDim 1 in pure water at room

temperature was UV irradiated at 365 nm, it switched from its

trans to its cis form resulting in a marked change in the UV–vis

spectra. As the irradiation continued, the absorption band at

around 320 nm gradually decreased while the bands at 420 nm

and 250 nm slightly increased. This change is clearly due to the

simple, but partial, isomerization of the azo groups from the

trans photoisomer to the cis photoisomer [21]. The maximum

isomerization yield was obtained after 120 min of irradiation at

365 nm.

The reaction is reversible and when irradiated at 254 nm

(Figure 1b), the cis isomer of AZO-CDim 1 gradually returned

to its trans form, and the maximum isomerization yield was

obtained after 90 min of irradiation. Both isomers could be sep-

arated by HPLC (Dionex, H2O/MeCN 90:10) and the cis/trans

ratio of AZO-CDim 1 before irradiation (7:93) and after 2 h of

irradiation (37:63) at 365 nm was determined (Figure 2).

Although each isomer could not be obtained in pure form, as is

often the case for many azoderivatives [32], the isomerization

efficiency is better than the cis/trans ratio of 14:86 after irradi-

ation described by Liu [27].

Both isomers of AZO-CDim 1 have an appreciable resistance to

fatigue thus the irradiation cycle could be carried out several

times without causing side effects, as shown in Figure 3.

Ab initio calculations were also performed but the cis/trans

transition was not observed since molecular modeling methods

are unable to break bonds. In order to collect data on this

phenomenon, the two configurations of the system had to be

taken into account separately. Thus, ab initio calculations were
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Figure 2: HPLC quantification of the cis/trans ratio of AZO-CDim 1 before irradiation (left) and after irradiation at 365 nm (2 h, 6 W lamp) (right).

Figure 4: Representation of the most stable structures obtained for the azobenzene linker (a) for the trans configuration and (b) for the cis one and for
the AZO-CDim 1 systems (c) for the trans configuration and (d) for the cis one.

Figure 3: Percentage of cis isomer of AZO-CDim 1 produced during
photoisomerization cycles (c = 10−4 M, water). A cycle consists of ir-
radiation at 365 nm for 2 h followed by irradiation at 254 nm for 1 h.

performed on the two configurations of the azobenzene linker,

the so-called 4,4’-bis(N-methylcarboxamide)azobenzene linker,

to determine the structures of minimal energy (Figure 4a and

Figure 4b). Once optimized, the measured C4–C4’ distances

were 9.1 and 6.6 Å for the trans and cis configurations, respect-

ively, and the C–N=N–C dihedral angles were 180° and −10°,

respectively. These results are comparable to those obtained by

Koshima et al. [33,34] on crystal structures where intermolec-

ular packing effects might be important. From these calcula-

tions, the geometrical force field parameters needed for molec-

ular dynamics simulations were derived.

Molecular dynamics simulations performed on the two configu-

rations of AZO-CDim 1 highlighted the rigidity of the linker,

which governs the relative position of the two CD cavities. The
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Table 1: Thermodynamic parameters deduced from ITC experiments for the different host–guest systems studied (temperature 298 K in water).

Host na Ka (M−1) ΔH0

(kJ·mol−1)
ΔH0 guest site
(kJ·mol−1)

TΔS0

(kJ·mol−1)
ΔG0 (kJ·mol−1)

β-CDb 0.50 (1:2) (4.6 ± 0.2)·104 −45.3 ± 0.3 −22.7 ± 0.2 −9.3 ± 0.2 −13.4 ± 0.1
β-CD-NH2

b 0.43 (1:2) (5.0 ± 0.2)·104 −49.0 ± 0.2 −24.5 ± 0.1 −11.1 ± 0.2 −13.4 ± 0.1
AZO-CDim 1c

without irradiation
0.13
(0.07:1)

(8 ± 0.2)·108 −95 ± 0.7 −47.5 ± 0.4 −17.1 ± 0.8 −27.7 ± 0.4

0.77
(0.93:1)

