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It is coming nowadays more clear that in order to obtain a unified description of the different mechanisms governing the
behavior and causality relations among the various parts of a living system, the development of comprehensive computational
and mathematical models at different space and time scales is required. This is one of the most formidable challenges of modern
biology characterized by the availability of huge amount of high throughput measurements. In this paper we draw attention to
the importance of multiscale modeling in the framework of studies of biological systems in general and of the immune system in
particular.

1. Introduction

The language of mathematics has been extensively used to
describe natural phenomena of the physical sciences in terms
of models based on equations. The mathematical language
allows logical reasoning over a representation of the physical
entities involved in the phenomenon and makes possible to
account for the observations made through experimentation.

In designing the mathematical model of a natural phe-
nomenon the first and fundamental step is to define the
mathematical variables that play a role in the phenomenon
under investigations, according to the goals which the model
is built for. For example, to calculate the decay rate of a
certain protein, a variable to describe the changes of the
protein concentration in the blood can be used. In this
case the dynamics of the atoms and the ions is neglected
and the information about the folding of the protein itself
is lost. The origin of this oversight is related to the basic
principle sometimes referred to as the lex parsimoniae most
commonly known as the Ockam’s Razor. “Pluralitas non est
ponenda sine necessitate” in very simple words states that in

the description of a phenomenon, the most useful model is
the most parsimonious one in terms of elements used. In this
regard, following up the above example, it makes little sense
to describe the laws governing the forces accounting for the
folding of the protein if we are interested in the half-life of the
protein and we can estimate its decay rate by fitting a curve
to a set of experimental data about the concentration in the
blood of that protein.

William of Ockham was a Franciscan monk and logician
who lived in the 14th century in a village of the English
county of Surrey. At that time the principle of parsimony in
describing andmodeling a natural phenomenonwaswell rea-
soned. However, today the situation is a bit different. The lex
parsimoniae is still valid and indeed is used when describing
a phenomenon, but besides classical mathematical models
allowing for an exact analytical approach, another modus
operandi is now commonly employed [1–3]. This is what we
can call the synthetic approach consisting in constructing a
replica or toy of the studied system in terms of the most
important identified elements and the laws governing the
relationship among them. Actually this approach is not new
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at all. The “engineer” Leonardo Da Vinci used this approach
to construct toy models of flight machines before attempting
anything real-scale.

What is new today is that we can use digital computers to
construct toy models of complex systems. Indeed extremely
powerful CPUs can be instructed to execute algorithms
representing entities and laws and all kinds of conceptual
experiments on those entities and laws can be made. This
“digital synthetic” approach is commonly referred to as
simulation.

Today, when studying a certain natural phenomena,
scientists first identify elements and basic laws governing the
dynamics of the system then they represent them as data
structures and algorithms and finally execute the algorithms
to observe how the system evolves. The Ockam’s principle
is still valid and used in the first phase of this process but
beyond that the parsimony is forsaken, and the complexity
of the initial toy model is augmented by simply adding
new entities and laws. Indeed, with little difficulty we can
detail processes incorporating hypothetical or experimentally
derived knowledge. We can even compose preconstructed
models of different parts of the real system or arrange models
describing reality at different scales of observation, thus
constructing a multiscale model. Ockam’s Razor has been
extensively used in classical mechanics models generating a
cascade of models of increasing complexity. An interesting
example arises frommodels of fluid dynamics which consider
first uncompressible nonviscous fluids in a linear regime to
move toward more complex situations like boundary layers
and turbulent regimes. Models including different regimes
are still difficult to perform.

This holistic approach is what in modern biology is
called systems biology [4]. In this regard, there is another
important aspect that should not be left out from the whole
picture: the contemporary data explosion deriving from
genomic, transcriptomics, proteomics, and metabolomics
studies consisting in high dimensional datasets produced by
latest high throughput measurements methods [5]. Other
types of data coming frommodernmicroscopy and biological
imaging contribute as well to the detailed description of the
constitutive parts and basic structures of living organisms [6].
On that account, the challenge has its main feature in relating
these datasets to higher-level phenotypic characteristics and
computational multiscale modeling approaches are set to
reveal quantitative mechanistic relationships between these
various measurements [7]. For example, high throughput
gene expression data can be used to infer knowledge of
the intracellular activities that can be later ascribed to the
behavior of cells in a higher-level description; for example,
the expression of the gene GATA3 in CD4 T lymphocytes
in certain experimental conditions gives indication about the
differentiation state of these cells and ultimately on the Th1
or Th2 bias of the immune response [8]. This information is
relevant to the construction of a mathematical model of the
immune response.

