
HAL Id: hal-01308403
https://hal.sorbonne-universite.fr/hal-01308403v1

Submitted on 27 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determining fixed-point formats for a digital filter
implementation using the worst-case peak gain measure

Anastasia Volkova, Thibault Hilaire, Christoph Lauter

To cite this version:
Anastasia Volkova, Thibault Hilaire, Christoph Lauter. Determining fixed-point formats for a digital
filter implementation using the worst-case peak gain measure. 49th Asilomar Conference on Signals,
Systems and Computers , Nov 2015, Pacific Grove, CA United States. pp.737-741, �10.1109/AC-
SSC.2015.7421231�. �hal-01308403�

https://hal.sorbonne-universite.fr/hal-01308403v1
https://hal.archives-ouvertes.fr

1

Determining Fixed-Point Formats for a Digital
Filter Implementation using the Worst-Case Peak

Gain measure
Anastasia Volkova, Thibault Hilaire, Christoph Lauter

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, France
Email: first_name.last_name@lip6.fr

Abstract—In this article, we focus on the Fixed-Point im-
plementation of Linear Time Invariant (LTI) filters in state-
space representation. For that purpose, we give an algorithm to
determine the Fixed-Point Formats of all the involved variables
(states and outputs). For the sake of generality, the algorithm
works in the case of Multiple Inputs Multiple Outputs filters.

The computational errors in the intermediate steps of the
filter evaluation as well as their accumulation over time are fully
taken into account. We handle several rounding modes (round to
nearest and truncation) for two’s-complement-based Fixed-Point
Arithmetic. Our approach is fully rigorous in the way that the
output Fixed-Point formats are shown to be free of overflows
and we do not use any (non-exhaustive) filter simulation steps
but proofs.

I. Introduction

The implementation of a digital filter can be considered as
a path from filter specifications to a physical implementation
(DSP device). This process includes generation of a transfer
function, which defines the relation between the inputs and
outputs of a filter. Further one needs to choose a filter structure
to be eventually implemented, i.e. a computational scheme, a
specific order of filter evaluation. Finally, there is software and
hardware code generation.

However, on each step various issues arise. First of all,
every transfer function must be discretized, which implies the
modification of filter. Secondly, while in infinite precision filter
structures (e.g. Direct Forms [1], State-Space [2], Wave [3]
etc.) are equivalent, they are no longer the same objects in
finite precision. Since the computational schemes are different,
the round-off errors and consequently quality of structures
vary. Finally, software and hardware implementations are
performed under constraints, e.g. power consumption, area,
output error, etc. And on each step of the filter implementation
the degradation due to finite precision must be taken into
account in order to produce a reliable implementation.

To unify the above-described process of filter implementation
for any Linear Time-Invariant (LTI) filter and provide reliable
implementation, we develop an automatized filter generator. Its
work-flow is described in the Fig. 1.

In this paper we focus on one of the various steps: the
Fixed-Point (FxP) Algorithm generation step and wordlength
optimization. On this step we already know target specifications

This work has been sponsored by the Agence nationale de la recherche
grant ANR-13-INSE-0007-02 MetaLibm.

H(z) SIF Structure
choice

FxP
algorithm

Code
generation

structures measures wordlengths target

Fig. 1. Automatic filter generator flow.

and software implementation constraints. Therefore, during this
optimization, we naturally look for a trade-off between area (for
hardware implementation) and computational errors. If we take
more bits, the implementation cost arises. If we take less bits,
there exist a risk of an overflow. Depending on the application,
one or even both criteria can be neglected. However, in the
general case on each step of the optimization procedure we
need to determine rigorously the Fixed-Point Formats (FxPF),
i.e. the most and the least significant bits positions, for all
variables in the filter implementation. These formats must
allow no overflow and take into account computational errors.

There exist various approaches on determining FxPF, such
as Affine Arithmetic [4], or the common approach of numerous
simulations [5]. However, these methods are not suitable for
our needs since they do not give any mathematical guarantee
on the absence of overflow for any possible input and tend
to overestimate. We, on the other hand, propose a rigorous
algorithm completely based on mathematical proofs.