(8 ± 0.2)·105 −67 ± 0.3 −33.5 ± 0.2 −13.4 ± 0.4 −18.4 ± 0.2

AZO-CDim 1d

after irradiation
0.27
(0.37:1)

(8 ± 0.2)·108 −95 ± 0.8 −47.5 ± 0.4 −25.2 ± 0.8 −21.9 ± 0.4

0.44
(0.63:1)

(8 ± 0.2)·105 −67 ± 0.4 −33.5 ± 0.2 −23.8 ± 2.4 −13.7 ± 1.2

na: guest:host molar ratio in the complex. The values in parentheses are theoretical values for the formation of complexes with all the binding sites of
both guest and host occupied. bValues corresponding to the model of one set of sites. cValues corresponding to the model of two sets of sites.
dValues corresponding to the two sets of sites model after irradiation at 365 nm, for 120 min at 278 K. The units of the experimental enthalpy value
are kJ·mol−1 of the titrating species (i.e. the guest species).

trajectories, corresponding to 50,000 snapshots, were clustered

into thirty representative conformations. The most stable struc-

ture of these thirty representative conformations for each con-

figuration is shown in Figure 4c and Figure 4d. It should be

kept in mind that although the linker is quite rigid, the two CD

cavities can rotate and move around the azobenzene axis.

Throughout the simulations, the C4–C4’ distances and the

C–N=N–C dihedral angles did not fluctuate much. The C–C

average value was 8.9 ± 0.1 and 5.8 ± 0.3 Å and the C–N=N–C

dihedral angle was 175.1 ± 4.8 and −6.3 ± 5.4° for the trans and

cis configurations, respectively.

In these conditions, using azobenzene as a linker between two

β-CD can lead to a modulation of the inclusion properties, such

as a cooperative effect. The cavity of each CD is available to

form an inclusion complex with a hydrophobic guest molecule.

Among these, adamantane is known to be an excellent guest for

the β-CD cavity, with an association constant Ka ranging from

2·104 M−1 to 4·104 M−1 [35]. This is because the adamantyl

residue fits perfectly inside the β-CD cavity. In this present

work, we investigated how the affinity between the dimer of

adamantane and switchable AZO-CDim 1 may be influenced by

the cis/trans ratio of the host molecule. For this purpose, we

synthesized the adamantyl dimer EDTA bis-1-aminoadamantyl-

diamide disodium salt, ADAdim 4, as described by Vasquez

Tato et al. [36] (Figure 5). These authors showed that the single

interaction between one binding site of the ditopic guest

ADAdim 4 and one binding site of a particular β-CD dimer,

bearing a terephthalic acid linker, was independent of the

number of binding sites, that is, no cooperative effect was

observed and a supramolecular polymer was formed.

ITC is one of the most interesting methods to characterize the

interaction of CDs with guests in solution [37,38]. It enables the

Figure 5: Structure of the ditopic guest ADAdim 4.

enthalpy, entropy and equilibrium constants involved in com-

plexation processes to be determined in a single experiment.

Moreover, the guest:host molar ratio (i.e., the stoichiometry of

the complex) can be measured. First, enthalpies of dilution of

the monotopic hosts β-CD and β-CD-NH2, the ditopic host

AZO-CDim 1 and the guest ADAdim 4 were measured in sepa-

rate experiments to determine the maximum concentration to

use for the ITC experiments. Enthalpies of dilution of β-CD and

β-CD-NH2 were negligible over a broad concentration range,

whereas enthalpies of dilution of AZO-CDim 1 were negligible

only for concentrations lower than 1 mM, which is in agree-

ment with NMR data. As observed by Vásquez Tato and

coworkers [39], ADAdim 4 can be considered as a surfactant.