Recently, the topic ofmultiscalemodeling has been drawn
a great deal of attention and is discussed in many articles
and reviews [6, 9–15]. Similarly, the present paper aims at
giving ameaning to the concept ofmultiscalemodeling in the

framework of studies of biological systems in general but with
particular interest in the immune system. It provides a general
introduction to themethodological issues of multiscale mod-
eling avoiding pointing to a specific and well-definedmethod
to deal with this matter. Indeed, while there are methods
borrowed from other field (e.g., computational chemistry)
that can be used in special cases, a well-developed math-
ematical framework that is general enough to account for
the extremely large variety of biological phenomena, is still
missing. Nevertheless, an interesting attempt in this respect
is given in [16] together with two examples showing how
to bridge different single-scale models. Extensive readings,
including specific examples, can be found in the above-cited
reviews and also in [17–22].

It is worth stressing that the important role that the
environment has in the dynamics of complex physics and
living systems is not considered in this paper. Therefore the
contents of the present refer to closed systems.

2. From Micro to Macro: Scales in
Biological Organization

When “measuring” nature we choose a temporal and a spatial
scale that is convenient to make a valid observation. The
choice of the observation scale is an important step in science.
In physics there is a somehow well-defined dividing line
among different research areas based on the characteristic
lengths of the systems studied and on the characteristic
time of the phenomena under investigation. For instance,
microphysics (e.g.,molecular physics, atomic physics, nuclear
physics, and particle physics) refers to areas of physics that
study phenomena that take place at the microscopic scale
(lengths < 1mm). Similarly, in biology we can distinguish
frommolecular biology, microbiology, and cell biology look-
ing at length scales below tenths of micrometers. Major
levels of biological organization are regulated at scales of
many orders of magnitude in space and time (see Figure 1),
with space spanning from the molecular scale (10−10m) to
the living organism scale (1m) and time from nanoseconds
(10−9 s) to years (108 s). In biology, while we can intuitively
assert if a determined process involves cells, molecules, or
organs, it is not so simple to identify values for the lengths
at which we switch from one level to the next [6].

2.1. Single-LevelModels. Roughly speaking,multiscalemodel
is a composition of two or more “single” scale models repre-
senting the same phenomenon (or its parts) at different levels
of descriptions. Even if the models we want to combine share
the level of description, themanner in which the components
are put together, namely, how the variables should be linked
together, is a challenging part. For example, a simple model
that describes theHIV infection of T helper lymphocytesmay
also take into account the coinfection of antigen presenting
cells like macrophages and dendritic cells. Adding this new
cell compartments to the original simplisticmodel introduces
the problem of describing the immunological mechanisms
of activation of the adaptive immunity by the innate one; in
particular, the macrophages and the dendritic cells are both
virus target and main actors of T helper priming.
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Figure 1: Multiscale models of the human body targeting complex processes span many time and length scales of biological organization.
They cover a combination of discrete and continuous mathematical descriptions of different systemic components.

Moreover in biological phenomena complexity arises not
only from the action of many independent actors, like in
social science, but also from the fact that changes at lower
scalesmodify theway inwhich those actors will play at higher
scale. For instanceDNAmodification in a cellmay change the
cell in a tumor cell which then duplicates much faster than
a normal one changing the overall scenario both at cellular
and at tissue level. In most biological models this “vertical”
or “interscale” complexity must be taken into account.