In Section II we describe the fixed-point arithmetic in
question and theoretical background for our approach. In
Section III we define the problem for a filter in a state-
space representation and introduce a two-step algorithm. Error
analysis of the algorithm is presented in Section IV. Finally,
numerical results are provided before conclusion.

Notation: Throughout the article matrices are in uppercase
boldface, vectors are in lowercase boldface, scalars are in
lowercase. All matrix inequalities and absolute values are
considered element-by-element. The matrix 1 denotes a matrix
of ones with the appropriate size.

2

m + 1 −`

s

w

−2m 20 2−12m−1 2`

Fig. 2. Fixed-point representation (here, m = 5 and ` = −4).

II. Basic bricks

A. The Worst-Case Peak Gain theorem

Let H := (A, B,C, D) be a Bounded-Input Bounded-Output
stable MIMO LTI filter in state-space representation:

H

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (1)

where u(k) ∈ Rq×1 is the input vector, y(k) ∈ Rp×1 the output
vector, x(k) ∈ Rn×1 the state vector and A ∈ Rn×n, B ∈ Rn×q,
C ∈ Rp×n and D ∈ Rp×q are the state-space matrices.

We will use the following approach on deducing the output
interval for a filter: suppose all the inputs are guaranteed to
be in a known interval:

∀k, |ui(k)| 6 ūi, i = 1, . . . , q. (2)

Then, there exists a N0 such that ∀k ≥ N0 the output y(k) lies
in the interval:

|y(k)| 6 〈〈H〉〉 ū, (3)

where 〈〈H〉〉 denotes the so-called Worst-Case Peak Gain
(WCPG) matrix of the filter [6]. It can be computed as the
`1-norm of the impulse response of the filter. The N0 can be
determined using reasoning similar to the WCPG error analysis
in [7]. There always exists an input sequence u(k) such that
the equality in (3) is reached.

There exist numerous other approaches to determine the
output interval, such as involving Affine Arithmetic [4], which
may lead to overestimations, or simulations [5], which in turn
are inefficient and not rigorous.

It can be shown that the WCPG approach gives the smallest
interval containing all the possible values of y(k) and that
the bound (3) can be attained. Moreover, in [7] the authors
have published an algorithm to evaluate the WCPG at arbitrary
precision.

B. Fixed-Point arithmetic for filter implementation

The considered filters are implemented using signed FxP
Arithmetic, with two’s complement representation [8], [9]. Let t
be such a FxP number. It can be written as t = −2mtm+

∑m−1
i=` 2iti,

where its FxPF (m, `) gives the position of the most (MSB)
significant and least (LSB) significant bits respectively, and
ti ∈ B = {0, 1} is the ith bit of t as shown in Fig. 2. The
wordlength w is given by w = m − ` + 1. The quantization
step of the representation is 2`. Further in the article the LSB
position ` sometimes will be substituted directly with m−w+1.

The real number t is represented in machine by the integer
T , such that T = t · 2−`, where T ∈ [−2w−1; 2w−1 − 1]∩Z. Note
that this interval is not symmetric.

Let y(k) ∈ R be an output of a digital filter. Given the
wordlength wy, determining the Fixed-Point Formats for y(k)
means to find a MSB vector my such that for each k

yi(k) ∈ [−2myi ; 2myi − 2myi−wyi +1]. (4)

Obviously, we are interested in the least possible MSB,
which guarantees (4): any greater MSB would yield to a
larger quantization step, hence round-off noise, at constant
wordlength.

III. Determining the Fixed-Point Formats
A. Exact filter

The problem of determining the FxPF for a filter H
implementation can be formulated as follows. Let H be a
filter in a state-space representation (1). Suppose all the inputs
to be in an interval bounded by ū.

