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Abstract. In order to assess whether eroded carbon is a net
source or sink of atmospheric CO2, characterisation of the
chemical composition and residence time of eroded organic
matter (EOM) at the landscape level is needed. This informa-
tion is crucial to evaluate (1) how fast EOM can be decom-
posed by soil microbes during its lateral transport and (2)
its impact at deposition sites. This study considers a contin-
uum of scales to measure the composition of EOM across
a steep hillslope landscape of the Mekong basin with in-
tense erosion. We sampled suspended sediments eroded dur-
ing rainfall events from runoff plots (1 and 2.5 m2) and the
outlets of four nested watersheds (0.6× 104 to 1× 107 m2).
Here we show that changes in the chemical composition
of EOM (measured by nuclear magnetic resonance spec-
troscopy) and in its13C and15N isotope composition from
plot scale through to landscape scale provide consistent evi-
dence for enrichment of more decomposed EOM across dis-
tances of 10 km. Between individual soil units (1 m2) to a
small watershed (107 m2), the observed 28 % decrease of the
C / N ratio, the enrichment of13C and15N isotopes as well
as O-alkyl C in EOM is of similar magnitude as changes
recorded with depth in soil profiles due to soil organic matter
“vertical” decomposition. Radiocarbon measurements indi-
cated ageing of EOM from the plot to the watershed scale.

Therefore transport of EOM may lead to enrichment of sta-
bilised soil organic matter compounds, eventually being sub-
ject to export from the watershed.

1 Introduction

Decomposition of soil organic matter is one of the most im-
portant processes controlling the response of the global car-
bon cycle to climate and land use change (e.g. Lal et al.,
2004). Decomposition generally slows down with depth in
the soil profile and stable organic C compounds are gener-
ally found well below the soil surface in subsoil horizons
(Rumpel and Kögel-Knabner, 2011). Organic matter in sub-
soils most probably experienced intensive degradation as
well as vertical transport (Kalbitz and Kaiser, 2012). The
paradigm of one-dimensional microbial decomposition oc-
curring only at depth in the soil profile, as adopted by all
global models, is however highly questionable because of
lateral transport of soil organic matter during hydrologic ero-
sion. In this context, it remains controversial whether eroded
organic matter (EOM) is a source or a sink of carbon (van
Oost et al., 2007, 2008; Lal and Pimentel, 2008; Kuhn et al.,
2009). Organic matter erosion has long been considered to
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represent a major source of atmospheric CO2 (Jacinthe and
Lal, 2001), but recent modelling evidence suggests that agri-
cultural erosion could lead to a removal of 0.06–0.27 Pg of C
from the atmosphere per year (van Oost et al., 2007; Berthe et
al., 2007) because erosion transports otherwise labile carbon
into landscape elements where its decomposition is slowed
down. Transport processes may lead to EOM fractionation
as well as to its transformation thereby changing its impact
at the site of deposition. In order to obtain detailed under-
standing of changes occurring during transport, the nature of
EOM has to be evaluated at different scales. Compositional
changes of organic matter transported in the horizontal direc-
tion during soil erosion and in the vertical direction within
the soil profile have never been compared. Such a compari-
son may provide an indication about the effect of the decom-
position and transport processes operating in either direction.

In general, erosion leads to preferential detachment and
transport of light particulate organic matter (Gregorich et
al., 1998; Rodriguez-Rodriguez et al., 2004). This frac-
tion is usually composed of structurally labile plant lit-
ter compounds, such as proteins and polysaccharides, with
minor contribution of more recalcitrant structures, such as
lignin and cutin (Kölbl and Kögel-Knabner, 2004). There-
fore, the potential carbon mineralisation from EOM collected
in eroded sediments is usually enhanced compared to bulk
soil (Jacinthe et al., 2002; Mora et al., 2007; Juarez et al.,
2011). However, contribution of highly stable organic matter
compounds, such as black carbon, found to be eroded prefer-
entially from fire-affected soils under slash and burn agricul-
ture (Rumpel et al., 2006a), may lead to reduced respiration
rates of EOM. Ultimately, it is the relative contribution of
labile versus other stable organic matter types to the eroded
carbon flux, and their evolution during transport through the
landscape, which determines the net C source or sink bal-
ance of EOM as well as their impact on soil organic matter
mineralisation at the sites of their ultimate deposition.