In the study of complex phenomena involving the
immune system in pathological conditions, a unified view is
necessary to reach a comprehension of the various mecha-
nisms in action and of the causal relationships among differ-
ent immune system components as well as repercussions on
different anatomical parts [7]. More than for other complex
systems, the distributed nature of immune system functions
evidences the need of an integrated approach. The evolution
of a disease like diabetes or cancer [23] is representative of
this fact.

As already mentioned, mathematical models that try to
describe such mechanisms, usually fix the spatial and tem-
poral scale and describe the system with a mathematical or
computational (i.e., algorithmic) formalism [11, 12, 14]. Com-
puters do the rest as they provide the dynamics by executing
(resolving) the rules just described in the mathematical
formalism. The whole dynamics depends on parameters and
initial conditions so that one generally attempts hypothetical

scenarios bymodifying those initial conditions to get a feeling
of the systems behavior [20, 22]. This process leads itself in
discovering new knowledge. However, the problem is that the
real system is in general not isolated hence a local description
is not sufficient to disclose crucial mechanisms. It comes
quite clear that one of the reasons why biological phenomena
are intrinsically complex is because they are influenced by
variables that are outside a single level of space/temporal
description. Moreover the collective behavior cannot be
simply inferred from the behavior of its elements and the
alteration of only one element or one interaction reverberates
on the whole system. Finally a global organization emerges
from the interacting elements (emergent behavior), which
does not exist at the individual elements level.

3. Top-Down, Bottom-Up, or Middle-Out?

It should be noted that experiments are done at many
scales, ranging from single molecules or proteins to whole
organs and organisms, and therefore, experimental informa-
tion exists at different scales. Therefore, relying on different
experimental data, amodel can be formulated using twomain
approaches, that is, top-down or bottom-up [24, 25]. If one
chooses to take into account the individual elements and their
interactions, studying the resulting biological systemas a con-
sequence of the emergent behavior of its single components,
then the bottom-up approach takes place. For example one
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can model the different immune system entities composed
of cells and molecules to simulate the immune response
against a specific pathogen, or one can use the cells as the
basic elements and study tissue-level properties as results of
the interactions of the cells. The advantage of this type of
approach is that it is adaptive and robust, in the sense that if
the available biological knowledge varies, one can adapt the
new knowledge to the specific components of the model, in a
very selective way. Moreover this kind of approach is suitable
for studying the emergent properties of systems consisting
of a large number of interacting elements. The intensive
computer power required is the main disadvantage for the
bottom-up approach and can be sometimes even prohibitive.
Besides, the model itself can become too complicated to be
controlled.

Instead, one can decide not to look straight into the details
of the individual elements, but to consider the system at the
macroscopic level, using experimental observations as guide-
lines during the formulation of the model. This is the case
of the top-down modeling approach. For example, to keep
on with the same example above, one can decide to model
the immune system response against a specific pathogen
ignoring the specific type of cells and their properties and
modeling the global effect of population of cells, based on
whole-cell experimental recordings. The clear advantage of
this approach is that it is relatively simple. On the other hand,
the flexibility and the robustness of the model are less evident
compared with the bottom-up approach. Moreover, it should
be highlighted that the variables and parameters in these
models are largely phenomenological without direct con-
nection with detailed physiological parameters. Due to this
reason, itmay sometimes happen that the top-down approach
does not correctly reveal the actual responsible mechanism,
for example, when there are multiple mechanisms for the
same behavior or a single mechanism resulting in multiple
effects.When existing components have to be integrated with
some new part a third design principle, named “middle-
out,” is used [26]. This paradigm promotes the integration of
organs’ models at different scales without posing limitations
to the level of details each single component should be
equipped with (recall the lex parsimoniae). In this regard, it
must be emphasized that multiscaling is not about sophisti-
cation but rather poses a different challenge, that of themodel
integration.

4. Multiscale Modeling of Biological
Properties and Functions

Spanning from the lowest scale to higher levels, different
modeling techniques can be chosen [27]. For intracellular
scale, the modeling technique tries to give a detailed descrip-
tion of the molecular processes happening inside the cells.
Using experimental data, these kinds of models make use of
the differential equation description to forecast themolecular
dynamics of specific cellular pathways. Changes in themolec-
ular concentrations are described by these models by mass
action or Michaelis-Menten kinetic rate-law equations.