Given the wordlength constraints vector wx for the state and
wy for the output variables we look for a FxPF for x(k) and
y(k) such that for any possible input no overflow occurs. We
wish to determine the least MSB vectors my and mx such that

∀k, y(k) ∈ [−2−my ; 2my − 2my−wy+1], (5)

∀k, x(k) ∈ [−2−mx ; 2mx − 2mx−wx+1]. (6)

Remark 1. Since the filter H is linear and input interval is
centered at zero, the output interval is also centered in zero.
Therefore, further we will seek to determine the least my and
mx such that

∀k, |y(k)| 6 2my − 2my−wy+1, (7)

∀k, |x(k)| 6 2mx − 2mx−wx+1. (8)

B. Applying the WCPG to compute MSB positions

Applying the WCPG theorem on the filter H yields a bound
on the output interval:

|yi(k)| 6 (〈〈H〉〉 ū)i , i = 1, . . . , p. (9)

Denote the bound vector ȳ := 〈〈H〉〉 ū.
We can determine the FxPF for the output of a LTI filter H

utilizing the following lemma.

Lemma 1. Let H = (A, B,C, D) be a BIBO-stable MIMO
LTI filter and ū be a bound on the input interval. Suppose the
wordlengths wy are known and wyi > 1, i = 1, . . . , p.

If for i = 1, . . . , p the MSBs are computed with

myi =
⌈

log2(ȳi) − log2

(
1 − 21−wyi

)⌉
(10)

and the LSBs are computed with `yi = myi + 1 − wyi , then for
all k |yi(k)| 6 2myi − 2myi−wyi +1 and myi is the least.

Proof. We look for the least my such that (7) holds. Since the
bound ȳ can be reached, it is sufficient to require:

ȳi 6 2myi − 2myi−wyi +1 (11)

Solving this inequality for myi we obtain that the smallest
integer, which satisfies the above inequality is

myi =
⌈

log2(ȳi) − log2

(
1 − 21−wyi

)⌉
. (12)

�

3

C. Modification of filter H to determine bounds on the state
variable x

Using Lemma 1 we can determine the FxPF for the output
of a filter. In order to determine the FxPF for the state variable
we modify the filter H by vertically concatenating the state
vector and the output and include necessary changes into the
state matrices.

Denote vector ζ(k) :=
(

x(k)
y(k)

)
to be the new output vector.

Then the state-space relationship (1) takes the form:

Hζ

x(k + 1) = Ax(k) + Bu(k)

ζ(k) =

(
I
C

)
x(k) +

(
0
D

)
u(k) . (13)

Hence the problem is to find the least MSB vector mζ such
that (element-by-element)

∀k, |ζ(k)| 6 2mζ − 2mζ−wζ+1. (14)

Now, applying the WCPG theorem on the filter Hζ and using
Lemma 1, we can deduce the MSB positions of the state and
output vectors for an implementation of the filter H .

D. Taking rounding errors into account

However, due to the finite-precision degradation what we
actually compute is not the exact filter Hζ but an implemented
filter H♦ζ :

H
♦
ζ

x♦(k + 1) = ♦`x

(
Ax♦(k) + Bu(k)

)
ζ♦(k) = ♦`ζ

((
I
C

)
x♦(k) +

(
0
D

)
u(k)

)
(15)

where the Sums-of-Products (accumulation of scalar products
on the right side) are computed with some rounding operator
♦`. Suppose, this operator ensures faithful rounding [10]:

|♦`(x) − x| < 2` (16)

In [11], [12] it was shown that such an operator can be
implemented using some extra guard bits for the accumulation.

Denote the errors due to operator ♦` as εx(k) and εy(k)
for the state and output vectors, respectively. Essentially, the
vectors εx(k) and εy(k) may be associated with the noise which
is induced by the filter implementation. Then the implemented
filter can be rewritten as

H
♦
ζ

x♦(k + 1) = Ax♦(k) + Bu(k) + εx(k)

ζ♦(k) =

(
I
C

)
x♦(k) +

(
0
D

)
u(k) +

(
0
I

)
εy(k)

,

(17)
where

|εx(k)| < 2`x ,
∣∣∣εy(k)

∣∣∣ < 2`y .