However, by using a maximum concentration of 4 mM in the

ITC experiment, the effect of any heat resulting from a deaggre-

gation process can be avoided. First, the interactions between

β-CD or β-CD-NH2 and ADAdim 4 (added to the CD solution)

were studied by ITC. After integrating the heat signal as a func-

tion of the molar ratio between the guest and the host, the

isotherm was fitted to the one-site binding model as shown in

Figure 6. The average values for the thermodynamic parame-

ters are given in Table 1.
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Figure 6: Titration of (a) β-CD (c = 0.8 mM) and (b) β-CD-NH2 (c = 0.8 mM) by ADAdim 4 (c = 4 mM). (c) Dilution of ADAdim 4 (c = 0.6 mM) in water
at 298 K. Titration of AZO-CDim 1 (c = 0.1 mM) by ADAdim 4 (c = 0.6 mM) (d) before irradiation at 298 K and (e) after irradiation in water at 365 nm
for 120 min at 278 K.

For β-CD and β-CD-NH2, the experimental n values (0.50 and

0.43, respectively) for the complexes correspond to one

ADAdim 4 for two cyclodextrins (stoichiometry 1:2). Consid-

ering the slightly different experimental conditions, all the data

obtained are in very good agreement with the literature [36,39].

The same study was performed with AZO-CDim 1 exhibiting a

cis/trans ratio of 7:93 and the experimental values are presented

in Table 1. As depicted in Figure 6d, two jumps can be

observed in the calorimetric titration curves revealing two inde-

pendent interactions. The experimental curve was well-fit to the

two-sites binding model and the following results were

achieved: the first jump corresponds to a very strong inter-

action between a small fraction of AZO-CDim 1 and ADAdim

4 with n = 0.13 and Ka = 8·108 M−1. The second jump corre-

sponds to a weaker interaction between a major fraction of

AZO-CDim 1  and ADAdim 4  wi th  n  =  0 .77 and

Ka = 8·105 M−1. Assuming a 1:1 stoichiometry in both cases,

the first jump involves 14% of the mixture and the second 86%
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in relatively good agreement with the cis/trans ratio measured

by HPLC (7:93). It is therefore tempting to assign the first jump

to the complexation between ADAdim 4 and the cis isomer of

AZO-CDim 1 and the second jump to the complexation

between ADAdim 4 and the trans isomer of AZO-CDim 1.

To confirm this hypothesis, the same ITC study was performed

after UV irradiation at 365 nm for 120 min (Figure 6e). To

improve the stability of cis-AZO-CDim 1, the titration was

carried out at 278 K under the same experimental conditions as

previously performed. The average values for the thermody-

namic parameters are summarized in Table 1. Again, two jumps

can be observed in the enthalpogram (Figure 6d), the stoichiom-

etry of which has been shifted due to the UV irradiation.

Neither the 20 °C difference nor the changing stoichiometry is

thought to greatly affect the formation constants of the

complexes. We therefore attempted a fit of both experimental

curves with the same values for association constants and

enthalpies. The following parameter values afforded a reason-

able fit:  K1  = 8·108  L·mol−1 ,  ΔH1  = −95 kJ·mol−1 ,

K2 = 8·105 L·mol−1, ΔH2 = −67 kJ·mol−1, with stoichiometries

n1 = 0.26 and n2 = 0.42 (vs experimental stoichiometries

n1 = 0.27 and n2 = 0.44) after irradiation. Assuming a 1:1 stoi-

chiometry in both cases, the first jump involves 38% of the mix-

ture and the second 62%, again matching the cis/trans ratio

measured by HPLC (37:63). This unambiguously proves that

the two jumps detected by ITC correspond to the complexation

of both isomers of AZO-CDim 1.

Interestingly, the association constants measured for the ditopic

host (about 109 M−1 for the cis isomer and 106 M−1 for the

trans isomer) are orders of magnitude larger than the associ-

ation constant for the monotopic β-CD (Ka = 5·104 M−1). This

means that the complexation is highly cooperative, particularly

in the case of the cis isomer. Although it was not demonstrated,

such an additional interaction could explain why the associ-

ation constant between the trans isomer of the ditopic host

AZO-CDim 1 and the ditopic guest ADAdim 4 is significantly

larger than that between β-CD and ADAdim 4. This, in turn,

hints at particularly well matched conformations, as shown by

the molecular simulation (see below).