The Belousov-Zhabotinsky reaction represents a good
example of a bidomain model that depicts a phenomenon

beginning from the microscopic dynamics at a lower space
scale, that is, wave propagation in reactivemedia. In its simple
form it may be comprehended in terms of the following
representation [28] including an autocatalytic reaction 𝐴 +
𝑌 → 𝑋 + 𝑃, 𝑋 + 𝑌 → 2𝑃, 𝐴 + 𝑋 → 2𝑋 + 2𝑍,
2𝑋 → 𝐴 + 𝑃, and 𝐵 + 𝑍 → ℎ𝑌 + 𝑄, where the
variables represent concentrations of specific molecules (e.g.,
bromomalonic acid or carbon dioxide) and ℎ is a constant.
Translated to ordinary differential equation the system is
𝑑𝑋/𝑑𝑡 = 𝐴𝑌−𝑋𝑌+𝐴𝑋−2𝑋

2, 𝑑𝑌/𝑑𝑡 = −𝐴𝑌−𝑋𝑌+ℎ𝐵𝑍, and
𝑑𝑍/𝑑𝑡 = 2𝐴𝑋−𝐵𝑍, where𝐴, 𝐵, and 𝑃 are held constant.The
multiscale property of this model is found in the occurrence
of the wave at a level that is above the one chosen to describe
the phenomena, that is, the molecular level of the reactants.

The main difficulty is represented by parameter identifi-
cation: the experimental estimation is often made in isolated
systems that, by definition, do not permit generalization to
the real case. If the interacting entities in a system to be
modeled can be thought as homogeneous, then the most
common choice is the use of ordinary differential equations.
If the space is variable, then partial differential equations can
represent a better technique [29].

In the case of intracellular models that consider small
number of entities,microsimulation can represent an alterna-
tive to differential equations.The authors in [30, 31] proposed
the Gillespie algorithm many decades ago. It allows simulat-
ing with a good accuracy chemical or biochemical systems
of reactions generating statistically correct trajectories as
possible solutions of a stochastic equation.

At a higher level of description, tissues or whole organs
are modeled in two different ways: either as functional
compartments or system units or as a collection of micro-
scopic components (e.g., cells). In the first case rather than
specifically model the organ, one can simply use the known
input-output relationship as a black box. This relation is
typically derived from experimental data or published results
and ultimately developed by differential equations. These
kind of phenomenological models aim at reproducing the
observed behavior instead of trying to give an explanation.
Themodeling paradigm based on a collection of microscopic
components intends to typify a tissue as an array of individual
units (i.e., cells) exchanging signals with the environment.
Examples of these multicellular systems have been originally
developed to study the growth of solid tumors [32, 33] and
have later on been applied to simulate the function (the
regeneration) of complex organs like the liver [34].

An interesting example of a well-devised multiscale
model has been developed in the framework of the hemo-
dynamics [35, 36]. The problem deals with a detailed
description of the fluid-dynamics of the blood, by mean
of numerical integration of the Navier-Stokes equations, to
cope with postoperative hemodynamics issues in congenital
heart diseases, artery shunts, or similar heart surgery. In
hemodynamics, local phenomena, such as the perturbation
of flow pattern in a specific vascular region, are strictly
related to the global features of the whole circulation.
However, dealing with whole circulation using Navier-Stokes
equations would be not just useless but rather impossible.
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The method proposes an interesting multiscale geometrical
model where a local, accurate, three-dimensional description
of blood flow by means of the Navier-Stokes equations in
a specific artery (the region of surgical interest) is coupled
with a systemic, zero-dimensional, lumped model of the
rest of the circulation system [37]. What makes the exam-
ple peculiar is the use of lumped models as those exten-
sively used in electrical engineering that resort to simplified
models in place of complex description of other system
parts.