In this study, we tracked EOM compositional changes of
sediments collected at different nested scales in a tropical
sub-watershed of the Mekong River, one of the most bio-
chemically active regions of the world because of high ero-
sion rates and tropical climate conditions. Specifically, we
measured the elemental, isotopic and bulk chemical compo-
sition of sediments eroded from six nested scales of observa-
tion, going from pedon units of one square metre to the wa-
tershed (107 m2). Data for every scale were recorded during
34 rainfall events of the rainy season of 2003. Depending on
the rainfall intensity EOM transport can be fast during thun-
derstorms leading to massive soil carbon loss as previously
demonstrated by Chaplot and Poesen (2012), but so far, little
information exists on the quality of EOM and its fate dur-
ing its downslope and downstream transport. The aim of the
study was to assess the changes occurring in elemental, iso-
topic and biochemical composition of EOM recovered from
different scales (horizontal direction) and to compare them
to changes occurring during soil organic matter stabilisation

Figure 1. Topography of the study area in northern Laos and lo-
cation of the sampling sites at the outlet of the 0.6× 104 m2,
30× 104 m2, 60× 104 m2 and 1× 107 m2 catchments.

from topsoil to subsoil horizons (vertical direction) for five
major rainfall events occurring throughout the rainy season.

2 Material and methods

2.1 Study area (geology and climate)

This study was performed in an easily accessible typical
sloping land area of northern Laos under traditional slash-
and-burn agriculture (Fig. 1). The study area is a watershed
of 10 km2 (i.e. 1× 107 m2) forming part of the Mekong River
Basin. It shows high relief formed within silty to sandy shales
(Fig. 1). Altitudes (Z) range from 280 m at the watershed out-
let to 1331 m in the southern part characterised by limestone
cliffs. The medianZ is 521 m and the coefficient of varia-
tion of Z is 78 %. Hillslopes exhibit on average a gradient of
32 % and are marked by an asymmetry with short gentle hill-
slopes in the northern part and long and steep slopes in the
southern part. Alfisols (Soil Survey Staff, 1999) or Luvisols
(WRB) developed from shales are the most common soils in
the watershed (Chaplot et al., 2005).

The area is under traditional shifting cultivation and
slash-and-burn agriculture. This practice consists of clear-
ing patches of secondary forest and woody/bushy fallows
and burning of ground residues to enable cultivation for a
short period before the land is allowed to revert to fallow
re-growth. Secondary forests cover about 15 % of the whole
surface area, mostly on the crest tops.
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The study area has a tropical climate with two distinct sea-
sons. The 30-year average annual rainfall is 1403 mm and the
mean annual temperature is 25◦C. Rainfall exceeds evapo-
transpiration throughout the rainy season. The months from
November to April are the driest. During the study period in
2003, 34 rainstorms occurred from 25 May–2 October with
a cumulative rainfall amount of 1044mm. These events oc-
curred with rainfall between 4 and 127 mm and eight events
had a cumulative rainfall over 40 mm.

2.2 Plot establishment

In a tributary of the Mekong River, we selected six nested
scales from 1, 2.5, 0.6× 104, 30× 104, 60× 104 and
1× 107 m2 in an attempt to investigate the different erosion
mechanisms of detachment, transport and sedimentation and
those involved in the decomposition of the EOM (Fig. 1).

At the hillslope level, 12 enclosed micro-plots of 1 m2 and
eight plots of 2.5 m2were installed at four positions from
the back-slope to the upslope. These micro-plots are part of
the micro-catchment of 0.6× 104 m2 under the third year of
rice production following a 4-year fallow period. The weir
of the 0.6× 104 m2 micro-catchment was constructed within
the hillslope, at the back-slope position and collected sur-
face runoff and sediments. It exited in the main Houay Pano
flume with a permanent flow to the watershed outlet. In this
paper the term “micro-plot” is used for the 1 m2 areas, and
“plot” for the 2.5 m2. The term “micro-catchment” is used for
an area of 0.6× 104 m2, “catchment” for both the 30× 104

and 64× 104 m2 surfaces and “watershed” for the 1× 107 m2

surface area.
Field measurements were carried out from May immedi-

ately after the sowing of rain-fed rice to November following
the harvest. The plots were weeded in mid-June, late July and
at the end of August. Weeding was performed by shallow till-
ing (0–2 cm) with a hoe.