The 1H NMR spectra of AZO-CDim 1 with a cis/trans ratio of

7:93 were obtained in the absence or presence of an equimolar

concentration of ADAdim 4 (Figure 7a). As previously stated,

each cis and trans isomer could not be isolated in pure form,

complicating the NMR study. In the presence of the ditopic

guest ADAdim 4, a strong broadening of all signals was

observed, indicating the presence of large objects in solution. A

ROESY experiment was also carried out and although the

presence of cross-correlation peaks between protons of AZO-

CDim 1 and ADAdim 4 supports an inclusion complex, the

strong signal broadening impeded any assignment (data not

shown).

Diffusion-ordered spectroscopy (DOSY) is a solution-based

NMR method used to discriminate signals arising from different

species by their diffusion rates. This method is very helpful and

convenient for characterizing molecular aggregates or inclusion

complexes [40]. The diffusion coefficient (D) is directly related

to the molecular mass of the observed species in solution.

In other words, when the molecular mass increases, the diffu-

sion rate decreases. The DOSY spectra for ADAdim 4, AZO-

CDim 1, and an equimolecular mixture of both were recorded

in D2O (Figure 7b) and the measured D values were

3.540·10−10 m2·s−1, 2.293·10−10 m2·s−1 and 1.33·10−10 m2·s−1,

respectively. The D value of ADAdim 4 is smaller than that of

AZO-CDim 1, in accordance with their molecular masses. It is

usually assumed that the D value of an inclusion complex is the

same as that of the host molecule alone [40], however, this was

not observed in our case, which is in agreement with the forma-

tion of larger objects in solution.

The experimental data strongly suggests that AZO-CDim 1 is a

switchable host which forms two different inclusion complexes

with this ditopic guest. The structural analyses of the molecular

dynamics trajectories of the two configurations of the AZO-

CDim 1 systems enable us to draw some conclusions as to how

the adamantyl units could be contained in one or both cavities.

To further support our assumptions, the corresponding systems

were built and minimized. The following main conclusions can

be drawn. For the first, in the cis configuration, both cavities of

the ditopic host AZO-CDim 1 are available for complexation

and their orientation favors the simultaneous inclusion of both

adamantyl units of ADAdim 4, forming a 1:1 chelate-type com-

plex depicted in Figure 8a. The chelate effect has been exten-

sively studied by Breslow et al. [41,42] among others and a

higher stability constant is expected due to the strong coopera-

tive effect. Regarding the second main conclusion, the size and

rigidity of the linker in AZO-CDim 1 prevent the trans con-

figuration from forming ditopic 1:1 complexes upon complexa-

tion with only one molecule of ADAdim 4. Nevertheless, the

two cavities remain available for complex formation through

their wider rim with two adamantyl units belonging to two

different ADAdim 4 molecules, leading to the formation of

supramolecular polymers with an n:n stoichiometry. This situa-

tion has already been encountered in the complex of ADAdim 4

and a β-CD dimer bearing a terephthalic moiety as the linker

[36]. At this stage, based on the molecular dynamics study, at

least two supramolecular polymers can be considered: the first

is linear, as often described in the literature [43,44] (Figure 8b),

and the second is cyclic (Figure 8c). Furthermore, it is possible
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Figure 7: (a) 1H NMR spectra of AZO-CDim 1 (500 MHz, D2O, 2.5 mM) in the absence (bottom) and presence of ADAdim 4 (2.5 mM, top); (b) DOSY
spectra of AZO-CDim 1 (red), ADAdim 4 (blue) and an equimolecular mixture of both (purple), (1 mM, D2O).

that such linear or cyclic polymers are aggregated into larger

objects stabilized by hydrogen bonds between cyclodextrin

moieties and by π-stacking interactions between azobenzene

linkers.

Finally, according to the computational data, the complexes of

AZO-CDim 1 with ADAdim 4 are further stabilized by

intramolecular interactions between CD subunits that are more

favorable in the cis than in the trans configurational arrange-

ment, which is in agreement with the ITC data.