It should be remarked that since the operator ♦l is applied
εx(k) , x(k)− x♦(k) and εy(k) , y(k)− y♦(k). As the rounding
also affects the filter state, the x♦(k) drifts away from x(k)
over time, whereas with εx(k) we consider the error due to
one step only.

It can be observed that at each instance of time the state
and output vectors are computed out of u(k) and error-
vectors, which can be considered as inputs as well. Thanks

H⇣

H�

⇣⌃(k)

u(k) ⇣(k)

�⇣(k)

✓
"x(k)
"y(k)

◆

m⇣

Fig. 3. Implemented filter decomposition.

to the linearity of the filters, we can decompose the actually
implemented filter into a sum of the exact filter and an "error-
filter" H∆ as shown in Fig. 3. Note that this "error-filter" is an
artificial one; it is not required to be "implemented" by itself
and serves exclusively for error-analysis purposes.

The filter H∆ is obtained by computing the difference
between H♦ζ and Hζ . This filter takes the rounding errors

ε(k) :=
(
εx(k)
εy(k)

)
as input and returns the result of their

propagation through the filter:

H∆

∆x(k + 1) = A∆x(k) +

(
I
0

)
ε(k)

∆ζ(k) =

(
I
C

)
∆x(k) +

(
0 0
0 I

)
ε(k)

, (18)

where, the vector ε(k) is guaranteed to be in the interval
bounded by ε̄ := 2`ζ .

Once the decomposition is done, we can apply the WCPG
theorem on the "error-filter" H∆ and deduce the output interval
of the computational errors propagated through filter:

∀k,
∣∣∣∆ζ(k)

∣∣∣ 6 〈〈H∆〉〉 · ε̄. (19)

Hence, the output of the implemented filter is bounded with∣∣∣ζ♦(k)
∣∣∣ 6 |ζ(k)| +

∣∣∣∆ζ(k)
∣∣∣ . (20)

Applying Lemma 1 on the implemented filter and using (20)
we obtain that the MSB vector m♦ζ can be upper bounded by

m♦ζi
=

⌈
log2

((〈〈
Hζ

〉〉
· ū

)
i
+ (〈〈H∆〉〉 · ε̄)i

)
(21)

− log2

(
1 − 21−wζi

)⌉
.

Therefore, the FxPF (m♦ζ , `
♦
ζ) guarantee that no overflows occur

for the implemented filter.
Since the input of the error filter H∆ depends on the FxPF

chosen for implementation, we cannot directly use (21). The
idea is to first compute the FxPF of the variables in the exact
filter H , where computational errors are not taken into account,
and use it as an initial guess for implemented filter H♦ζ . Hence,
we obtain the following two-step algorithm:
Step 1: Determine the FxPF (mζ , `ζ) for the exact filter Hζ

Step 2: Construct the "error-filter" H∆, which gives the
propagation of the computational errors induced by
format (mζ , `ζ); then, compute the FxPF (m♦ζ , `

♦
ζ) of

the actually implemented filter H♦ζ using (21).
The above algorithm takes into account the filter implemen-

tation errors. However, the algorithm itself is implemented in
finite-precision and can suffer from rounding errors, which

4

influence the output result. All operations in the MSB compu-
tation will induce errors, so what we actually compute are only
floating-point approximations m̂ζ and m̂ζ

♦. In what follows,
we propose error-analysis of the floating-point evaluation of
the MSB positions via (10) and (21).

IV. Error analysis of theMSB computation formula

Let us consider case of m̂ζi
♦ and show afterwards that m̂ζi

is its special case. To reduce the size of expressions, denote

m := log2

((〈〈
Hζ

〉〉
· ū

)
i
+ (〈〈H∆〉〉 · ε̄)i

)
− log2

(
1 − 21−wζi

)
.