Another methodology worth to be mentioned is the one
using “state transition diagram” [38, 39] which aims to solve
the problem of heterogeneity and multiscale modeling and
the link between mathematical and computer models [40].
This methodology, massively used in theoretical computer
science and software engineering, describes the behavior
of heterogeneous entities by means of (deterministic or
probabilistic) finite state automata. Since each state of the
automaton represents a “situation” related to a level of
description, one could in principle set out a multiscale model
as a combination of automata. However, since the number of
states resulting from the combination of even simple models
tends to be very large, this methodology does not seem to be
of practical use.

If the interest is on simulating a whole cell, then several
projects can provide useful hints (e.g., virtual cell [41], e-
cell [42, 43]), whereas efforts aiming at simulating whole
physiological systems or organs are, for example, models of
the heart [18], of the liver [44], and of the skeletal system [45].
Other efforts aim at creating computational platforms suite to
integrating various physiological processes by integration of
different mathematical and computational models [46]. The
approach is based on the principle that, in biology, there is no
privileged level for the description of a certain phenomenon
and that the interlevel causal relationships are driven by
interactions between multiple levels [47–50].

It is worth stressing that the modelling of complex bio-
logical systems requires a completely different treatment with
respect to the inertmatter. Indeed the entities constituting the
biological systems, which usually operate out-of-equilibrium,
interact among themselves and with their outer environment
and are able to perform individual strategies that modify the
microscopic interactions among the entities composing the
system [51].

Recently the kinetic theory has proposed an alterna-
tive approach for deriving macroscopic equations from the
dynamics delivered at the mesoscopic scale: the asymp-
totic method. Accordingly, this method consists in deriving
macroscopic equations by suitable limits of Boltzmann-type
equations related to the statistical microscopic description;
see the book [52], the paper [53], and the references cited
therein. The first step in the development of asymptotic
methods is the choice of the time-space scaling. Different
types of scaling lead to different types of equations. After
the assessment of the scaling, the distribution function is
expanded in terms of a small dimensionless parameter.
Finally the asymptotic limit is performed under suitable
technical assumptions. Specifically parabolic (or low-field)
scaling of kinetic equations leads to a drift-diffusion type

macroscopic system where the diffusion processes dominate
the behavior of the solutions.

In the hyperbolic (or high-field) limit the influence of
the diffusion terms is of lower (or equal) order of magnitude
in comparison with other convective or interaction terms
and the models consist of linear or nonlinear hyperbolic
equations for the local density.

Finally the use of kinetic models coupled with determin-
istic thermostats has been recently proposed for themodeling
of complex biological systems subjected to external force
field, such as a vaccine, but constrained to keep constant the
total energy; see [54].

5. Multiscale Methods

From the computational point of view, there are methods
employed in other field of science that can potentially be
employed in biology [11]. These are the Quasi-continuum,
the hybrid quantum mechanics-molecular mechanics, the
equation-free, the heterogeneous, the multigrid, the mul-
tiscale agent-based modeling, the multiscale numerical
scheme, and the adaptive tabulation approach. Although we
do not describe them here for brevity (suggesting reference
[11] as a good starting point), we care to say that despite the
fact that each of these has been efficiently applied in a specific
problem domain and each has its pro and contra in terms of
computational efficiency, none of them has emerged as the
multimethod to be used to model biological phenomena.

One example of multiscale approach we care to give
more details on is the one we have used to set up a model
of (type I) hypersensitive phenomena. According to what
just said, it can be classified as a multiscale agent-based
model. It consists in an agent-based formulation of the
cell-cell/molecules interaction pertaining to hypersensitive
responses to a generic allergen in which a detailed gene
regulation dynamics is modeled by means of a Boolean
network [55] (other approaches, as the use of a system of
ordinary differential equations, would work as well [56]).The
two levels (the intra- and the inter-cellular) are integrated in
a quite intuitive way. For each T lymphocyte, the intracellular
gene regulation is driven by the extracellular cytokine con-
centration (consider it as the cell input). On the other hand,
the transcription of certain genes can drive the differentiation
of the cell and also the production of other cytokines (i.e., the
output) which influences the overall immune dynamics [8].