Experimental
Materials and methods
All solvents were used as purchased, unless otherwise noted.

All starting materials were used without purification. β-CD was

purchased from Roquette Frères (Lestrem, France) and β-CD-

NH2 was synthesized as previously described [31] or purchased

from Biocydex (Poitiers, France). Analytical TLC was

performed using Silica Gel 60 F254 plates (Merck, Germany).

Eluents were mixtures of dichloromethane/methanol or cyclo-

hexane/ethyl acetate. Ratios are specified in each case in the

experimental section. Products were illuminated under UV light

(λ = 254 nm) followed by charring with vanillin/H2SO4.

UV analyses were performed on a UV–vis Cary VARIAN spec-

trophotometer coupled with an optic fiber. A 6 Watt mercury

lamp was used (λ = 365 nm) for the irradiation of aqueous

AZO-CDim 1 solutions (c = 10−4 M).

Stepwise control of the reactions was readily achieved by

ESIMS in the positive ion mode using a ZQ 4000 quadrupole

mass spectrometer (Waters-Micromass, Manchester, UK). High

resolution electrospray mass spectra (HRMS–ESI) operated in

the positive ion mode were obtained on a Q-TOF Ultima Global
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Figure 8: Proposed structures of inclusion complexes with the ditopic host AZO-CDim 1 and the ditopic guest ADAdim 4 after minimization by molec-
ular modeling methods: (a) 1:1 chelate-type complex with AZO-CDim 1 in its cis configuration; linear (b) and cyclic (c) supramolecular polymers with
AZO-CDim 1 in its trans configuration.

instrument (Waters-Micromass, Manchester, UK). Data acquisi-

tion and processing were performed with MassLynx 4.0 soft-

ware. High resolution mass spectra were recorded in the posi-

tive mode on a ZabSpec TOF (Micromass, UK) tandem hybrid

mass spectrometer with EBETOF geometry. The compounds

were individually dissolved in a 1:1 water/CH3CN mixture at a

concentration of 10 μg·cm−3 and then infused into the electro-

spray ion source at a flow rate of 10 mm3·min−1 at 333 K. The

mass spectrometer was operated at 4 kV while scanning the

magnet over a typical range of 4000–100 Da. The mass spectra

were collected as a continuum profile data. Accurate mass

measurement was achieved using polyethylene glycol as the

internal reference mass with a resolving power set to a

minimum of 10,000 (10% valley).

NMR experiments were performed at 300.13 and 600.13 MHz

using Bruker AVANCE DPX300 and AVANCE 600 spectrom-

eters equipped with a Z-gradient unit for pulsed-field gradient

spectroscopy. Me4Si was used as an external standard and cali-

bration was performed using the signal of the residual protons

or of the carbon of the solvents as a secondary reference.

Measurements were performed at 300 K with careful tempera-

ture regulation. The length of the 90° pulse was approximately

7 μs. 1D NMR data spectra were collected using 16K data

points. 2D experiments were run using 1K data points and 512

time increments. The phase-sensitive (TTPI) sequence was used

and processing resulted in a 1K·1K (real-real) matrix. The

DOSY experiments were performed using the ledbpgp2s

sequence from the Bruker library, with stimulated echo, longitu-

dinal eddy current compensation, bipolar gradient pulses and

two spoil gradients using 16 different gradient values varying

from 2 to 95% of the maximum gradient strength. A 100 ms

diffusion time and a 2.2 ms gradient length were used.

Isothermal Titration Calorimetry (ITC) was performed using a

VP-ITC microcalorimeter at 298 K or 278 K in pure water.
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Briefly, titration was carried out with 60 injections of 5 µL

every 6 min. Control experiments were performed by the dilu-

tion of the guest solution in water and showed small heats of

dilution. Thus, these results were subtracted from each titration

to remove guest heats of dilution. The experimental data were

fitted to a theoretical titration curve using Origin 7.0, Microcal

software with the one set or two sets of sites models. During

this fitting, enthalpy (ΔH), stoichiometry (n) and association

constants (Ka) were adjustable parameters.