Handling floating-point analysis of multiplications and
additions in (21) is trivial using approach by Higham [13].
The difficulty comes from the WCPG matrices, which cannot

be computed exactly. However both approximations
〈̂〈
Hζ

〉〉
and 〈̂〈H∆〉〉, even if computed with arbitrary precision, bear
some errors εWCPGζ

and εWCPG∆
that satisfy

0 6 〈̂〈H∆〉〉 − 〈〈H∆〉〉 6 εWCPGζ
· 1 (22)

0 6
〈̂〈
Hζ

〉〉
−

〈〈
Hζ

〉〉
6 εWCPG∆

· 1 (23)

Introducing the errors on the WCPG computations into the
formula (21) we obtain that what we actually compute is

m̂ζi
♦ 6

m + log2

1 +

εWCPGζ

q∑
j=1

ū j + εWCPG∆

n+p∑
j=1
ε̄ j(〈〈

Hζ

〉〉
ū
)

i
+ (〈〈H∆〉〉 ε̄)i

. (24)

The error term in (24) cannot be zero (apart from trivial
case with zero ū). However, since we can control the accuracy
of the WCPG matrices, we can deduce conditions for the
approximation m̂ζi

♦ to be off by at most one.

Lemma 2. If the WCPG matrices
〈〈
Hζ

〉〉
and 〈〈H∆〉〉 are

computed such that (22) and (23) hold with

εWCPG∆
<

1
2

(
〈〈H∆〉〉 · ε̄

)
i∑p+n

j=1 ε̄i
(25)

εWCPGζ
<

1
2

(〈〈
Hζ

〉〉
· ū

)
i∑q

j=1 ūi
, (26)

where 〈〈H〉〉 := |D| + |CB| + |CAB|, then

0 6 m̂ζi
♦
− mζi

♦ 6 1. (27)

Proof. Proof by construction, we reason as follows: since the
error-term caused by the WCPG floating-point evaluation is
positive and the ceil function is increasing, then

m̂ζi
♦
− mζi

♦ > 0, (28)

i.e. the floating-point approximation m̂ζi
♦ is guaranteed to

never be underestimated. However, it can overestimate the
MSB position by

m̂ζi
♦
− mζi

♦ 6

m −
⌈
m
⌉︸ ︷︷ ︸

−1<·60

+ log2

1 +

εWCPGζ

q∑
j=1

ū j + εWCPG∆

n+p∑
j=1
ε̄ j(〈〈

Hζ

〉〉
ū
)

i
+ (〈〈H∆〉〉 ε̄)i

. (29)

The approximation m̂ζi
♦ overestimates at most by one bit if

and only if the error term is contained in the interval [0, 1),
i.e. if

0 6 log2

1 +

εWCPGζ

q∑
j=1

ū j + εWCPG∆

n+p∑
j=1
ε̄ j(〈〈

Hζ

〉〉
ū
)

i
+ (〈〈H∆〉〉 ε̄)i

 < 1. (30)

Hence, using the above condition we can deduce the upper
bounds on the εWCPGζ

and εWCPG∆
:

0 6
εWCPGζ

q∑
j=1

ū j + εWCPG∆

n+p∑
j=1
ε̄ j(〈〈

Hζ

〉〉
ū
)

i
+ (〈〈H∆〉〉 ε̄)i

< 1. (31)

Since all the terms are positive, the left inequality is always
true. The right inequality in (31) is satisfied for instance if

εWCPGζ

q∑
j=1

ū j(〈〈
Hζ

〉〉
· ū

)
i

<
1
2

εWCPG∆

n+p∑
j=1
ε̄ j

(〈〈H∆〉〉 · ε̄)i
<

1
2
. (32)

Rearranging terms we obtain following inequalities on the
WCPG computation with error:

εWCPGζ
<

1
2
·

(〈〈
Hζ

〉〉
ū
)

i
q∑

j=1
ū j

εWCPG∆
<

1
2
·

(〈〈H∆〉〉 ε̄)i
n+p∑
j=1
ε̄ j

. (33)

Unfortunately, the above results cannot be used in practice,
since they depend themselves on the exact WCPG matrices.