2.3 Soil sampling

Soil surface samples (0–5 cm) of the bare soil were collected
in twelve 1 m2 plots and eight 2.5 m2 plots. Three randomly
chosen sampling locations were selected in the vicinity of
each plot. The samples were collected manually, mixed, air-
dried at room temperature, and passed through a 2 mm sieve
for further analysis of the soil organic carbon.

2.4 Sediment sampling

The sediment sampling was performed in situ and at all the
spatial scales investigated from 15 May 2003, which corre-
sponded to crop sowing to the end of the 2003 rainy sea-
son. A total of 34 rainstorm events with a cumulative rain
of 800 mm occurred during that period and were consid-
ered. On micro-plots and plots (1 and 2.5 m2 plots), the total
runoff volume from each micro-plot replicate was measured
after each rainfall event and aliquots of water and suspended

sediments were collected using buckets. At the catchment
level (0.6× 104 to 1× 107 m2) automatic water samplers and
recorders were used. All the 34 events were used to esti-
mate the runoff, sediment losses by water erosion, while the
information on organic matter quality and losses was com-
puted from five rainstorms, randomly selected but stratified
by storm size and occurrence during the rainy season to in-
vestigate events of different intensities.

All the water samples were oven dried to estimate sedi-
ment concentration and sediment discharge. These samples
were later acid fumigated to remove inorganic C (Harris et
al., 2001) and analysed for total organic carbon (OC), and
elemental, chemical and isotopic compositions.

2.5 Elemental and stable isotope analysis of carbon and
nitrogen

OC and N contents were determined by the dry combustion
method using a CHN auto-analyser (CHN NA 1500, Carlo
Erba) coupled to an isotopic ratio mass spectrometer (VG
Sira 10) yielding the ratio of stable OC isotopes (δ13C). Sta-
ble N isotope ratios (δ15N) were determined with a CHN
analyser coupled to an Isochrom III Isotopic mass spectrome-
ter (Micromass-GVI Optima). Results for isotope abundance
were reported in per mil (‰) relative to the Pee Dee Belem-
nite standard (PDB) and relative to air N2 for δ13C andδ15N,
respectively. Analytical precision was±0.1 mg g−1 for OC
and ±0.05 mg g−1 for N content. Analytical precision for
isotope measurements was±0.3 ‰. C / N ratios were calcu-
lated on a weight/weight basis.

2.6 14C activity measurements

Measurements of14C activity were performed to assess the
mean residence time of C within the system. The14C activ-
ity was measured on CO2 obtained by combustion of solid
samples at the accelerated mass spectrometer “AMS” facility
“Artemis” in Saclay, France.

2.7 Chemical composition

The chemical composition of EOM was analysed by13C CP-
MAS NMR spectroscopy after demineralisation with 10 %
hydrofluoric acid. This treatment was found not to alter
the chemical composition of organic matter as seen by
NMR spectroscopy (Rumpel et al., 2006b). The spectra were
recorded on a Bruker DSX-200 NMR spectrometer. Cross-
polarisation with magic angle spinning (CPMAS) (Schaefer
and Stejskal, 1976) was applied at 6.8 kHz. The13C chemical
shifts were referenced to tetramethylsilane. A contact time of
1 m was used and the pulse delay was 400 ms. Solid-state13C
NMR signals were recorded as free induction decay (FID)
and Fourier transformed to yield the NMR spectra. The spec-
tra were integrated using the integration routine of the spec-
trometer. The chemical shift regions 0–45, 45–110, 110–140,
140–160 and 160–220 ppm corresponded to alkyl C, O-alkyl
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Table 1.14C activity and ratios of chemical groups as seen by13C CPMAS NMR spectroscopy determined for soil and eroded sediments at
different scales.