Molecular modeling
Initial geometries of the β-cyclodextrin dimers studied in this

work were built using the LEaP program from the AmberTools

1.4 distribution, following the strategy and methodology previ-

ously established [45]. Except for the linker, the CD fragments

were taken from the R.E.DD.B. database [46] under project

F-85 (http://q4md-forcefieldtools.org/REDDB/). Both the linker

fragment and the cation were defined and parameterized

according to the strategy previously developed using the RED

program [47] along with the RED server [48].

Molecular dynamics (MD) simulations were performed using

the SANDER module of the AMBER10 program suite to

perform MD simulations on the aforementioned complexes

[49]. The systems were solvated in a truncated octahedral box

with a buffer distance of 10.0 Å. The q4md-CD force field para-

meters were used to model the β-CD systems [45]. The parame-

ters used for water were taken from the TIP3P model [50].

Classic MD simulations of 50 ns were then performed using the

NPT ensemble at a pressure of 1 atm and a temperature of

300 K. In order to obtain representative ensembles of conforma-

tions for the two bis-CD systems, molecular configurations

from MD trajectories were clustered.

Ab initio calculations were performed with the Gaussian 09

program [50] to perform quantum chemical calculations. The

structures corresponding to the two configurations of the linker

were optimized at the B3LYP level of theory using the 6-31+G*

basis set.

Synthesis
4,4’-Dicarboxyazobenzene (2): p-nitrobenzoic acid (7.72 g,

46.2 mmol, 1 equiv) and sodium hydroxide (14.24 g, 356 mmol,

7.8 equiv) in 100 mL of water were heated at 338 K for 1 h.

Then, 120 mL of 60 wt % glucose solution in water was added

dropwise in two portions separated by 1 h of stirring. The mix-

ture was heated at 353 K for 3 h and dropped into a large crys-

tallizer where a precipitate appeared on the surface after several

hours. The solid was filtered, dissolved in hot water, acidified

with 100 mL of acetic acid, the precipitate filtered again and

dried under reduced pressure. 4,4’-Dicarboxyazobenzene (2)

was obtained as a pink solid (m = 6.11 g) with a yield of 49%.

The analyses are in full agreement with the literature [30]. Mp >

523 K (dec); 1H NMR (DMSO-d6, 300.13 MHz) δ 8.16 (d, J =

8.4 Hz, 4H), 8.01 (d, J = 8.4 Hz, 4H) ppm; 13C NMR (DMSO-

d6, 75.77 MHz) δ 166.9, 154.3, 133.7, 130.9, 123.0 ppm;

ESIMS (m/z): [M − H]− calcd for C14H9N2O4, 269.1; found,

268.9.

4,4’-Dicarboxyazobenzene bis(N-hydroxysuccinimide ester)

(3): Compound 2 (1.0 g, 3.70 mmol, 1 equiv), N-hydroxysuc-

cinimide (1.87 g, 16.28 mmol, 4.4 equiv) and DMAP (90 mg,

0.74 mmol, 0.2 equiv) were dissolved in 10 mL of DMF at

room temperature. After 10 min of stirring, EDCI (2.13 g,

11.1 mmol, 3 equiv) was added, then the solution was stirred at

room temperature for 16 h under an inert atmosphere. The mix-

ture was extracted by 100 mL of DCM and 100 mL of HCl

(0.1 M). The aqueous phase was extracted twice with 50 mL of

DCM. Organic phases were combined, dried over Na2SO4 and

purified over a plug-in of silica with DCM/MeOH (99:1 v/v) as

eluent to obtain 3 as a red solid (m = 1.41 g) with a yield of

83%. Mp > 523 K (dec); 1H NMR (CDCl3, 300.13 MHz) δ 8.33

(d, J = 8.4 Hz, 4H), 8.07 (d, J = 8.4 Hz, 4H), 2.95 (s, 8H) ppm;
13C NMR (CDCl3, 75.77 MHz) δ 169.3, 161.4, 155.9, 132.0,

127.7, 123.6, 25.9 ppm; HRMS–ESI (m/z): [M + Na]+ calcd for

C22H16N4O8Na, 487.0866; found, 487.0876.