What makes this approach appealing is that omics data
can effectively be integrated with cellular level data largely
available, making a genetic-cause/phenotypic-effect analysis
possible [57]. The kind of information clinicians is looking
after. Moreover, the two levels of descriptions (the gene
regulation through networks) and the intercellular dynamics
of the immune response can be developed independently one
from another and later put together to account for a more
elaborate description of the same, or of other, phenomena.
An example would be a detailed description of T helper dif-
ferentiation in four phenotypes (Th1, Th2, T regulatory, and
Th17) [58] which is at the core of, for example, inflammation
phenomena, with an agent-based simulation of the immune
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response not just of infective pathogens or allergens, but also
of inflammation and emergence of type 2 diabetes [59, 60].

Other works also incorporated networks or ODEs in
agent-based models. See for example, [61] in which the
authors discuss the combination of ODEs for chemokine
receptor internalisation with agent-based models of lympho-
cytes in the context of tissue instability in arthritis. Also in
[62] the authors describe an approach in which they combine
the molecular, the cellular, and the tissue scale in a spatial
model of the intestinal crypt. Moreover in [63] Perfahl et
al. discuss the domain size effects in the context of vascular
tumors in a 3D agent-based approach combined with a
reaction-diffusion system.

Kirschner et al. have provided different examples of
multiscale immune simulation combining the agent-based
paradigm to represent one level of description (i.e., the
cellular mesoscopic level) combined to ordinary differential
equations. In [64] the authors describe the immune response
toM. Tuberculosis representing cells as agents and describing
the time-dependent processes essential to antigen processing
and presentation bymeans of ordinary differential equations.

In another work [65], the same authors present an
approach for integrating information over relevant biological
and temporal scales to generate such a representation for
major histocompatibility complex class II-mediated antigen
presentation.They then show how this kind of models can be
used to suggest newmechanisms and strategies for treatment
and vaccines.

When both stochastic fluctuations and spatial inho-
mogeneity must be included in a model simultaneously,
the resulting computational demand quickly becomes over-
whelming. In this case it would be useful to use an approach
based on coarse-graining methods which turns out to be
essential for realistic multiscale models. For instance in [66],
the authors present an algorithm for simulation of stochastic,
spatially inhomogeneous reaction-diffusion kinetics coupled
to coarse-grained fields described by (stochastic or determin-
istic) partial differential equations (PDEs). They successfully
used thismethod tomodel cell signaling dynamics in spatially
inhomogeneous environments and under the influence of
external fields.

5.1. General Purpose Integration Methods. When developing
a multiscale approach there are few aspects that need to be
taken into account. In general, the time scales on which the
lower-level processes occur are much faster than those on
which the higher-level processes occur. Usually the lower-
level processes can be assumed to occur instantaneously and
can therefore be included as a representation of some kind
of field at the higher level [6]. When we consider joining
independent models of processes that occur on different
scales, it is enticing to simply couple existing components
(i.e., software) for the separate models to one another. This
way to proceed does not consider how inaccuracies in the
values of the variables that are passed between the two
models may affect the combined model. In order to prevent
these inaccuracies from occurring one should consider the
whole as a single model rather than the combination of
two simpler ones. For instance, we can consider that a

microscopic simulator at the cellular level can be coupled
with the description of the intracellular signaling activating a
specific cellular pathway. In this example the differentiation of
T lymphocytes into the phenotypes Th1, Th2, Treg, and Th17
is described at a cellular level by means of individual entities
(e.g., agent-based) whereas the gene regulation is described
by a system of differential equations describing activation
level of each gene of the gene network represented with the
following equation: 𝑑𝑥

𝑖

/𝑑𝑡 = (−𝑒
−𝐶ℎ

+𝑒
−ℎ(𝜔𝑖−𝐶)

)/((1−𝑒
𝐶ℎ

)(1+

𝑒
−ℎ(𝜔𝑖−𝐶)

))−𝛾
𝑖

𝑥
𝑖

, where 𝑡 is the time,𝑥
𝑖

is the activation level of
the 𝑖th gene, 𝜔

𝑖

and 𝛾
𝑖

are parameters relative to the network
topology, and𝐶 and ℎ are constants [55]. Here the lower level
description of gene activation is determined at each upper-
level time step by solving the system of ODEs and the cell
differentiation is executed at the upper level on the basis of
the information coming from the gene expression levels.This
procedure is iteratively executed at each time step and for
each lymphocyte.