Scale Size 14C activity alkyl C/ O-alkyl C/
ha pmC O-alkyl C aryl C

Soil 112.1± 0.6 0.69 1.14
Micro-plot 1 m2 n.d. 0.74 1.03
Plot 2.5 m2 n.d. 0.71 1.35
Micro-catchment 0.6× 104 m2 108.1± 0.6 0.63 2.05
Catchment 30× 104 m2 108.3 ±0.6 0.57 2.10

64× 104 m2 109.0± 0.6 0.56 2.44
Watershed 1× 107 m2 104.5± 0.6 0.60 2.69

C, C substituted aryl C, O substituted aryl C and carboxylic
C, respectively (Wilson, 1987).

2.8 Statistical analyses

Data sets were tested for significance using the Mann and
Whitney test. Significant difference was declared atp <

0.05. These analyses were done with Microsoft Excel.

3 Results and discussion

The amount of EOM, and its isotopic and chemical compo-
sition, collected across a continuum of spatial scales across
the watershed suggest changes in its biogeochemical proper-
ties during transport (Figs. 2, 3 and 4, Table 1). Firstly, we
observed an increase in the carbon content of eroded sedi-
ments from the 1 to the 2.5 m2 scale, followed by a decrease
at larger scales (Fig. 2). The C / N ratio of EOM decreased
significantly towards larger scales, going from C / N= 14 at
the 1 m2 scale down to C / N= 10 at the 107 m2 scale. This
suggests either preferential removal of C relative to N by
microbial decomposition, or enrichment in nitrogen during
EOM transport. Stable carbon and nitrogen isotopic ratios
increased towards larger scales by 4–5 ‰ for13C and 1–2 ‰
for 15N (Fig. 3).

While both sediment detachment and runoff generation are
certainly point phenomena and may be assessed on micro-
plots, sedimentation or EOM decomposition is only oper-
ative at a certain distance from the “source” (Bloschl and
Sivalapan, 1995; Chaplot and Poesen, 2012). Thus different
observation points associated with the various nested scales
along the downstream transport of sediments allowed the
localisation and the quantification of the sedimentation to-
gether with an assessment of the potential fate of EOM dur-
ing its downstream transfer. The action of microbial decom-
position on EOM at larger scales is evidenced by changes in
the stable carbon and nitrogen isotopic ratios, which both in-
crease towards larger horizontal scales and therefore longer
transport (Fig. 3). An isotopic enrichment of similar magni-
tude is usually observed within soil profiles during organic

Figure 2. Organic carbon(A), nitrogen content(B) and C / N ratio
(C) for the bulk soil and sediments collected at the different spatial
scales under study. Mean values, standard errors and standard devi-
ations were computed from the different plot repetitions and from
the 34 rainfall events under study.

matter decomposition and stabilisation due to “vertical” mi-
crobial processing of labile carbon compounds (Rumpel and
Kögel-Knabner, 2011). The biggest increase in13C and15N
content of soil organic carbon is found at the scale of 30

Biogeosciences, 11, 3299–3305, 2014 www.biogeosciences.net/11/3299/2014/
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Figure 3. Box plot of δ13C (A), δ15N (B) for the bulk soil and for
sediments collected at the different spatial scales under study. Mean
values, standard errors and standard deviations were computed from
the different plot repetitions and from the 34 rainfall events under
study.

× 104 m2. Further, changes in the radiocarbon content of the
samples also occur in the horizontal direction, i.e. follow-
ing transport. The14C of EOM tends to continue to decrease
from 108 to 104 pMC between soil pedon and watershed
scale (Table 1). Overall, the14C data indicate that EOM is
recent (less than 50 years old).

Chemical composition of EOM was analysed using solid-
state 13C nuclear magnetic resonance spectroscopy. This
method gives a good overview of the bulk chemical composi-
tion of organic matter. In particular, quantitative information
on the contribution of alkyl, O-alkyl, aromatic and carboxyl
functional groups can be obtained. Figure 4 presents the13C
CPMAS NMR spectra of an A horizon of soil and EOM
collected as suspended sediment at the outlet of the erosion
plots at different scales and weirs of the micro-catchment,
catchment and watershed. For larger scales, NMR spectra
of two or three sampling dates are presented. Data show
that the O-alkyl C (45–105 ppm) contribution represented
with 31 and 44 % the largest contribution to organic mat-
ter in soils and EOM in sediments (Fig. 3). These signals
are most likely related to the presence of polysaccharides
(Kögel-Knabner, 1997). The peaks between 0 and 45 ppm
correspond to the presence of lipids, cutin, suberin and other
aliphatic bio-macromolecules, all grouped as alkyl C compo-
nents. The main signal in this region at 32 ppm corresponds
to long-chain methylene structures whereas that at 23 ppm
corresponded to short-chain or branched structures synthe-