N,N’-Bis[6I-deoxy-β-cyclodextrin-6I-yl]carboxamide-4,4’-

azobenzene, AZO-CDim (1): β-CD-NH2 (2.02 g, 1.78 mmol,

2 equiv) and 3 (404 mg, 0.87 mmol, 1 equiv) were dissolved in

5 mL of dried distilled DMF. After 16 h of stirring at room

temperature, the mixture was concentrated and the product pre-

cipitated by addition of acetone, then dried under reduced pres-

sure. The product 1 was obtained as an orange powder

(m = 4.44 g) with a quantitative yield and an HPLC purity over

98%. Then, the product was purified by flash chromatography

(20 min, H2O/MeOH from 90:10 to 10:90 (v/v), 40 mL·min−1)

to afford compound 1 (2.75 g, 62%). Mp 423 K (dec); 1H NMR

(D2O, 600.13 MHz) δ 7.94 (d, 3JH10–H11 = 8.1 Hz, H10, 4H),

7.90 (d, 3JH11–H10 = 8.1 Hz, H11, 4H), 4.97–5.17 (m, H1
I–VII,

14H), 3.14–4.25 (m, H2
I–VII–H3

I–VII–H4
I–VII–H5

I–VII-

H6
I–VII–H6

I–VII, 84H) ppm; 13C NMR (D2O, 150.76 MHz) δ

168.19 (C=O), 153.56 (C12), 135.35 (C9), 128.21 (C10), 122.94

(C11), 101.28–101.93 (C1
I–VII), 83.69 (C4

I), 80.26–81.05

(C4
II–VII), 71.63–73.54 (C2

I–VII–C3
I–VII–C5

II–VII), 70.44 (C5
I),

59.16–60.42 (C6
II–VII), 41.15 (C6

I); HRMS–ESI (m/z): [M +

Na]+  calcd for C98H148N4O70Na, 2523.8042; found,

2523.8125.

EDTA bis-1-adamantanylamine disodium salt, ADAdim (4):

Adamantine (1.01 g, 6.68 mmol, 2.1 equiv) was dissolved in

30 mL of dried DMF and 10 mL of Et3N. The mixture was

http://q4md-forcefieldtools.org/REDDB/
http://q4md-forcefieldtools.org/REDDB/
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cooled to 273 K under an inert atmosphere and EDTA anhy-

dride (0.82 g, 3.20 mmol, 1 equiv) was added portionwise.

After 16 h of stirring under inert atmosphere, the solvent was

removed under vacuum, and 10 mL of water was added and the

solution was neutralized by HCl. The precipitate was washed

with water, dried under reduced pressure then recrystallized in

MeOH to obtain the diacidic compound. The diacid (814 mg,

1.46 mmol, 1 equiv) was suspended in water (10 mL) and

NaOH (116 mg, 2.90 mmol, 2 equiv) was added. The mixture

was sonicated for 10 min and the product precipitated by addi-

tion of 100 mL of acetone. The solid was filtered, washed with

acetone and dried under reduced pressure to obtain ADAdim 4

as a white powder (m = 420 mg), with a yield of 52% over the

two steps. The analyses are in full agreement with the literature

[36]. Mp 505–506 K; 1H NMR (DMSO-d6, 300.13 MHz) δ 7.47

(NH, 2H), 3.37 (Hf, 4H), 3.15 (Hd, 4H), 2.72 (He, 4H), 1.99

(Hb, 6H), 1.91 (Ha, 12H), 1.60 (Hc, 12H); 13C NMR (DMSO-

d6, 75.77 MHz) δ 172.5, 169.3, 58.8, 55.9, 52.4, 50.8, 41.1,

36.1, 29.0; HRMS–ESI (m /z):  [M + Na]+  calcd for

C30H46N4O6Na, 581.3315; found, 581.3299.
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