From a computational perspective the multiscale nature
of innovative models has prompted the important issue of
reusability of available published models targeting a single
scale. The Physiome project [17, 23] is a prominent effort
aiming at solving this problem by developing a framework
for the modeling of the “whole” human body. As part of
that initiative, the markup language CellML was introduced
with the aim of establishing a worldwide adopted standard
in the development of cellular levels that are modeled as sets
of ODEs [67]. Similarly, FieldML has been defined to model
processes on the tissue and organ level that are represented
as sets of PDEs [68]. Systems biology markup language
(SBML) [69] has been proposed and is now beginning to
make a significant impact on the modeling community as
a means to exchange models. However, neither CellML nor
SBML includes explicit directives to deal with the problem
of implementing a multiscale computational model. To solve
this important issue, however, there are some attempts, for
example, MML [70].

A framework that is devoted to the systems biology
community with the target of easy model interoperability
is represented by the systems biology workbench [71], a
high performance, open-source software infrastructure that
allows heterogeneous application components written in
diverse programming languages and running on different
platforms to communicate and use each others’ capabilities
via a message system.

6. Concluding Remarks

In the study of complex biological phenomena it is necessary
to develop a unified view of the variousmechanisms in action
and of the causal relationships among different parts of that
complex system, [4, 7]. In this paper we have briefly described
the problems faced when one wants to link mathematical or
computationalmodels across different time and length scales.

In many areas of biology and physiology, multiscale
and multiphysics models are very much acclaimed, although
there exists an abundant literature for multiscale models in
science and engineering domains [72], a lot remains to be
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done in terms of translating these mathematical theories and
methodologies to the domains of biology and physiology [73–
75].

A key unsolved issue is how to represent appropriately the
dynamical behaviors of a high-dimensional model of a lower
scale by a low-dimensional model of a higher scale, so that
it can be used to investigate complex dynamical behaviors at
even higher scales of integration [14]. Indeed, the ultimate
goal of multiscale modeling is not just about developing
models at different scales but to link them in a consistent
manner so that the information from a lower scale can be
carried into the simplified model of a higher scale.

The use of differentmodeling approaches introduces gaps
among scales. Multiscale modeling, besides modeling the
system, needs to address the issue of how to bridge the
gaps between different methodologies and between models
at different scales. Unfortunately, there is no specific or
simple way to tell how to achieve this objective, but there are
empirical principles and methods that can be of help.

In the study of the immune system and related patholo-
gies, one method for constructing multiscale models that
has been used by various authors resorts to agents to rep-
resent the mesoscopic level of cells of the immune system
(i.e., the multicellular rule-based modeling in [76]) while
employing ordinary differential equations to describe the
intracellular events as intracellular signalling and partial
differential equations to describe cytokines diffusion at the
extracellular or tissue scale. Level coupling is then per-
formed in a quite straightforward way using concentrations
as input variables to the cellular agents. Whereas modeling
intracellular events can be implemented in many ways (e.g.,
Boolean networks or other generic decision mechanisms)
without explicitly including the variable “space” for com-
putational reasons (but mainly for simplicity), the diffusion
of cytokines (or, another example, cells relocation between
anatomical compartments), is a spatial phenomenon in
character. This can be modeled as a continuous (by means
of PDEs) or as a discrete process (e.g., lattice gas) for
which the computational efficiency is the major limiting
factor.

The goal of computational systems biology is to consider
a biological system from a holistic perspective and use both
experiments and modeling to reveal how the system behaves
[4, 77]. Multiscale models able to exploit laboratory and clin-
ical data at different levels can potentially bridge knowledge
gaps between what is observed at the gene/molecular level
and the clinical evolution of complex diseases [11].

Finally, by integrating these models with detailed mon-
itoring data from emerging body-sensor technology [78],
health care practitioners could be supported in taking diag-
nosis and suggesting optimal therapeutic regimens thus pro-
moting the much acclaimed patient-specific view of modern
health care systems.
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