Figure 4. Chemical composition of OC in the upper mineral soil
as well as EOM collected after rainfall events at different scales as
seen by 13C CPMAS NMR spectroscopy. Note that at three scales
sediments sampled at several dates throughout the rainy season were
analysed.

sised by micro-organisms during biodegradation (Baldock et
al., 1989; Golchin et al., 1996). Signals between 110 and
160 ppm corresponded to aryl C, mainly lignin-derived phe-
nols: protonated, C-substituted and O-substituted aromatic C
(Knicker, 1993). The main signal at 130 ppm represented C-
substituted aromatic C, which may be derived from stable
aromatic compounds, such as black carbon (e.g. Skjemstad
et al., 1996). No distinct signal was found between 130 and
160 ppm, in the spectrum area corresponding to tannins and
tannin-like structures.

13C CPMAS NMR spectroscopy indicated that at 1 and
2.5 m2 scale, EOM is dominated by an aromatic signal be-
tween 110 and 160 ppm most likely related to the presence
of fire-derived black carbon produced during slash-and-burn
agriculture (Rumpel et al., 2006b). Towards larger scales this
signal is decreasing in favour of O-alkyl C structures, indi-
cators of easily degradable polysaccharide material (Fig. 5).
This is illustrated by an increasing O-alkyl/aryl ratio (Ta-
ble 1). The alkyl/O-alkyl ratio of EOM, which is usually in-
creasing upon organic matter decomposition (Baldock et al.,
1997), is decreasing towards larger scales (Table 1). This may
be related to the clayey texture of the studied soils, which sta-
bilises preferentially O-alkyl material (Rumpel et al., 2008).
Consistent with the elemental and stable isotope data, the O-
alkyl and alkyl compounds may be microbial derived. Chem-
ical composition at the different scales was not dependent
on environmental parameters, as EOM sampled at the same
scale but different sampling dates showed similar NMR spec-
tra (Fig. 4).
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Figure 5.Proportion of signal intensity of13C CPMAS NMR spec-
tra recorded for EOM collected at different spatial scales assigned
to aryl C, alkyl C and O-alkyl C.

It is interesting to note that changes in chemical and stable
isotope composition observed during erosion are very simi-
lar to those occurring with depth in soil profiles established
at the site of the micro-catchment, where the erosion plots
were located (Rumpel et al., 2008). Quantitative evaluation
of carbon erosion showed that only 2 % of the initial EOM
reaches the outlet of the watershed (Chaplot et al., 2005). Es-
timates on the carbon remaining in soil following humifica-
tion and stabilisation processes are in a similar range (Rasse
et al., 2006). However, the timescales on which these changes
are occurring are quite different for the vertical and hori-
zontal direction (> 500 yr in the vertical and< 50 yr in the
horizontal direction). Our data suggest in accordance with
other work on OM compounds stabilised by pedogenic pro-
cesses (e.g. Kiem and Kögel-Knabner, 2003; Spielvogel et
al., 2008; Rumpel et al., 2010) that EOM compounds are
mainly microbial-derived carbohydrates, which are stabilised
due to interaction with the mineral phase. Desorption and in
turn mineralisation of these labile compounds when reaching
fresh and/or saltwater systems may be limited (Butman et al.,
2007). We conclude that OM stabilisation is greatly acceler-
ated during the erosion process. Our results do however only
provide qualitative information on these changes. To address
quantitatively the source and sink functions of EOM it would
be necessary to assess the actual CO2 loss due to its degrada-
tion. Such an assessment is extremely difficult due to the high
probability of EOM to be re-deposited within the watershed
(Chaplot et al., 2005). In fact, EOM recovered at the water-
shed scale may have been subject to continuous deposition
and re-mobilisation and during these processes it may have
been subject to decomposition and stabilisation processes,
leading to enrichment of stabilised organic matter and mi-
crobial compounds.
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