It can be shown that 〈〈H〉〉 is a lower bound of the WCPG
matrix. We can compute this matrix exactly. Obviously,(

〈〈H∆〉〉 · ε̄
)

i∑p+n
j=1 ε̄i

6
(〈〈H∆〉〉 · ε̄)i∑p+n

j=1 ε̄i
(34)(〈〈

Hζ

〉〉
· ū

)
i∑q

j=1 ūi
6

(〈〈
Hζ

〉〉
· ū

)
i∑q

j=1 ūi
. (35)

Hence, if the WCPG matrices in the right sides of (33) are
substituted with their lower bounds, the condition (31) stays
satisfied and we obtain bounds (25) and (26).

�

Analogously, Lemma 2 can be applied to the computation
of m̂ζi with the terms concerning filter H∆ set to zero.

5

In order to guarantee the output MSB position to be optimal,
an instance of the Table Maker’s Dilemma [10] must be solved.
This is due to the simplification by using the triangle inequality
in (20), which basically requires both filters Hζ and H∆ reach
the worst-case bound with the same input sequence.

V. Complete algorithm

The two-step algorithm, presented in subsection III-D takes
into account accumulation of computational errors in a filter
over time and Lemma 2 presents error-analysis of the MSB
position computation procedure. However, one additional fact
has not been taken into account.

In most cases the MSB vectors m̂ζ (computed on Step 1) and
m̂♦ζ (computed on Step 2) are the same. However, in some cases
they are not, which can happen due to one of the following
reasons:
• the accumulated rounding error due to the FxPF (m̂ζ ,̂̀ζ)

makes output of the actually implemented filter pass over
to the next binade; or

• the floating-point approximation m̂♦ζ is off by one.
Moreover, if the MSB position after Step 2 of the algorithm

is increased, the LSB position moves along and increases
the error. Therefore, the modified format must be re-checked.
Hence, the FxPF determination algorithm gets transformed into
the following three-step procedure:
Step 1: Determine the FxPF (m̂ζ ,̂̀ζ) for the exact filter Hζ ;
Step 2: Construct the "error-filter" H∆, which shows the

propagation of the computational errors induced by
format (m̂ζ ,̂̀ζ); then, compute the FxPF (m̂♦ζ ,̂̀♦ζ) of
the actually implemented filter H♦ζ ;

Step 3: If m̂♦ζi
== m̂ζi , then return (m̂♦ζ ,̂̀♦ζ);

otherwise m̂ζi ←− m̂ζi + 1 and go to Step 2.

VI. Numerical results

The above described algorithm was implemented as a C
library, using GNU MPFR1 [14] version 3.1.12, GNU MPFI2

version 1.5.1 and the WCPG library [7].
Consider following example: let H be a random stable filter

with 3 states, 1 input and 1 output. Suppose the inputs are in
an interval absolutely bounded by ū = 5.125. In this example
we set all the wordlength constraints to 7 bits, however our
library supports the multiple wordlength paradigm.

The results of the work of our algorithm can be observed
in Table I. On the Step 1 we deduce the MSB positions for
the filter H , which does not take computational errors into
account. These MSBs serve as an initial guess for the Step 2.
We compute the vector ε̄ζ and construct the "error-filter" H∆.
Taking into account the error propagation yields changes in
the MSB positions: the rounding errors force the third state
x3(k) to pass over to the next binade. However, moving the
MSB yields larger quantization step and an addition step is
required. Step 3 verifies that the FxPF deduced on the Step 2
guarantees no overflow.

1http://www.mpfr.org/
2https://gforge.inria.fr/projects/mpfi/

states output
x1(k) x2(k) x3(k) y(k)

Step 1 6 7 5 6
Step 2 6 7 6 6
Step 3 6 7 6 6

TABLE I
Evolution of theMSB positions vector through algorithm iterations

We can verify the result by tracing the state and output
vectors in two cases: the exact vectors y(k) and x(k); and the
quantized vectors y♦(k) and x♦(k). The quantized vectors are
the result of an implementation of the filter H with FxPF
deduced on the Step 1. For each state and output we take an
input sequence which makes the state respectively output attain
the theoretical bound. However, this sequence is not guaranteed
to maximize the quantized error.

In Fig. 4 we can observe that the exact vector y(k) attains
the bound computed with the WCPG theorem. The quantized
output stays within the bound ȳ♦ for the implemented filter
but passes over the bound of the exact filter. However, as the
bound ȳ is far from the next binade, the MSB position is not
changed and the computational errors do not result in overflow.

For the third state x3(k), its bound x̄3 is very close to the
2mx3−2`x3 and taking into account the filter computational errors
yields passing to the next binade. It can be clearly observed in
Fig. 5 that the quantized state passes over the value 2mx3 − 2`x3 .
If the computational errors were not taken into account, the
initial format (deduced on the Step 1) would result in overflow.

Therefore, we observed that deducing the FxPF without
taking into account the computational errors can result in
overflow but our approach guarantees a reliable implementation
without overestimation.

Time

A
m

p
li
tu

d
e

ȳ
y⌃(k)

y(k)

ȳ⌃

Fig. 4. The exact and quantized outputs of the example. Quantized output
does not pass over to the next binade.

VII. Conclusions

We give an algorithm to determine the FxPF for all variables
of a LTI filter, where the computation errors are taken into
account. We ensure, by construction, that no overflow occurs.
However, the computed MSB positions can overestimate at
most by one bit. In order to guarantee no overestimation at all
an instance of the TMD must be solved. Our algorithm can be
extended to any LTI filter realization (Direct Forms, Lattice
filters, etc.) using the Specialized Implicit Framework (SIF) tool

6

Time

A
m

p
li
tu

d
e

x̄3

x⌃
3 (k)

x3(k)

x̄⌃
3

Fig. 5. The exact and quantized third state of the example. Quantized output
passes over to the next binade.

[6]. SIF enables unification of various LTI filter realizations for
analysis, comparison and FxP code generation. Therefore, this
work is an essential basic brick for the automatic filter-to-code
conversion.

References
[1] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall„ 1975.
[2] B. Friedland, Control Systems Design: An Introduction to State-Space

Methods. McGraw-Hill Higher Education, 1985.
[3] A. Fettweiss, “Wave digital filters: Theory and practice,” Proc. of the

IEEE, vol. 74, no. 2, 1986.
[4] J. Lopez, C. Carreras, and O. Nieto-Taladriz, “Improved interval-

based characterization of fixed-point LTI systems with feedback loops,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 26, no. 11, pp. 1923–1933, 2007.

[5] S. Kim, K. Kum, and W. Sung, “Fixed-point optimization utility for C
and C++ based digital signal processing programs,” IEEE Transactions
on Circuits and Systems, vol. 45, pp. 1455–1464, November 1998.

[6] T. Hilaire and B. Lopez, “Reliable implementation of linear filters with
fixed-point arithmetic,” in Proc. SiPS, 2013.

[7] A. Volkova, T. Hilaire, and C. Lauter, “Reliable evaluation of the
worst-case peak gain matrix in multiple precision,” in Proc. 22nd IEEE
Symposium on Computer Arithmetic (ARITH22), 2015.

[8] J. v. Newmann, “First draft of a report on the edvac,” tech. rep., 1945.
[9] T. Finley, “Two’s complement.” Cornell University lecture notes, 2000.

[10] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic. Birkhäuser Boston, 2010.

[11] B. Lopez, T. Hilaire, and L. S. Didier, “Formatting bits to better
implement signal processing algorithms,” in Proc.PECCS, Portugal,
pp. 104–111, 2014.

[12] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product architec-
tures computing just right,” in Application-Specific Systems, Architectures
and Processors (ASAP), IEEE, 2014.

[13] N. J. Higham, Accuracy and stability of numerical algorithms (2. ed.).
SIAM, 2002.

[14] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Transactions on Mathematical Software, vol. 33, no. 2,
pp. 13:1–13:15, 2007.

